
Doc: PS2001-5-2101-001 Rev: R02.00 1-268

Title page

Practical Series

PRACTICAL SERIES AUTOMATION LIBRARY
FUNCTIONAL SPECIFICATION

AUTHOR: MICHAEL GLEDHILL

2-268 Doc: PS2001-5-2101-001 Rev: R02.00

Published By:

Practical Series of Publications

Published in the United Kingdom

mg@practicalseries.com

Copyright 2021 Michael Gledhill

Document No.: PS2001-5-2101-001

Document Template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto)

Licence

LICENCE This document and associated software are made available under the MIT License:

The MIT License (MIT)

Copyright © 2021 Michael Gledhill

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the “Software”), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-

LAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

Based on template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto) — Indexable PDF format WebIndex:ber

Doc: PS2001-5-2101-001 Rev: R02.00 3-268

Authorisations

DOCUMENT AUTHORISATION
NAME POSITION SIGNATURE DATE

Author
Michael

Gledhill
Lead Engineer 01 May 2022

The signature of the author confirms that the document has been prepared in accordance with an

approved document management process, that all content is technically complete and that all relevant

material has been included.

Reviewed by
Frank

Greenwood

Project

Manager
01 May 2022

The signature of the reviewer indicates that the document has been checked for technical content and

that it complies with the technical standards, specifications and conventions.

Approved by
Christopher

Wish

Quality

Manager
01 May 2022

The signature of the Approver indicates that the document has been checked for compliance with the

quality management Procedures.

THIRD PARTY AUTHORISATION
NAME POSITION SIGNATURE DATE

Approved by
Alfred

Featherstone

Operations

Director
01 May 2022

The signature of the Approver indicates that the document satisfies the Project quality and validation

requirements of the Third Party’s quality system.

4-268 Doc: PS2001-5-2101-001 Rev: R02.00

Revision history

REVISION
 REVISION DATE REVISED BY DESCRIPTION

R02.00 01 May 2022 Michael Gledhill
Properties standardised across all documents

Changes to interrupt functional group names

R01.00 02 Jul 2020 Michael Gledhill First released

Doc: PS2001-5-2101-001 Rev: R02.00 5-268

Contents

CONTENTS
1. Introduction .. 11

1.1 Scope and purpose of this document 12

1.2 Ownership, status & relationship to other documents 13
1.2.1 Ownership of the document ... 13
1.2.2 The status of this document .. 13
1.2.3 Relationship to other documents .. 13

2. Overview ... 15

2.1 A description of the Project .. 15

2.2 The approach ... 19
2.2.1 The structure of the software .. 20
2.2.2 The standard modules .. 22
2.2.3 User interface ... 24
2.2.4 Templates and documentation ... 25
2.2.5 Hardware test environment .. 25

2.3 Background to the Project .. 26

2.4 Regulations and standards .. 26
2.4.1 Regulations, legislation and standards ... 27

2.5 Assumptions and limitations... 27

2.6 Nonconformity ... 28

2.7 Addressing the URS requirements .. 28

3. Hardware .. 29

3.1 Hardware functions ... 31
3.1.1 General arrangements .. 31
3.1.2 The test bed .. 35
3.1.3 The electrical panel .. 37
3.1.4 IO signals and access ... 43
3.1.5 Network arrangements .. 45
3.1.6 The HMI ... 47
3.1.7 The Controller hardware .. 47

6-268 Doc: PS2001-5-2101-001 Rev: R02.00

4. The controller software and structure ... 51

4.1 Internal structure of the Controllers 52
4.1.1 Programmable blocks .. 52
4.1.2 Data storage blocks ... 53
4.1.3 Built in system blocks .. 55
4.1.4 Block numbering, quantities and number ranges 56

4.2 Execution of Controller software ... 58
4.2.1 Cyclic programme execution .. 58
4.2.2 The process image ... 61
4.2.3 Process images partitions ... 62
4.2.4 Common CPU properties .. 63

4.3 The passing of data between modules 64
4.3.1 Block parameters .. 64
4.3.2 Data storage and passing of data to blocks .. 66
4.3.3 Instance data blocks ... 68

4.4 Identification of modules and their type 69

4.5 Software Control Mechanism ... 72
4.5.1 Module revision numbering mechanism ... 72
4.5.2 A version control system ... 73

5. The PAL software structure .. 75

5.1 Functional group module numbering 77
5.1.1 Functional group summary ... 78

5.2 Module naming conventions .. 79
5.2.1 Block class .. 79
5.2.2 Block function .. 80
5.2.3 Block description .. 81
5.2.4 Block naming restrictions ... 82

5.3 Module symbolic names .. 83

5.4 The PAL structure within a Controller 85
5.4.1 Application modules .. 85
5.4.2 Standard modules within the PAL structure ... 87
5.4.3 Interrupt modules within the PAL structure ... 92
5.4.4 Third-party modules .. 93

Doc: PS2001-5-2101-001 Rev: R02.00 7-268

5.5 Common signals within the PAL .. 94
5.5.1 System signals: parametric access and direct access 95
5.5.2 UDT system signals for parametric access .. 96
5.5.3 Bit memory direct access and the PAL system tag table 97
5.5.4 System signal naming conventions ... 99
5.5.5 Global logic signals ... 99
5.5.6 Global timing signals .. 100
5.5.7 Cyclically dependent signals ... 101

6. Data handling within the PAL ... 103

6.1 Data in the form of memory bits ... 103

6.2 IO Data ... 106
6.2.1 IO Tag naming conventions ... 107

6.3 Data block data storage .. 112
6.3.1 Data block and UDT naming conventions ... 120
6.3.2 DBs holding recipe data.. 121

7. Application modules .. 123

7.1 Coordinating application modules 124

7.2 Marshalling application modules .. 125

7.3 Programmed application modules 127

7.4 A summary of application module types 129

8. Standard module library .. 131

8.1 System function modules .. 132

8.2 Instrument read modules.. 133

8.3 Interlock and protection modules .. 135

8.4 Safety and safety system modules .. 139

8.5 Calculations and mathematics modules 142

8.6 Sequential control .. 150

8.7 Device drivers — control loops .. 152

8.8 Device drivers — Valves .. 155

8.9 Device drivers — Drives .. 159

8.10 Message handling ... 166

8.11 Communication handling .. 169

8.12 Subroutines .. 171

8.13 Debug subroutines ... 174

8-268 Doc: PS2001-5-2101-001 Rev: R02.00

9. Standard sequence operation .. 181

9.1 Operating states and commands .. 181
9.1.1 Normal sequential operation.. 184
9.1.2 Hold and error hold operation .. 185
9.1.3 Stop and abort operation .. 187
9.1.4 The reset operation .. 188
9.1.5 The pause operation ... 188

9.2 Steps and transitions within a sequence 188
9.2.1 Simple steps and transitions .. 190
9.2.2 Alternative branching ... 191
9.2.3 Simultaneous branches ... 194
9.2.4 Jumps and loops ... 195

9.3 Phases within a step ... 196
9.3.1 Phase timings for IEC compliant sequence steps 198
9.3.2 Phase timings for non-IEC compliant sequence steps 199

9.4 Automatic step timing functions .. 200

9.5 Manual modes of operation ... 201
9.5.1 Semi-manual mode .. 201
9.5.2 Full manual mode ... 201

10. Supervisory system user interface .. 203

10.1 Scope restrictions with the PAL ... 205

10.2 Symbols block icons and faceplates 206
10.2.1 Symbols .. 207
10.2.2 Block icons .. 216
10.2.3 Faceplates .. 227

10.3 Graphical styles .. 240

10.4 PAL Graphical arrangements ... 243
10.4.1 Screen sizes and resolutions ... 245

10.5 Alarm handling ... 247

10.6 User management ... 249

11. Template and documentation modules ... 251

11.1 Template modules ... 252
11.1.1 Template modules for application and standard modules 252
11.1.2 Template modules for organisation blocks ... 255

11.2 Document modules .. 256

Doc: PS2001-5-2101-001 Rev: R02.00 9-268

12. Regulatory requirements ... 257

12.1 Hardware regulatory requirements 257
12.1.1 GxP requirements .. 257
12.1.2 Regulatory requirements .. 258

12.2 Software regulatory requirements....................................... 258
12.2.1 Regulation and legislative requirements ... 258
12.2.2 Software standards .. 259
12.2.3 Maintenance and publication of verification certification 259

12.3 Software restrictions ... 259

13. PAL user documentation ... 261

13.1 Training ... 263

14. References and glossary ... 265

14.1 Document references .. 265

14.2 Glossary of terms ... 266

10-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 11-268

1. Introduction

1 Introduction

This document is the Functional Specification (FS) for the Practical Series Automation

Library of software modules (the PAL).

This Functional Specification has been produced by Michael Gledhill, under his own

authority as the Lead Engineer of the Practical Series Automation Library of software

modules project (hereafter referred to as the Project).

The Functional Specification defines how the system is to function from an operational

point of view and the design of the system that makes this possible; as such it describes:

1 How the system operates

2 The functions that are carried out automatically by the system

3 The facilities available to the users of the system

4 The equipment used to control the system

5 The interfaces between the various parts of the system

12-268 Doc: PS2001-5-2101-001 Rev: R02.00

1.1 Scope and purpose of this document

The scope of this document includes the complete control system associated with the

PAL, broadly this includes:

1 The control system hardware, including the following:

 • Simatic S7-1500 Controllers

• Electrical panels

• Instrumentation

• Hardware documentation

2 The control system software, including the following:

 • PAL software modules

• Software documentation

The purpose of this FS is to ensure that:

3 All the requirements of the Project are properly documented

4 All requirements are clear, precise and unambiguous

5 All requirements are specific, measurable, realistic and testable

The FS and its subsidiary documents: the Hardware Design Specification (HDS)

[Ref. 006], Software Design Specification (SDS) [Ref. 006], Software Module Design

Specifications (SMDSs) [Ref. 008] and the Style Guide (SG) [Ref. 010] will collectively

provide a design that satisfies all the requirements of the Project specified in the User

Requirements Specification (URS) [Ref. 003].

Doc: PS2001-5-2101-001 Rev: R02.00 13-268

1.2 Ownership, status & relationship to other

documents

This document, the Functional Specification (FS) is a fundamental document for the

Project, the ownership of the document (those whom control it and are able to modify

it), its status within the Project and its relationship to all other primary documents are

important factors and are explained below:

1.2.1 Ownership of the document

This Functional Specification has been produced, and is controlled and maintained by

the Practical Series of Publications (PSP).

This Functional Specification and all the referenced documents produced by the PSP

are subject to the change control management procedures for this Project, these are

detailed in the Project Quality Plan (QP), [Ref. 001].

1.2.2 The status of this document

The Functional Specification (this document) is a contractual document and is a deliv-

erable item under the terms of the Project. The Functional Specification is an approved

document and this approval must take place prior to the commencement of any other

Project design activity.

The document must be approved by the Practical Series of Publications Operations

Manager.

1.2.3 Relationship to other documents

The Functional Specification is the primary design document for the Project, it will

form the basis of all the Project design work. The full document flow-path for the Pro-

ject including the Functional Specification is shown in Figure 1.1; full details of this

document within this flow-path can be found in the Project Quality Plan (QP),

[Ref. 001] and Validation Plan (VP), [Ref. 002].

14-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 1.1 Project Documentation

Doc: PS2001-5-2101-001 Rev: R02.00 15-268

2. Overview

2 Overview

This overview sets out a brief description of the Project and its design. It also explains

the approach that is to be taken in defining the specification for the design, this is in

terms of the strategy being deployed and the breakdown of the requirements into de-

tailed functional specifications.

2.1 A description of the Project

The Practical Series Automation Library (PAL) Project is a library of software mod-

ules and templates that are to be made available for the Siemens Simatic S7-1500 range

of Controllers (and to a lesser extent the S7-1200 range).

The PAL is configured and deployed using the Siemens Simatic TIA Portal program-

ming environment.

The PAL software structure is designed such that it is applicable to virtually all indus-

trial applications that can generally controlled by a programmable logic controller

(PLC)1.

Such applications can generally be thought of as processes that operate with a response

time of more than 100 ms. I.e. the system would not be expected to respond to some

stimuli faster than 100 ms. In practice, a Controller may (and usually will) respond

faster than this; however, a response time of 100 ms is considered to be an acceptable

limit for PLC control.

1 The Siemens Simatic S7-1500 and S7-1200 range of Controllers are, what would be generally

understood to be, program logic controllers (PLCs); Controller is simply the common term

used within Siemens literature for this type of device. For clarity, where a Siemens Control-

ler is being referred to, the word Controller is capitalised (to indicate it is a Siemens Con-

troller, rather than some non-specific controlling device).

16-268 Doc: PS2001-5-2101-001 Rev: R02.00

The PAL software being developed as part of this Project, is considered to be suitable

for use in the following types of industries (this is not an exhaustive list):

• Water and waste water treatment

• Pharmaceutical and batch production

• Brewing and fermentation

• Chemical manufacturing

• Oil and gas systems

• Power plants

• Food and beverage production

At its most basic level, the PAL will be a library of software modules that control the

fundamental aspects of an industrial plant; such modules would for example read the

value of an instrument, operate a valve or drive, perform a calculation &c.

Such software modules are referred to as standard modules, these are fixed modules

that perform a particular function and are identical across all software installations.

The PAL has many such modules; making up the bulk of the PAL.

The PAL also contains application specific modules; these contain software that is ap-

plicable to the plant being controlled.

For example, if a project were to control five valves, there would be an application

module that called the standard valve device driver five times and each instance would

link the standard module to the particular signals and internal storage locations associ-

ated with the valve in question.

Doc: PS2001-5-2101-001 Rev: R02.00 17-268

The standard modules within the PAL will be fixed modules, the software within these

modules will be written, tested and validated as part of this Project and at only that

point will the modules be released for use. Once released, the modules must not be

modified or changed in any unauthorised way, to do so would invalidate the software.

The further modification of any of these standard modules (or indeed the addition of

further standard modules) will only take place under the Project change control put in

place by this the Quality Plan [Ref. 001] or under the control of subsequent future pro-

jects.

Application modules are specific to each individual plant within which the PAL is de-

ployed; they will be written for a particular project and are configured to match the

requirements of that project.

Although individual in nature, the type of application modules required by a particular

project will be part of a universal set of such modules, this set of modules determines

the fundamental structure of the software, for the PAL, these are broadly:

• System (internal) signal generation

• Instrumentation

• Safety and interlock systems

• Calculations

• Continuous control

• Sequence control

• Command execution logic

• Device handling (valves, drives &c.)

• Alarm handling

• Communications

18-268 Doc: PS2001-5-2101-001 Rev: R02.00

Each application module will also have to conform to the standards, formats and spec-

ifications laid out in the various requirements and design documentation associated

with the PAL project.

As such, a comprehensive set of template application modules will be designed, devel-

oped, tested and issued as part of the Practical Series Automation Library Project.

These modules will serve as example modules to demonstrate how the PAL modules

should be used, and the best practices for doing so.

There will also be a series of documentation modules that demonstrate how the mod-

ules should be documented, commented and named.

Certain modules within the PAL library, will have operator interfaces; typically, these

are modules for reading instruments, managing equipment (drives, valves, loops) and

controlling various aspects of the plant control (sequences for example). These inter-

faces require that the mechanisms for displaying the status of instruments and devices

and for controlling those instruments and devices, be established as part of this design.

Note: Although the interfaces for display and control are defined as part of this Project,

the supervisory systems themselves (SCADA, HMI &c.) will not be developed as

part of this Project, the interfaces (and to some extent the expected appearance of

the graphical symbols that would be used in such systems) will be developed in

their entirety.

Doc: PS2001-5-2101-001 Rev: R02.00 19-268

2.2 The approach

The requirements for this Project specified in the User Requirements Specification

(URS) [Ref. 003], are to build a library of Siemens Simatic Controller software modules

that will be applicable to virtually all industrial applications that can generally be con-

trolled by such a Controller.

The design necessary to achieve these requirements can be broken down into the fol-

lowing components:

1 Determine the overall structure of the software that is to be used

as the basis for all industrial application deployments, this will

form the basis of the required application modules

2 Determine the standard modules that are to form the library

3 The design of the end-user interface for certain specific modules

that require such an interface

4 Establish a series of template and document modules that can pro-

vide example usage of all the standard and application module in

context

5 Design the hardware test environment that allows modules and

applications to be developed and tested

A brief overview (a summary or abstract) of each of these five areas is given below, this

is intended to provide an introduction to the detailed functional specifications that fol-

low in subsequent sections.

20-268 Doc: PS2001-5-2101-001 Rev: R02.00

2.2.1 The structure of the software

Software within a Controller is generally structured in a logical order, and that order

is determined by the order that Controller is to process the information available to it

and then act on that information.

For example, if it were the function of a Controller to close a valve if a tank reached a

target level and open it if below that level, the logical order of events would be:

1 Read the tank level instrument

2 Evaluate the level (is it above the target level)

3 Act on that information to either open or close the valve

There is no hard and fast rule for how a Controller programme should be structured;

it can be done many in different ways. That said, there are certain common approaches

and some measure of good engineering practice that are generally applied to the struc-

ture of a programme and these will be adopted within the PAL.

The PAL will broadly adopt the following overall software structure:

1 System Functions

 Generates common (global) system signals and timing pulses.

Reads Controller cycle and real time clock information.

Reads and identifies any module and system faults.

2 Read Instruments

 Reads all analogue and digital instruments.

Analogue instruments are scaled and converted to real engineering units; high and low

alarms and warnings are generated.

Digital instruments signals are filtered and stored

3 Interlocks and protection

 Interlocks are overriding conditions that prevent something from happening (or ensure

something does happen) when a particular condition (or set of conditions) is present.

4 Safety systems

 Safety systems are used for both machine and personnel protection (emergency stop

systems &c.).

Doc: PS2001-5-2101-001 Rev: R02.00 21-268

5 Calculations

 Perform any discreate calculations required by the process, this may be mathematical

calculations, timing calculations or even logical calculations

6 Continuous Control Logic

 Continuous control is the constant monitoring and evaluation of plant devices and process

variables. The continuous control logic assess the condition of the plant and generates

actions to produce the required process conditions.

7 Sequential Control Logic

 Sequential logic operates in a series of successive steps, each step carrying out an action

and waiting for transition conditions to be satisfied before moving to another step.

Sequential logic is often triggered by the continuous logic

8 Command execution

 Both continuous and sequential control logic generate actions, these actions require

something to happen (a valve to open, a drive to start &c.). The command execution

blocks martial these signals and trigger the appropriate response (issues the command).

9 Device Drivers (control loops)

 Control loop device drivers monitor and control the various different types of control

loops employed by an application

Each loop has an individual driver, that determines if fault condition exist, applies any

interlock conditions, &c.

10 Device Drivers (control loops, valves, drives &c.)

 Valve and drive device drivers monitor and control individual valves and drives connected

to the controller.

Each device has an individual driver, that driver determines if the devices is in a healthy or

fault condition, applies any interlock conditions that are associated with the device and

operates the device in response to any command generated within at the command

execution stage.

11 Messages

 Handles Controller messages: alarms, warnings, events and prompts that require some

form of user interaction

12 Communications

 Executes any system-to-system communications (Controller to Controller) and any other

form of communication required by the system (point-to-point serial communications,

ProfiBus field messaging &c.).

22-268 Doc: PS2001-5-2101-001 Rev: R02.00

The above list is the complete PAL programme structure, not all Controller pro-

grammes will have all these steps (it depends on the application in question). However,

where a step is used, it must follow the execution order shown in the above list.

For example, if a programme did not require interlocks or safety, but had instruments

and continuous logic, then the continuous logic would follow the read instruments (inter-

locks and safety would not be present); continuous logic must not precede read instru-

ments in the order of execution.

Each of the points in the above list will have generally an application block and, usually,

at least one standard module associated with it; (there are some points, command exe-

cution being one, that do not have any associated standard modules).

2.2.2 The standard modules

The full list of standard modules is given in Section 8. These cover the following as-

pects of the control system:

• System (internal) signal generation

• Instrumentation

• Safety and interlock systems

• Calculations

• Sequence operation

• Device handling (control loops, valves, drives &c.)

• Messages

• Communications

• General purpose subroutines

• Debug functions

The standard modules will form part of the Controller software structure (§ 2.2.1).

Doc: PS2001-5-2101-001 Rev: R02.00 23-268

In the context of this Project standard modules are software modules that will carry out

a particular function; an example would be a module that controls the operation of a

valve, such a module would typically do the following:

• Open and close the valve when commanded to do so

• Determine if the valve is in a fault condition (i.e. the valve did not

open when required to do so)

• Provide status information about the valve allowing other sys-

tems (SCADA, HMI &c.) to display the condition of the valve

(i.e. opened, opening, closed, closing, fault, interlocked &c.)

The module would be configurable to accommodate different types of valves and sig-

nalling arrangements:

• Different arrangements of position feedback (none, open only,

closed only or both open and closed)

• Different opening and closing times

• Handle external fault signals (typical for motorised valves)

• Accommodate different energising states (i.e. energise to open or

energise to close)

• Manage different interlock arrangements and signals

The module would also determine how the operator could interface with the valve:

• Provide manual control (operator can take direct control of the

valve)

• Restrict specific manual control function (this ranges from full

control using simulation to override faults, to no control whatso-

ever, even restricting the display of faceplate interfaces)

• Allow or restrict the operator from changing operating parame-

ters associated with the valve

24-268 Doc: PS2001-5-2101-001 Rev: R02.00

Similarly, an instrument read module would do the following:

• Read an analogue instrument signal received via an analogue in-

put card and scale it to the correct engineering units

• generate alarms and warnings whenever the signal is beyond a

specific target value (either above or below);

• Alarm or warning may be time filtered (the condition must be

present for a preset time before the alarm or warning is activated)

and each will automatically reset when the signal is back within

the acceptable range by a hysteresis amount.

• Generate out-of-range fault signals if the instrument is outside its

normal calibrated range by more than a specified amount

This document contains a full list of all the standard modules that will be developed

under this Project (listed in Section 8).

2.2.3 User interface

Although supervisory systems such as SCADA and HMI systems are outside the scope

of this Project, the interface between these systems and the PAL software modules is

not; and this must be clearly defined in order to provide the necessary signals to display

and interact with the any supervisory system.

The interface between a supervisory system and the PAL software modules will be

detailed in this document and will include example graphics that may be adopted by

any supervisory such supervisory system.

The interface will be different for different types of equipment (the interface to an in-

strument will for example be completely different to that of a valve); however, a com-

monality of approach (and where possible, signals) will be adopted to give consistency

to this interface.

Doc: PS2001-5-2101-001 Rev: R02.00 25-268

2.2.4 Templates and documentation

A series of template and documentation modules will be provided to give worked ex-

amples of how the PAL software modules should be used in a control system project.

The template modules explain how to use and deploy the various standard and applica-

tion modules and also the various organisation blocks (OBs) that may be required in

various circumstances. The template modules provide detailed example usage for the

standard modules and demonstrate different operating modes and configurations.

The template modules will be fully commented and will apply all the correct formatting

and styling required by the PAL.

A full list of the template modules is given in § 11.1.

Documentation modules

The documentation modules contain summaries of the various styles and comment for-

mats that can be copied and used within software modules. These are essentially quick

reference (proforma) guides that can be used as the outline for application modules &c.

2.2.5 Hardware test environment

A reconfigurable test environment (test rig) will be provided with the necessary equip-

ment needed to test the software developed under this Project.

The test rig will also be suitable as a test environment for subsequent projects developed

using the PAL.

26-268 Doc: PS2001-5-2101-001 Rev: R02.00

2.3 Background to the Project

The Practical Series of Publications has, for some time, had a partially developed set

of standard library modules that have been used on various projects in the past.

Over recent years, there has been an increasing amount of such projects and it has been

decided that these partially developed modules should be expanded to include a full

range of standard modules and that modules should be formally structured into a soft-

ware module library: the Practical Series Automation Library (or PAL).

There has been an increasing amount of pharmaceutical work in recent years and the

necessity to reduce testing time and costs within these projects has been recognised; to

this end the Practical Series Automation Library software module will be fully tested

and validated, removing the need for the extensive design and documentation stages

and the formal testing stages This will already have been done (and written) as part of

this Project and will be issued in verifiable form by this Project.

2.4 Regulations and standards

The environments within which the PAL software can be used include pharmaceutical

applications; as such the software must be written to the standards necessary for Good

Manufacturing Practice (GMP), generally referred to as GxP2.

The Validation Plan (VP), [Ref. 002] provides a justification and determination of val-

idation requirements of this Project. The result of this determination is that this Project

is a category 5 “bespoke” system and will comply with, and be written to, the standards

necessary for GxP. These are the most rigorous standards used for control systems

software and hardware development and use.

2 GxP is a general term for good … practice, where the x stands for various things, manufac-

turing, distribution, laboratory, clinical, engineering, &c.

Doc: PS2001-5-2101-001 Rev: R02.00 27-268

The GxP requirements are encapsulated in the International Society for Pharmaceuti-

cal Engineering (ISPE) guidelines, referred to as Good Automation Manufacturing

Practice (GAMP), currently at revision 5 (GAMP 5), [Ref. 011]. Systems that are writ-

ten to the standards in GAMP 5 are said to be compliant systems that can be validated.

Validation is the process of making sure a computerised system (such as a PLC and its

software) does precisely what it was designed to do; specifically, it is the exercise of

correctly and traceably documenting every requirement of the system and making sure

that that requirement is formally and exhaustively tested.

This Project, the Practical Series Automation Library, will be written to the standards

specified in GAMP 5, it will be a validated and fully compliant GMP Project. The

precise details of the validation process are specified in the Validation Plan (VP) doc-

ument, [Ref. 002].

2.4.1 Regulations, legislation and standards

Section 12 list the various regulatory, legislative and required standards that are to be

applied to the hardware and software.

2.5 Assumptions and limitations

The Practical Series Automation Library of software modules will be developed as part

of this Project. The scope of this development will be limited in this Project to just the

Controller software, it will not include a library of supervisory control and data acqui-

sition system (SCADA) or human machine interface (HMI) graphical objects.

The software will be written to interface with such system in a common manner, but

the SCADA and HMI system will not be developed as part of this Project (though it is

envisaged that this development will take place in a future project).

The PAL software will be validated to the GxP requirements that are applicable to the

United Kingdom at the time of writing.

28-268 Doc: PS2001-5-2101-001 Rev: R02.00

2.6 Nonconformity

There are no nonconformities between this document and the User Requirements

Specification (URS) [Ref. 003].

The URS specifies that the sequence control logic will be IEC 61131-3 [Ref. 012] com-

pliant (see the section Sequential logic control, § 4.2.2 of the URS, [Ref. 003]); and in-

deed, the associated standard modules are compliant, satisfying the requirements of the

URS.

There is however, a school of thought that the IEC implementation of sequence control

logic has certain impracticalities; this is associated with the terminating phase of one

step overlapping the initialising phase of the next step (both occur in the same PLC

cycle, Section #9.39.3 contains a full description of this point). Engineering applica-

tion often prefer that the sequence steps do not overlap in any way (the steps are com-

pletely independent); to satisfy this common engineering practice, a second, non-IEC

compliant, version of the sequence logic modules is included, these maintain the seg-

regation between steps.

The use of these modules is entirely optional.

2.7 Addressing the URS requirements

Where a particular point in the FS addresses a formal requirement raised in the URS,

the point in the FS is given a paragraph number, this allows each point to be uniquely

identified by section number and paragraph number. These specifications will be rec-

orded in the Requirement Traceability Matrix (RTM), [Ref. 004].

Paragraphs that are not numbered are not formally addressing a requirement; these

may be introductions to a section, explanatory texts, notes or clarifying statements.

Doc: PS2001-5-2101-001 Rev: R02.00 29-268

3. Hardw are

3 Hardware

(1) The Project hardware consists of a development platform that can be used to both de-

velop and test the software modules produced as the primary purpose of this project.

(2) The development platform is in the form of a “test rig” that is configurable, and recon-

figurable, to provide access to different interfaces, devices and instruments for the pur-

poses of testing and demonstrating the functions of the developed software.

(3) The purpose of the test rig is to provide a set of (typical) devices and instruments that

are common to most industrial applications, as such the test rig is equipped with:

• Two fail closed isolating valves3 with position feedback

• Two fail open isolating valves with position feedback

• A single modulating valve4 with position feedback

• A single direct online (on/off) motor with rotation sensor

• A single variable speed motor with encoder rotation detection

• A single type K thermocouple probe

• A single resistance thermometer (PT100 type)

3 An isolating valve is a valve that is either opened of closed, it cannot hold an intermediate

position. Normally, an isolation valve moves to a particular state if energised (either opened

or closed, depending on the type of valve) and will return to the opposite state if power is

removed. A normally closed valve is powered to open and returns to the closed state if de-

energised, A normally open valve is powered closed and returns to the open state if de-

energised.

4 A modulating valve can be driven to any position (generally from fully closed to fully open

and any position in between), modulating valves may also give an analogue signal to indicate

the current position

30-268 Doc: PS2001-5-2101-001 Rev: R02.00

(4) The valve limit switch signals, the rotation detection devices and temperature probes

will all be wired to field terminals or to plugs and sockets to allow the system to be

reconfigured to accommodate different device arrangements (for example, valves with

two, one or no limit switch configurations)

(5) The test rig will also be equipped with various signal generators to simulate common

instrument interfaces:

• 16 illuminated switches for the simulation of digital signals

• Two 0-10 VDC signal generators

• Two 4-20 mA signal generators

• A single function generator (sine, square, pulse, ramp, noise and

arbitrary waveform generation) with ±10 VDC signal amplitude

(6) Monitoring functions will also be available with the following equipment:

• A dual channel oscilloscope

• Two configurable volt meters to display Controller analogue out-

put signals

(7) The test rig is equipped with two Siemens Simatic Controllers and a touch panel hu-

man machine interface (HMI) as follows:

• Controller 1 — S7-1500 CPU 1515-2PN with IO cards

• Controller 2 — S7-1500 CPU 1511-1PN with IO cards

• HMI5 — Simatic TP1200 touch panel

5 The software and configuration of the HMI does not form part of this project, however, it

is anticipated that further projects will develop this aspect of the PAL software and as such

a suitable HMI has been incorporated into the hardware design of the test rig (it being easier

to incorporate it at this stage then modifying the panel under a later project)

Doc: PS2001-5-2101-001 Rev: R02.00 31-268

(8) Two Ethernet networks are provided, the first (a standard Ethernet network) connect-

ing the two Controllers and the HMI together, the second (an industrial Profinet net-

work) connecting Controller 1 to a remote IO rack and the encoder rotation detector.

(9) The two Controllers and network arrangements are required to develop controller to

controller communication software and the Profinet arrangement is the standard form

for remote IO connections and this must also be testable.

(10) This section specifies the functions and facilities provided by the system hardware.

(11) The Hardware Design Specification [Ref. 006], expands upon the functions and facili-

ties listed here, identifying individual components and providing additional configura-

tion information for the devices listed.

3.1 Hardware functions

3.1.1 General arrangements

(1) The test rig is modular and portable, a preliminary model is shown in Figure 3.1.

(2) The test rig has two primary components:

4 An electrical panel holding the Controller equipment, switch

gear, signal monitoring and generation equipment, and various

other electrical components

5 A test bed that holds the physical components, the motors, valves,

field devices and various reconfigurable terminals and field wiring

arrangements

(3) The electrical panel (Figure 3.2) is detachable from the test bed (Figure 3.3) for ease of

portability and storage.

(4) All connections between the electrical panel and the test bed are via industrial connect-

ors rated to at least IP65

32-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 3.1 Test rig general arrangement

Doc: PS2001-5-2101-001 Rev: R02.00 33-268

Figure 3.2 Test rig electrical panel

34-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 3.3 Test rig test bed

Doc: PS2001-5-2101-001 Rev: R02.00 35-268

3.1.2 The test bed

(1) The test bed is constructed of 20mm thick medium density fibreboard (MDF) with

dimensions of approximately 1020mm × 1600mm × 420mm (H × W × D).

(2) The test bed is equipped with the following devices:

• A single-phase direct online (DOL) motor (M001)

• A three-phase variable speed drive (VSD) motor (M002)

• The DOL motor will have an inductive proximity switch (PD001)

positioned to detect rotation of the drive shaft

• The VSD motor will be directly coupled to a 13-bit encoder

(ENC001) equipped with a Profinet interface

• Two normally closed motorised isolating valves (V001, V002)

equipped with fully open and fully closed limit switches

• Two normally opened motorised isolating valves (V003, V004)

equipped with fully open and fully closed limit switches

• A single 3-way modulating valve (CV001) with 4-20mA position

control and 4-20mA position feedback. The valve will also be

equipped with fully open and fully closed limit switches

• A Profinet remote IO rack equipped as follows:

 • 8 channel 24 VDC digital input module

• 8 channel 24 VDC digital output module

• 2 channel 4-20mA analogue input module

• 2 channel 4-20mA analogue output module

• All remote IO will be wired to individual terminals on the test bed

36-268 Doc: PS2001-5-2101-001 Rev: R02.00

• A series of test terminals that can be configured to match individ-

ual development requirements

• A series of 24 VDC and 0 VDC terminals to supply power to any

additional test equipment

• Easily accessed fused terminals that supply each 24 VDC pow-

ered device

(3) All moving components (motor drive shafts, encoder coupling and internal compo-

nents of the valves) are guarded to IP20 (finger safe), see Figure 3.4. The guards are

fixed and permanent (i.e. they do not open, and are permanently fixed in position with

bolts)

Figure 3.4 Guarding for drive shafts

(4) To prevent access to the internal workings of the valves, blanking caps are fitted to all

valve pipework orifices.

(5) All valves are 24 VDC devices (extra low voltage) in terms of both motor operation

and limit switch signals. The valve motors are entirely enclosed and cannot be accessed

without disassembly.

(6) The single-phase motor has a supply voltage of 230 VAC and the three-phase motor

has a phase-to-phase supply voltage rated at 400 VAC. The single and three-phase ter-

minals and wire penetration are entirely enclosed and cannot be accessed without dis-

assembly.

Doc: PS2001-5-2101-001 Rev: R02.00 37-268

(7) The accessible test terminals available on the test bed all operate at 24 VDC only.

(8) 24 VDC is the only user accessible voltage available on the test bed.

(9) Various IO signals from the electrical panel (see § 3.1.4) are wired to the test terminals

on the test bed. These provide connections for the various valve signals (limit switch,

open/close demand signals, position feedback &c.), the proximity switch and provide

wired connection points for any additional signals or instruments that maybe under

test.

(10) All plugs and sockets are configured in an inherently safe state, the “live” conductors

will always be connected to a socket that in the disconnected state protects the user

from contact with the conductors.

(11) All electrical connections from the test bed to the electrical panel are via enclosed,

industrial plugs and sockets. These are rated to at least IP65. If disconnected, there is

no physical access to any powered pin within any connector (i.e. in the disconnected

state, all sockets are rated to IP20).

(12) The test bed does not have its own power supply, all power is connected via the elec-

trical panel (and this in turn has have a single mains power connection, see below).

3.1.3 The electrical panel

The electrical panel holds the Controller equipment, switch gear, signal monitoring

and generation equipment, and various other electrical components

General arrangements

(1) The electrical panel is of sheet steel construction, finished in powder coated textured

paint. The paint colour being RAL 7035 (light grey).

(2) The panel has a protection category of IP65 (the panel itself will be IP66, but this will

be degraded to IP65 with the addition of door mounted equipment).

(3) The internal mounting plate is zinc plated.

(4) The panel is 1000mm × 600mm × 400mm (H × W × D) and has two mechanical lock-

ing points each requiring a profiled tool to open the panel.

38-268 Doc: PS2001-5-2101-001 Rev: R02.00

(5) The panel door will be the full height and width of the panel and will have various cut

outs to hold the signal generation and monitoring equipment.

Power supply and safety systems

(6) The electrical panel has a single mains connection point, requiring a single-phase

230 VAC electrical supply (50-60 Hz).

(7) The electrical supply is connected via a standard EN60309 16 A industrial 3-pole

socket located on the right-hand side of the panel.

(8) The electrical panel has a single 3-pole isolator mounted on the front door of the panel;

this disconnects power to all equipment within the electrical panel

(9) There is a single emergency stop button located on the front door of the panel. The

button is latching (press to activate, twist to reset), EN60947-5-5.

(10) Pressing the emergency stop button removes all electrical energy from the two electri-

cal motors (M001 and M002); power is also be removed from the four isolating valves

(V001-V004), these will return to their failsafe states and the modulating valve

(CV001), this will remain in its last position.

(11) The electrical panel provides a fused 24 VDC supply to terminals on the test bed (via

a plug and socket arrangement) allowing additional instruments and devices to be pow-

ered as necessary.

(12) Mains voltages (single-phase and three-phase) are not directly available on the test bed,

such supplies are connected directly to the two motors installed on the test bed and all

terminations are secured behind fixed, permanent enclosures and entry to those enclo-

sures is via cable glands. These supplies are connected to the electrical panel by

uniquely keyed plugs and sockets (to prevent cross or incorrect connections).

Doc: PS2001-5-2101-001 Rev: R02.00 39-268

Panel equipment

Figure 3.5 and Figure 3.6 show the internal and external (respectively) general arrange-

ments for the electrical panel:

(13)

Figure 3.5 Electrical panel — internal arrangement

40-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 3.6 Electrical panel — external arrangement

Doc: PS2001-5-2101-001 Rev: R02.00 41-268

(14) Internally, the panel is equipped with the following primary components:

• S7-1500 Controller 1 — CPU1515-2PN

• S7-1500 Controller 2 — CPU1511-1PN

• Each controller will have the following IO cards

 • 32 channel 24 VDC digital input module

• 32 channel 24 VDC digital output module

• 8 channel UI/RTD/TC analogue input module

• 8 channel UI analogue output module

• Switch gear is provided for the two motors:

 • M001 — direct online (DOL) equipped with contac-

tor and overload

• M002 — variable speed drive (VSD) equipped with a

single-phase to three-phase inverter

• An Ethernet switch (linking controller 1, controller 2, the HMI

and providing four external 10/100Mbs Ethernet ports)

• A Profinet managed switch (linking controller 1 to the remote IO

and encoder located on the test bed)

42-268 Doc: PS2001-5-2101-001 Rev: R02.00

(15) Externally, the panel door is equipped with

• 16 latching (push on, push off) illuminated switches, the switches

being wired to individual Controller 2 digital inputs, the illumi-

nations being wired to individual Controller 2 digital outputs

• Two 4-20 mA signal generators wired to individual Controller 1

analogue inputs

• Two 0-10 VDC signal generators wired to individual Controller 1

analogue inputs

• Two separate volt meters wired to individual Controller 1 ana-

logue outputs

• A single thermocouple (type K) probe port, wired to a Controller

2 analogue input (the thermocouple probe will be provided)

• A single resistance temperature device (PT100 type) probe port,

wired to a Controller 2 analogue input (the RTD probe will be

provided)

• A dual channel oscilloscope

• A dual channel arbitrary waveform function generator (variable

amplitude to a maximum of ±10 V)

• A single touch panel human machine interface (HMI), see § 3.1.6

• Panel isolator and latching emergency stop push button

(16) The left side of the panel (Figure 3.6) is equipped with the various electrical connec-

tions (plugs and sockets) to link the electrical panel with the test bed.

(17) The right side of the panel holds the industrial mains socket.

Doc: PS2001-5-2101-001 Rev: R02.00 43-268

3.1.4 IO signals and access

(1) The test rig is preconfigured and wired with the equipped devices being connected to

specific fixed IO points as follows:

SYMBOL

C
O

N
T

R
O

L
L

E
R

 ADD RESS

RACK /

SLOT

CARD

TYPE S I GNAL RANGE DESCRI PTI ON

ESTOP_HEALTHY 01 I0.0 1-2 32×DI 24VDC 1/0 Emergency stop healthy/pressed

M001_RUNNING 01 I0.1 1-2 32×DI 24VDC 1/0 M001 is running/stopped

M001_TRIPPED 01 I0.2 1-2 32×DI 24VDC 1/0 M001 is heathy/tripped

M002_RUNNING 01 I0.3 1-2 32×DI 24VDC 1/0 M002 is running/stopped

M002_FAULT 01 I0.4 1-2 32×DI 24VDC 1/0 M002 is heathy/inverter fault

M001_ROTATION 01 I0.5 1-2 32×DI 24VDC 1/0 M001 rotation sensor (proximity PD001)

CV001_OPENED_LIM 01 I0.6 1-2 32×DI 24VDC 1/0 CV001 opened limit switch active/inactive

CV001_CLOSED_LIM 01 I0.7 1-2 32×DI 24VDC 1/0 CV001 closed limit switch active/inactive

V001_OPENED_LIM 01 I1.0 1-2 32×DI 24VDC 1/0 V001 opened limit switch active/inactive

V001_CLOSED_LIM 01 I1.1 1-2 32×DI 24VDC 1/0 V001 closed limit switch active/inactive

V002_OPENED_LIM 01 I1.2 1-2 32×DI 24VDC 1/0 V002 opened limit switch active/inactive

V002_CLOSED_LIM 01 I1.3 1-2 32×DI 24VDC 1/0 V002 closed limit switch active/inactive

V003_OPENED_LIM 01 I1.4 1-2 32×DI 24VDC 1/0 V003 opened limit switch active/inactive

V003_CLOSED_LIM 01 I1.5 1-2 32×DI 24VDC 1/0 V003 closed limit switch active/inactive

V004_OPENED_LIM 01 I1.6 1-2 32×DI 24VDC 1/0 V004 opened limit switch active/inactive

V004_CLOSED_LIM 01 I1.7 1-2 32×DI 24VDC 1/0 V004 closed limit switch active/inactive

M001_START_CMD 01 Q0.0 1-3 32×DQ 24VDC 1/0 M001 start command

M002_ENABLE_CMD 01 Q0.1 1-3 32×DQ 24VDC 1/0 M002 enable command

CV001_ENABLE_CMD 01 Q0.2 1-3 32×DQ 24VDC 1/0 CV001 enable command

V001_OPERATE_CMD 01 Q0.3 1-3 32×DQ 24VDC 1/0 V001 operate command (energise)

V002_OPERATE_CMD 01 Q0.4 1-3 32×DQ 24VDC 1/0 V001 operate command (energise)

V003_OPERATE_CMD 01 Q0.5 1-3 32×DQ 24VDC 1/0 V001 operate command (energise)

V004_OPERATE_CMD 01 Q0.6 1-3 32×DQ 24VDC 1/0 V001 operate command (energise)

VGEN1 01 IW256 1-4 8×AI ±10VDC 0-10VDC Voltage signal generator 1

VGEN2 01 IW258 1-4 8×AI ±10VDC 0-10VDC Voltage signal generator 2

CGEN1 01 IW264 1-4 8×AI 4-20mA 4-20mA Current signal generator 1

CGEN2 01 IW266 1-4 8×AI 4-20mA 4-20mA Current signal generator 2

M002_SPEED_ACT 01 IW268 1-4 8×AI 4-20mA 0-100% M002 actual speed

CV001_POS_ACT 01 IW270 1-4 8×AI 4-20mA 0-100% CV001 actual position

VMET1 01 QW256 1-5 8×AQ 0-10VDC 0-10VDC Voltage meter 1 signal

VMET2 01 QW258 1-5 8×AQ 0-10VDC 0-10VDC Voltage meter 2 signal

M002_SPEED_DEM 01 QW264 1-5 8×AQ 4-20mA 0-100% M002 demanded speed

CV001_POS_DEM 01 QW266 1-5 8×AQ 4-20mA 0-100% CV001 demanded position

Table 3.1 Controller 01 fixed input and output signals

44-268 Doc: PS2001-5-2101-001 Rev: R02.00

SYMBOL

C
O

N
T

R
O

L
L

E
R

 ADD RESS

RACK /

SLOT

CARD

TYPE S I GNAL RANGE DESCRI PTI ON

PB01 02 I0.0 2-2 32×DI 24VDC 1/0 Push button 01 pressed/not pressed

PB02 02 I0.1 2-2 32×DI 24VDC 1/0 Push button 02 pressed/not pressed

PB03 02 I0.2 2-2 32×DI 24VDC 1/0 Push button 03 pressed/not pressed

PB04 02 I0.3 2-2 32×DI 24VDC 1/0 Push button 04 pressed/not pressed

PB05 02 I0.4 2-2 32×DI 24VDC 1/0 Push button 05 pressed/not pressed

PB06 02 I0.5 2-2 32×DI 24VDC 1/0 Push button 06 pressed/not pressed

PB07 02 I0.6 2-2 32×DI 24VDC 1/0 Push button 07 pressed/not pressed

PB08 02 I0.7 2-2 32×DI 24VDC 1/0 Push button 08 pressed/not pressed

PB09 02 I1.0 2-2 32×DI 24VDC 1/0 Push button 09 pressed/not pressed

PB10 02 I1.1 2-2 32×DI 24VDC 1/0 Push button 10 pressed/not pressed

PB11 02 I1.2 2-2 32×DI 24VDC 1/0 Push button 11 pressed/not pressed

PB12 02 I1.3 2-2 32×DI 24VDC 1/0 Push button 12 pressed/not pressed

PB13 02 I1.4 2-2 32×DI 24VDC 1/0 Push button 13 pressed/not pressed

PB14 02 I1.5 2-2 32×DI 24VDC 1/0 Push button 14 pressed/not pressed

PB15 02 I1.6 2-2 32×DI 24VDC 1/0 Push button 15 pressed/not pressed

PB16 02 I1.7 2-2 32×DI 24VDC 1/0 Push button 16 pressed/not pressed

LED01 02 Q0.0 2-3 32×DQ 24VDC 1/0 LED 01 illuminated/off

LED02 02 Q0.1 2-3 32×DQ 24VDC 1/0 LED 02 illuminated/off

LED03 02 Q0.2 2-3 32×DQ 24VDC 1/0 LED 03 illuminated/off

LED04 02 Q0.3 2-3 32×DQ 24VDC 1/0 LED 04 illuminated/off

LED05 02 Q0.4 2-3 32×DQ 24VDC 1/0 LED 05 illuminated/off

LED06 02 Q0.5 2-3 32×DQ 24VDC 1/0 LED 06 illuminated/off

LED07 02 Q0.6 2-3 32×DQ 24VDC 1/0 LED 07 illuminated/off

LED08 02 Q0.7 2-3 32×DQ 24VDC 1/0 LED 08 illuminated/off

LED09 02 Q1.0 2-3 32×DQ 24VDC 1/0 LED 09 illuminated/off

LED10 02 Q1.1 2-3 32×DQ 24VDC 1/0 LED 10 illuminated/off

LED11 02 Q1.2 2-3 32×DQ 24VDC 1/0 LED 11 illuminated/off

LED12 02 Q1.3 2-3 32×DQ 24VDC 1/0 LED 12 illuminated/off

LED13 02 Q1.4 2-3 32×DQ 24VDC 1/0 LED 13 illuminated/off

LED14 02 Q1.5 2-3 32×DQ 24VDC 1/0 LED 14 illuminated/off

LED15 02 Q1.6 2-3 32×DQ 24VDC 1/0 LED 15 illuminated/off

LED16 02 Q1.7 2-3 32×DQ 24VDC 1/0 LED 16 illuminated/off

RTD001 02 IW256 1-4 8×AI PT100 -50 to 250°C Resistance thermometer

TC001 02 IW264 1-4 8×AI Type K -200 to 300°C Type K thermocouple

Table 3.2 Controller 02 fixed input and output signals

(2) All other (spare) IO points are wired to screw terminals on the test bed to allow other

instruments and devices to be connected as required.

(3) All IO points on the remote IO rack are wired to screw terminals on the test bed to

allow other instruments and devices to be connected as required.

Doc: PS2001-5-2101-001 Rev: R02.00 45-268

3.1.5 Network arrangements

(1) The system has two Ethernet based networks; these are shown in schematic form in

Figure 3.7:

Figure 3.7 Network arrangements

46-268 Doc: PS2001-5-2101-001 Rev: R02.00

(2) The first network is a standard Ethernet network connecting Controller 1, Controller

2 and the HMI together. This network extends to four additional RJ45 type ports on

the side of the panel; allowing other devices (an engineering station or SCADA super-

visory system for example) to be connected to the network.

(3) This standard Ethernet network uses the TCP/IP protocols and has the fixed IP ad-

dresses shown as Ethernet IP in Figure 3.7. An eight-channel unmanaged switch is used

to link all the Ethernet devices and panel ports.

(4) The second network is a Profinet network, this being an industrial Ethernet based net-

work suitable for the transmission of data between a Controller and field devices. The

Profinet network connects Controller 1 (via its second communication port) to an

eight-channel managed Profinet switch within the electrical panel.

(5) The Profinet switch is connected to four Profinet ports on the side of the electrical

panel. One of these ports is used to connect the Profinet network to the remote IO rack

on the test bed and from there to the Profinet encoder connected to M002 (the variable

speed drive).

(6) The Profinet network again uses TCP/IP addressing for each device on the network,

again these are the fixed IP addresses shown as Profinet IP in Figure 3.7

(7) The Ethernet network and the Profinet network are assigned to different subnets, the

Ethernet network using subnet 192.168.1.nnn and the Profinet network using subnet

192.168.0.nnn. This division of subnets is a necessary requirement of the Profinet

standards employed within the Simatic Controllers.

Doc: PS2001-5-2101-001 Rev: R02.00 47-268

3.1.6 The HMI

(1) The electrical panel is equipped with a Siemens Simatic Touch Panel HMI, this is

mounted on the door of the electrical panel.

(2) The HMI is touch operated (no keys, buttons or mouse) and will have a screen resolu-

tion of 1280 × 800 pixels.

(3) Only the HMI hardware is provided, the unit will not be programmed or configured

as part of this Project.

Note: Although the HMI does not form part of this Project, it is anticipated that further

projects will develop this aspect of the PAL software and as such a suitable HMI

has been incorporated into the hardware design of the test rig (it being easier to

incorporate it at this stage then modifying the panel under a later project)

3.1.7 The Controller hardware

(1) The test rig is equipped with two Siemens Simatic Controllers, the first is based on a

mid-range processor, the CPU 1515-2PN, this has two communications port, the first

port (X1) is connected to the standard Ethernet network. The second port (X2) is used

as a Profinet interface and will connect to the remote IO rack and the Profinet encoder

associated with M002.

(2) The second processor is based on a low range CPU 1511-1PN processor. This has a

single communication port (X1) that is connected to the standard Ethernet network.

(3) The purpose in having two processors is to allow the development and testing of com-

munication modules capable of transferring data between processors.

(4) Both controllers are equipped with identical sets of ET200MP IO cards:

SLOT CARD TYPE PART NO. DESCRIPTION

2 DI 32 × 24VDC 6ES7521-1BL00-0AB0 32 channel digital input card

3 DQ 32 × 24VDC 6ES7522-1BL01-0AB0 32 channel digital output card

4 AI 8 × UI/RTD/TC 6ES7531-7KF00-0AB0 8 channel analogue input card

5 AQ 8 × UI 6ES7532-5HF00-0AB0 8 channel analogue output card

Table 3.3 Controller 01 and 02 IO cards

48-268 Doc: PS2001-5-2101-001 Rev: R02.00

(5) Controller 1 is designated rack 1 and has the following arrangement:

Figure 3.8 Controller 1/Rack 1 arrangements

(6) Controller 2 is designated rack 2 and has the following arrangement:

Figure 3.9 Controller 2/Rack 2 arrangements

Doc: PS2001-5-2101-001 Rev: R02.00 49-268

(7) The remote IO rack interfaces directly with Controller 1 via the Profinet network. The

interface module is an IM 155-6 standard ET200SP interface.

(8) The remote IO rack is equipped with the following IO modules:

SLOT CARD TYPE PART NO. DESCRIPTION

1 DI 8 × 24VDC 6ES7131-6BF01-0BA 8 channel digital input card

2 DQ 8 × 24VDC 6ES7132-6BF01-0BA0 8 channel digital output card

3 AI 2 × UI/RTD/TC 6ES7134-6HB00-0CA1 2 channel analogue input card

4 AQ 2 × UI 6ES7135-6HB00-0CA1 2 channel analogue output card

Table 3.4 Controller 01 and 02 IO cards

(9) The remote IO is designated rack 3 and has the following arrangement:

Figure 3.10 Remote IO/Rack 3 arrangements

50-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 51-268

4. The controller software and structure

4 The controller software and

structure

(1) The PAL software is intended to run within the S7-1500 and S7-1200 ranges of Sie-

mens Simatic Controllers, as such the PAL software must be compatible with the in-

ternal structures present within these Controllers.

(2) The S7-1500 and S7-1200 ranges of Controllers both operate in the same manner and

(largely) support the same software modules, software commands and have the iden-

tical operating structures within them.

(3) The S7-1200 is restricted in terms of capacity (it supports fewer blocks in total and is

restricted in terms of the amount of IO modules that can be connected to it), and is

also restricted in terms of the programming languages supported, the S7-1200 does not

support the statement list STL6 programming language; however, STL will not be used

by the PAL software, All PAL software is written using ladder logic7.

(4) Other restrictions apply to the S7-1200, the amount of data that can be transmitted

over communications networks is limited (for example) and this has some impact on

certain software modules, where such restrictions exist, this is explained in the relevant

Software Module Design Specification (SMDS) [Ref. 008].

(5) The following sections explains the pertinent points of the Controller software, its un-

derlying structures and how these structures are adapted to the PAL software modules.

(6) All the software developed as part of the PAL is developed using the Siemens Simatic

programming environment: TIA Portal Professional, Version 16.

6 STL or statement list is a text-based programming language similar to assembler language

7 Ladder logic is a graphical programming language widely used to programme Controllers

and PLCs

52-268 Doc: PS2001-5-2101-001 Rev: R02.00

4.1 Internal structure of the Controllers

4.1.1 Programmable blocks

(1) The Simatic controllers are programmed using blocks of different types, there are three

programmable (blocks that contain software instructions) block types:

1 Organisation block (OB) Interrupt driven block called in re-

sponse to a specific event detected

by the Controller operating system

2 Function (FC) A subroutine (with or without pa-

rameters) used to structure the soft-

ware or handle recurring or com-

plex functions

3 Function block (FB) Similar to an FC but with an allo-

cated retentive data area

(2) All these blocks are user blocks; i.e. they are blocks that the user can programme, con-

figure and edit. These blocks are used to subdivide the controller programme into

smaller, self-contained modules that perform specific aspects of the programme (e.g.

controlling emergency stops, handling communications, operating a valve &c.).

Organisation Blocks (OBs)

(3) Organisation blocks (OBs) serve as the interface between the Controller operating sys-

tem and the user programme; OB 1, for example, the main organisation block is called

at the start of every Controller cycle and is the only user block that the Controller will

execute automatically (all other user blocks must be called by elements within the user

programme).

(4) Other OBs are called in response to certain events: hardware interrupts, timed inter-

rupts, Controller faults &c. and are given specific numbers, these are discussed in detail

in § #5.4.35.4.3.

Doc: PS2001-5-2101-001 Rev: R02.00 53-268

Functions (FCs)

(5) Functions (FCs) are used to subdivide a programme into meaningful sections or are

used to handle frequently recurring or complex functions; a typical example would be

to have a FC that control a specific device (a valve for example) and then repeatedly

call this FC for each such device in the system.

(6) Using FCs to divide a programme into meaningful sections is common practice and

makes for better structuring of the software; allowing the software to be more easily

navigated and faults to be readily identified.

(7) This subdivision of the Controller programme will be widely applied within the PAL

and will have the prescribed structure detailed in Section 5.

(8) FCs will form the vast majority of blocks within the PAL.

Function Blocks (FBs)

(9) Function blocks are a special version of functions that are automatically assigned a

data block within which they can store function block specific data.

(10) In practice, FBs are not used in the PAL. However, where third-party software is re-

quired (to interface to specific equipment) these are often provided as FBs and their

use is permitted.

(11) The PAL does not restrict the use of FBs in any way, it simply does not require any

itself for the library modules within it.

4.1.2 Data storage blocks

(1) The Simatic controllers use data blocks (DBs) to store data for the user programme.

(2) Data blocks support all the standard data types available to the controller: Booleans,

integers, bytes, floating point numbers, strings &c. In addition, DBs can be configured

using user created data structures, these data structures are referred to as User Data

Types (UDTs).

(3) Both DBs and UDTs are discussed in the following sections:

54-268 Doc: PS2001-5-2101-001 Rev: R02.00

Data blocks (DBs)

(4) DBs are configurable by the user, but do not contain programming instructions (unlike

the programmable blocks of the previous section), they hold data specified by the users

(variables, constants, working values &c). The data stored in a DB can be anything

and of any supported type (Booleans, integers, byte, floating point numbers, strings

&c.). The structure and configuration of a DB is entirely at the discretion of the user;

DBs are a very flexible and convenient mechanism for storing user information.

Instance data blocks (iDBs)

(5) Instance data blocks are a used by function blocks (FBs) as retentive data storage areas.

These preserve data between successive calls of the block and are a requirement when

using function blocks. Each call of a function block requires its own iDB.

User Data Types (UDTs)

(6) The PAL will rely heavily on the use of data structures to pass information between

modules. UDTs are used to define the internal structure of DBs and can be passed as

parameters into functions (FCs) and function blocks (FBs). Within the Siemens Con-

troller these data structures are variously called User Defined Data Types or User Data

Types or PLC Data Types).

(7) These terms are interchangeable, all meaning a data structure (a collection of named

variables made up of standard data types, grouped together in a named structure). The

original name (predating TIA Portal) was User Defined Data Type (UDT), with the

advent of TIA Portal this became either a User Data Type (again UDT) or PLC Data

Type (PDT). They all mean the same thing (a data structure).

(8) For clarity, the term UDT (User Data Type) is used to specify a user defined data

structure (or any of the other names it uses).

Doc: PS2001-5-2101-001 Rev: R02.00 55-268

4.1.3 Built in system blocks

(1) The Simatic Controllers and the TIA Portal programming environment have built in

system blocks that perform specific functions (for example, a PID control loop,), these

blocks will always be used in preference to developing a new block with similar func-

tionality.

(2) These built in system blocks are pre-configured functions (FCs) and function blocks

(FBs) written and issued by Siemens, they are given numbers in the range 1-999 (this

is a reserved numbering range, reserved for third-party software, and is not occupied

by any of the PAL modules, see § #5.15.1).

(3) Where system function blocks are used, these, like all FBs, require an instance DB (see

§ 4.3.3); these function blocks will generally be contained (called from) within a stand-

ard module, and this standard module will always be a function FC, this standard

module can be considered a wrapper for the system function block. To accommodate

the need for an instance DB required by the contained system function block, the in-

stance DB to be used will be passed as a parameter to the standard function.

(4) Some system blocks have their own system data structures (referred to as system data

types), these are similar to UDTs but are predefined within the TIA Portal program-

ming environment, where such system data types are required, they will be installed

and issued as part of the PAL software).

56-268 Doc: PS2001-5-2101-001 Rev: R02.00

4.1.4 Block numbering, quantities and number ranges

(1) The number of blocks that can be used in a Controller program is entirely dependent

on the processor running that programme. The pertinent values are shown here:

CPU 1511 1513 1515 1516 1517 1518

Order No.
6ES7511-

1AK01-0AB0

6ES7513-

1AL01-0AB0

6ES7515-

2AM02-0AB0

6ES7516-

3AN01-0AB0

6ES7517-

3AP00-0AB0

6ES7518-

4AP00-0AB0

Total No. of Blocks

(all blocks)
2000 2000 6000 6000 10000 10000

No. of Functions (FC) 2000 2000 6000 6000 10000 10000

FC No. Range 1-65535 1-65535 1-65535 1-65535 1-65535 1-65535

No. of Function blocks (FB) 2000 2000 6000 6000 10000 10000

FB No. Range 1-65535 1-65535 1-65535 1-65535 1-65535 1-65535

No. of Data blocks (DB) 2000 2000 6000 6000 10000 10000

DB No. Range 1-59999 1-59999 1-59999 1-59999 1-59999 1-59999

Table 4.1 S7-1500 CPU number of blocks

CPU 1211C 1212C 1214C 1215C 1217C

Order No.
6ES7211-

0AE40-0XB0

6ES7212-

1AE40-0XB0

6ES7214-

1AG40-0XB0

6ES7215-

1AG40-0XB0

6ES7217-

1AG40-0XB0

Total No. of Blocks

(all blocks)
1024 1024 1024 1024 1024

No. of Functions (FC) 1024 1024 1024 1024 1024

FC No. Range 1-65535 1-65535 1-65535 1-65535 1-65535

No. of Function blocks (FB) 1024 1024 1024 1024 1024

FB No. Range 1-65535 1-65535 1-65535 1-65535 1-65535

No. of Data blocks (DB) 1024 1024 1024 1024 1024

DB No. Range 1-59999 1-59999 1-59999 1-59999 1-59999

Table 4.2 S7-1200 CPU number of blocks

(2) All S7-1500 CPUs support at least two thousand blocks and this is more than sufficient

for virtually any application.

(3) The S7-1200 CPUs all support a maximum of 1024 blocks, this is a practical amount

for the simpler type of application at which the S7-1200 CPUs are targeted.

Doc: PS2001-5-2101-001 Rev: R02.00 57-268

(4) The Practical Series Automation Library is designed to fit in the smallest of the S7-

1500 CPUs; the library itself will also fit in the S7-1200 CPUs, but number and com-

plexity of the application modules is constrained by the restrictions of the S7-1200

range.

(5) Irrespective of the CPU (and irrespective of the range, i.e. S7-1500 or S7-1200), the

range of numbers that can be assigned to a given block are the same (i.e. any CPU can

have a function block with the number in the range 1-65535, only the total number of

blocks is limited, not the numbers that can be assigned to them).

(6) The PAL will use this capability to assign meaningful number ranges across all CPUs

and Controller ranges:

BLOCK TYPE PERMISSIBLE NUMBER RANGE PAL NUMBER RANGE IN USE

FB, FC 1-65535
1-60999

(61000 onwards reserved for doc modules)

DB 1-59999 1-59999

OB 1-32767 (not inclusive) 1-122

Table 4.3 Block number ranges

(7) Organisation blocks typically have predefined (default) numbers, depending on func-

tion, in the range 1-122. It is possible to re-allocate these numbers anywhere in the

range 123-32767; however, the PAL will only uses the default (automatically assigned)

numbers.

(8) The permissible number range of FBs and FCs is wider than that for DBs. The PAL

will uses block numbers to denote particular functions; these numbers need to be ap-

plied to both programmable blocks (FBs and FCs) and data blocks (DBs). To ensure

that all block types can be allocated the same range of numbers, the PAL will only use

block numbers in the range 1-59999 for standard and application (obviously, not every

number in this range is used). Template modules extend outside this range (up to

60999), however, template modules that give examples of the application modules are

in the range 1-59999. The range 60000-60999 is used for template modules that give

examples of specific organisation block usage (see § #11.1.211.1.2)

(9) The range 61000-65535 is used by the PAL to store the example documentation mod-

ules.

58-268 Doc: PS2001-5-2101-001 Rev: R02.00

(10) These number ranges have been split further to allocate different number ranges to the

different block and data block functions within the PAL. The PAL will use the follow-

ing number ranges for the specified module classifications:

NUMBER RANGE FC/FB CLASSIFICATION ABBREVIATION DB/UDT CLASSIFICATION

00001-19999 Standard modules Std Static data storage

20001-39999 Application modules App Dynamic data storage

40000-59999 Template modules (application) Temp Instance data blocks

60000-60999 Template modules (interrupts) Temp N/A

61000-65535 Documentation modules Doc N/A

Table 4.4 Block and number allocations for the PAL

4.2 Execution of Controller software

(1) All Siemens Simatic Controllers (S7-1500 and S7-1200) are event driven devices, the

CPU only ever responds to certain specific events (or interrupts). The CPU responds

to a specific event by executing a particular organisation block (OB).

(2) For example, if a CPU is started (either by applying power or switching the device

from STOP to RUN) it will execute the start-up organisation block (OB 100). If OB

100 were to call any functions or function blocks, these would also be executed.

4.2.1 Cyclic programme execution

(1) The principal event for running the PAL software is the main cyclic event interrupt.

The Controller triggers a cyclic event that cause the Controller to write output data to

the output cards, read input information form the input cards and then execute the

main cycle interrupt by calling organisation block 1 (OB 1), any user programme, and

any blocks (FCs and FBs) configured by the user and called from within OB1 will also

be executed. When the end of OB1 is reached, the Controller retriggers the cyclic event

and the process is repeated indefinitely (see Figure 4.1):

Doc: PS2001-5-2101-001 Rev: R02.00 59-268

Figure 4.1 Cyclic event interrupt (OB 1)

(2) The PAL software runs predominantly from within OB 1 (the main cyclic event or-

ganisation block), there will however, be support for additional interrupt events, these

can be timed interrupts (occurring at a specified interval of microseconds, or at a par-

ticular time of day &c.), hardware interrupts (occurring when a particular signal is de-

tected), fault interrupts (for card failure, loss of signal, programming error &c.).

(3) These additional interrupt events all have a higher priority than OB 1 and will interrupt

the execution of OB 1, causing the programme execution to jump to the associated

interrupt OB and execute any programme that is contained within it. Once the inter-

rupt OB has been executed, OB 1 will be resumed from its last point:

Figure 4.2 Interrupting OB 1 execution

(4) If an additional interrupt occurs whilst the first interrupt is active, and the additional

interrupt has a higher priority than the first interrupt, this interrupt, will in turn be

interrupted:

60-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 4.3 Multiple interrupts with increasing priorities

(5) If the second interrupt has the same, or a lower priority than the first interrupt, the

second interrupt would be executed immediately after the first was completed:

Figure 4.4 Multiple interrupts with the same or lower priority

(6) OB 1 has the lowest interrupt priority and any other interrupt will take precedence over

it.

(7) The PAL will include preconfigured interrupt OBs that record the exact time and date

the interrupt was called.

Doc: PS2001-5-2101-001 Rev: R02.00 61-268

4.2.2 The process image

(1) The process image is a mechanism internal to the Controller (and executed automati-

cally by the Controller operating system); essentially, it is the reading and writing of

all the input and output card data and copying it either to (in the case of inputs) or

from (in the case of outputs) an internal storage area within the Controller (referred to

as system memory). This storage area is called the process image (PI), the process image

has two components: the process image of inputs (PII) and the process image of outputs

(PIQ).

(2) The process image is essentially a snap-shot of the state of all IO signals taken at the

start of the Controller cycle and stored in the system memory of the controller.

(3) The concept of a process image is common to all PLCs, not just the Siemens Simatic

Controllers. It generally provides the following benefits:

• The signal state of an input is the same throughout the Controller

cycle (it gives signal consistency to all software elements within a

programme cycle)

• Access to the process image is considerably faster than accessing

the IO cards directly

• The state of outputs can be read by the user programme (outputs

to cards are write only and the data cannot be read-back). The

reading of output states in the process image is possible because

the data is stored in system memory which has read/write access

• Multiple state changes of an output during the Controller cycle

will have no direct effect on the output from the card, the final

state of the output will not be written to the card until the end of

the cycle (effectively at the start of the next cycle)

(4) The PAL is fully compliant with the process image concept and will expect all IO sig-

nals to use the process image.

62-268 Doc: PS2001-5-2101-001 Rev: R02.00

4.2.3 Process images partitions

(1) Process image partitions (PIP) are only available to the S7-1500 range of Controllers

the S7-1200 range simply has the cyclically driven process image (§ 4.2.2).

(2) Process image partitions are optional and can be applied to any interrupt driven event

that triggers the execution of a particular organisation block.

(3) IO can be assigned specifically to a process image partition, and this data will then be

updated whenever the associated OB is triggered.

Note: When using process image partitions, the whole IO module must be assigned to

a particular PIP, it is not possible to add certain signal within a module to one

PIP and other signals to a different PIP.

(4) The process image partition is designed to be used where it is necessary to update the

process image mid-cycle; for example if a timed interrupt were set to interrupt every

2 ms and the OB 1 cycle time were 30 ms, then the interrupt would occur approxi-

mately 15 times within a particular cycle, if the interrupt did not use a process image

partition, any IO signals that were being used by it would have the same state each

time (the process image would only update at the start of the OB 1 cycle), the PIP

forces the IO states associated with the interrupt OB to be updated each time it is called.

(5) Process image partitions again have two components: process image partition of inputs

(PIPI) and process image partition of outputs (PIPQ). Up to 31 separate process image

partitions can be supported by the S7-1500 range of Controllers.

(6) The use of process image partitions is not common practice (the facility is used under

very specific conditions); the PAL however, is compliant with the process image par-

titioning concept and it may be used wherever it is required by the user.

Doc: PS2001-5-2101-001 Rev: R02.00 63-268

4.2.4 Common CPU properties

(1) The PAL is not associated with a particular CPU; it will work on any S7-1500/1200

CPU. It does however require that certain property settings associated with the selected

CPU are activated (and some deactivated).

(2) Generally, the PAL uses the default settings for CPU properties (minimising the

changes from the default arrangements); however, there are some CPU settings

changes that are required:

• System and clock memory allocations

• Communication settings

(3) Specifically, the following setting must be adopted within the CPU properties (ac-

cessed via TIA Portal):

System and clock memory

AREA Option Setting

System memory bits
Enable the use of system

memory byte
This is unticked by default must not be enabled

Clock memory bits
Enable the use of clock

memory byte
This must be enabled; the box must be ticked

Clock memory bits
Address of the clock memory

byte (MBx)
Set to the value 10

Protection and security

AREA Option Setting

Connection

mechanisms

Permit access with PUT/GET

communications from remote

partner

This must be enabled; the box must be ticked

Table 4.5 Default CPU setting adjustments for the PAL

64-268 Doc: PS2001-5-2101-001 Rev: R02.00

4.3 The passing of data between modules

(1) The Siemens Controller functions (FCs) listed in § 4.1.1, will form the basis of all soft-

ware modules within the PAL, each module being assigned to a particular function or

function block.

(2) Each PAL standard software module is stored in a function (FC) and each module will

require information to be passed to that module, this could be simple information such

as the state of a valve limit switch (a simple on or off digital input) or may be a more

complicated data structure determining the full range of options and configuration for

the module.

(3) All this information is passed in the form of parameters to the blocks. The blocks that

hold standard modules will not directly access any data within the Controller (i.e. di-

rectly access an IO point using a hard-coded reference), all data is passed to the block

indirectly through the use of block parameters.

(4) All data passed to a block will either be Input/Output signals (assigned to the IO cards

attached to the Controller) or data stored in data blocks, this data will always be spec-

ified in the form of UDTs.

(5) Memory bits will only be used to implement the Controller clock memory functions

(see § #6.16.1) and to store specific Controller timing and logic state signals (see

§ #5.5.35.5.3). Memory bits will not be used to store programming data, this will al-

ways be done in data blocks, generally with the use of UDT data structures.

4.3.1 Block parameters

(1) Both FCs and FBs accept parameters as a form of passing data to and from the block,

there are four types of formal parameters that can be used by an FC ore FB:

1 INPUT

2 OUTPUT

3 INOUT

4 RETURN

Doc: PS2001-5-2101-001 Rev: R02.00 65-268

(2) The fourth group (RETURN) will not generally be used within the PAL (this is common

practice within wider PLC programming circles). It is included to make the blocks

compatible with the IEC requirements for programming languages. By default, the

RETURN parameter is given the same symbolic name as the block and is declared as a

VOID data type (VOID types are essentially “empty” data types that have no value and

cannot hold a value). If the RETURN parameter is declared as a void, it will not be

visible when the block is called, again this is standard procedure within the PAL.

(3) The remaining parameter types (INPUT, OUTPUT and INOUT) are widely used

throughout the PAL (particularly by the standard blocks).

(4) These three types of parameters have the following definitions and will have the fol-

lowing uses within the PAL:

PARAMETER DEFINITION PAL USAGE

INPUT
Read only data — can be read by a

block but not modified

For passing digital and analogue input signals

to the block

For passing read only UDT (static) data to a

block

OUTPUT

Write only data — can be written to

by a block but not read (attempting to

read the data will return an error)

Used by the block to write to digital and

analogue output signals

INOUT
Data can be both read and written to

by the block

For reading and writing UDT (dynamic) data

by the block

Table 4.6 Common block parameter types and their usage

(5) Blocks within the PAL use individual block parameters to pass input and output (IO)

signals to the block, these are real IO signals assigned to IO cards (not internal memory

bits within the Controller). These are assigned on a signal-by-signal basis, and each

signal has its own parameter.

(6) For example, a standard PAL module to monitor and control an isolating valve would

have INPUT parameters to pass the state of the valve open and closed limit switches to

the module and an OUTPUT parameter to either energise or de-energise the valve (i.e.

make it open or close).

66-268 Doc: PS2001-5-2101-001 Rev: R02.00

4.3.2 Data storage and passing of data to blocks

(1) In addition to IO signals, each module will generally require a considerable amount of

additional data to be stored, this data will reflect the configuration of the block (e.g.

for a valve device driver this will hold valve operation times, determine the number

and type of limit switches available to the valve, whether the valve is energise to open

or energised to close &c.) and the current state of the block (e.g. is the valve currently

opened or closed, is the valve in a fault condition, is it in the process of changing state

&c.).

(2) Depending on the nature of the module, there may be a considerable amount of such

data and all this data will be stored in data blocks. Within the PAL, this data will fall

into two categories:

1 Static data

2 Dynamic data

(3) Static data specifies constant (preset) values that have some meaning for the block in

question (e.g. the opening time of a valve, the hysteresis of an alarm setpoint, limit

switch arrangements for a valve &c.). Static data does not change (the data is usually

configured during the commissioning of the plant and then remains fixed and unchang-

ing for the lifetime of the plant).

(4) Dynamic data is live, operating data (e.g. if a valve is in the process of opening, the

elapsed time of the operation will be stored in a dynamic data area).

(5) To expand on this example, if a valve is designed to change from closed to open within

a maximum of 10 seconds, then the static data would have some variable that would

be fixed at a value of 10.0 (seconds). The dynamic data would have a variable that

counted down from the 10.0s value specified by the static data to zero when the valve

was instructed to open.

(6) This data, whether static or dynamic must be passed to the block as parameters. To do

this, the data will be configured as data structures within the data blocks. These data

structures will be configured as user data types (UDTs). Each block will generally have

two such structures, one for static data and one for dynamic data; these structures will

be unique to the block in question.

Doc: PS2001-5-2101-001 Rev: R02.00 67-268

(7) Static data will be passed to a block via an INPUT parameter (i.e. read only), this is data

that is required by the block, but will not be modified by it. This static data will be

stored in a data block using a UDT data structure, the INPUT parameter to which this

data is linked, will use the same UDT as its data type.

Note: Other data may also be passed in this way, specifically, this will be information

that will not be modified by the block, system information for example.

(8) Dynamic data will be passed to the block via an INOUT parameter (i.e. read/write

data), this is data that is required by the block, and that will be modified by it. This

dynamic data will be stored in a data block using a UDT data structure, the INOUT

parameter to which this data is linked, will use the same UDT as its data type.

(9) Static and dynamic data will always be stored in separate data blocks, designated as

static and dynamic and these will have their own numbering ranges:

(10)
DB NUMBER RANGE TYPE OF DATA

00000-19999 Static data

20000-39999 Dynamic data

 Table 4.7 PAL static and dynamic data block numbering ranges

(11) The purpose of this separation of static and dynamic data is that the static data is con-

stant and can be verified against a known “offline” version of the software to establish

that the data is correct, the dynamic data is “live data” and is constantly changing and

such verification would be meaningless.

(12) By separating static data from the dynamic data, it provides and additional means of

verifying the software installed in a Controller is the correct version of the software.

(13) Where a standard module has a static data assignment or a dynamic data assignment

or both (this is most cases), then UDTs will be defined to hold the static data and the

dynamic data. The static UDT will be given the same number as the standard block

with which it is associated, the dynamic data will have the same number plus 20000.

(14) For example, if FC10001 is used, the static UDT will have number 10001 and the

dynamic UDT will have number 30001.

68-268 Doc: PS2001-5-2101-001 Rev: R02.00

(15) Similarly, the data blocks that hold the static and dynamic data will have the same

numbers as the UDT.

(16) Extending the previous example, FC10001 would have static UDT10001 and Dy-

namic UDT30001, these would be stored in DB10001 (static data) and DB30001 (dy-

namic data).

4.3.3 Instance data blocks

(1) Where a function block (FB) is used, this will have an associated instance data block

(iDB), this is a requirement of the Simatic Controller software itself.

(2) Generally, only third-party software will use FBs, all standard and application modules

will be stored in functions (FCs) that do not require instance data blocks.

(3) The instance data block assigned to a particular function block will be in the numbering

range:

(4)
DB NUMBER RANGE TYPE OF DATA

40000-59999 Instance data blocks

 Table 4.8 PAL instance data block numbering range

(5) The actual number can be freely allocated within this range; i.e. the instance DB num-

ber does not have to match the FB number, the numbering should however reflect

logical grouping of the instance DBs.

Doc: PS2001-5-2101-001 Rev: R02.00 69-268

4.4 Identification of modules and their type

(1) There will be five types of software modules included with the PAL:

1 Standard modules Library modules that carry out a

particular function, for example reading

and scaling an instrument connected to

the Controller.

2 Application modules Project specific modules that coordinate

the use of the standard modules and

apply appropriate logic and signal

conditioning relevant to the project in

question

3 Template modules Example modules that show how

application modules should be

constructed and how standard modules

should be used

4 Document modules Modules containing information

explaining how to document project

specific modules and examples of such

documentation

5 Interrupt modules These are specifically the organisation

blocks used to process different types of

interrupt operations and fault detection

(2) Within the PAL these individual types of modules are assigned to functions (FCs). The

interrupt modules are exclusively assigned to organisation blocks (OBs).

70-268 Doc: PS2001-5-2101-001 Rev: R02.00

(3) The following types of data structures and data blocks are supported by the PAL:

1 Static user data type Data structures specific to each stand-

ard module that hold fixed, unchang-

ing, configuration data for the module

2 Dynamic user data type Data structures specific to each stand-

ard module that hold live, variable, op-

erational data for the module

3 Static data block A data block that holds the multiple in-

stances of the static UDT associated

with the standard module (one instance

per call of the module)

4 Dynamic data block A data block that holds the multiple in-

stances of the dynamic UDT associated

with the standard module (one instance

per call of the module)

5 Instance data block A data block that holds function block

data for a standard module that is allo-

cated to a function block (FB) rather

than a function (FC), there is one in-

stance data block allocated to each in-

stance in which the FB is used

(4) To ensure that the PAL software is compatible with the Siemens Simatic Controller

internal structures, the blocks are allocated numbers ranges within the permissible

range of block numbers given in § 4.1.4.

Doc: PS2001-5-2101-001 Rev: R02.00 71-268

(5) The type of module is identified by block number allocated to it. This is summarised

in the following table:

BLOCK TYPE NUMBER RANGE CLASS DESCRIPTION

OB 00001-00122 Int Interrupt handling modules

FC/FB 00001-19999 Std Standard modules

FC/FB 20001-39999 App Application modules

FC 40000-60999 Tmt Template modules

FC 61000-65535 Doc Document modules

UDT 00001-19999 St_ Static data structure

UDT 20001-39999 Dy_ Dynamic data structure

DB 00001-19999 St_ Static storage data block

DB 20001-39999 Dy_ Dynamic storage data block

iDB 40000-59999 iDB Instance data blocks (associated with FBs)

Table 4.9 Full range and type of module numbering for the PAL

(6) Each of these number ranges is broken down further in relations to the subdivisions

within the PAL software structure (see § #5.15.1).

72-268 Doc: PS2001-5-2101-001 Rev: R02.00

4.5 Software Control Mechanism

(1) The Validation Plan [Ref. 002] Appendix A requires that a robust mechanism be put in

place to manage the revision control for the software modules developed as part of this

Project. This mechanism is encapsulated in a separate Software Control Mechanism

(SCM) document [Ref. 019].

(2) There are two principal requirements for the PAL Software Control Mechanism:

1 Establish a mechanism for numbering and storing the various

software module versions throughout the development, test and

qualification phases of the Project

2 Establish a mechanism for the storage and tracking of software

module revisions within a formal Version Control System (VCS)

Expanding on these subjects:

4.5.1 Module revision numbering mechanism

(1) The Validation Plan (VP) [Ref. 002], established that software version control was a

necessary requirement for the project and that all software modules within the Project

must have individual revision and status information that covers all phases of the soft-

ware development:

• Software development (system build)

• Testing (at both a modular and integrated level)

• Qualification

• Release for use

(2) The revision system must also be applicable to the TIA Projects as a whole (rather than

just the individual modules within the projects); to clarify, the software modules do

not exist within their own right, each software module is stored in TIA Portal project

that expands as each new software module is developed.

Doc: PS2001-5-2101-001 Rev: R02.00 73-268

4.5.2 A version control system

(1) A version control system (VCS) is a mechanism for recording changes made to any

files within a software project. It records all the changes, what files were affected by

each change and a reason explaining why those changes were made. It also records

who made the change and the time and date of the change.

(2) The VCS keeps a record of every change made within the project and allows any file

that has been modified to be reverted back to a previous state. It means that if a soft-

ware module is changed, the original module can always be recovered by the VCS.

(3) Version control systems generally have other facilities too, they are able to show the

differences between two different versions of the software (even down to lines within

a file), they allow multiple people to work on the project at the same time—even to

work on the same file at the same time, and they provide mechanisms for resolving

conflicts (where two different people have modified the same section of a file).

(4) Version control systems can be applied to any kind of project; it can be a website, a

documentation project, a software application, engineering control system—anything

at all, as long as it’s a collection of files that can be stored on computer.

(5) The version control system does not itself edit or modify any of the files within the

project; it simply records the changes and, where it recognises a file type, is able to

display those changes that have occurred to it.

(6) The version control system does not care what software application is used to modify

files within the project, it can be anything: text editor, word processor, file manager,

graphics editor, specialist programming application &c. It cares only, that a file under

its control has been modified and why the modification was made.

(7) Version control systems simply record any change made within a collection of files

(the project), who made it, when it was made and the reason why. That is all.

(8) With the advent of TIA Portal V16, Siemens introduced the concept of Workspaces,

these are environments (essentially, just Windows folders) into which the

74-268 Doc: PS2001-5-2101-001 Rev: R02.00

programmable aspects of a TIA Project (blocks, data types and tags) can be exported

(or imported) as XML8files.

(9) This is a new concept, previous versions of TIA Portal did not offer the facility of ex-

porting software modules in a widely accessible (text based) format, the software could

only be read by the proprietary TIA Portal package itself.

(10) The benefit of this new Workspace facility is that the exported files are stored as XML

files, and XML files are an ideal format for version control systems (VCSs), version

control systems can read every aspect of an XML file and identify any changes that

have been made, and, just as importantly, keep track of all these changes. Additionally,

each block, data type and tag table is exported as its own XML file and as such allows

the tracking of each individual element within the software library. It would for exam-

ple, be possible to identify all the changes made to a particular Function (e.g. FC01001)

and determine at which point in the revision history each change was made.

(11) This was the purpose of Siemens adding this Workspace facility to TIA Portal, it al-

lows proper version control of the software being developed in a TIA Portal project. It

also does not require a proprietary Siemens VCS, any and all VCS systems can track

text-based files (it is fundamentally, what they were designed for).

(12) To make things easier, Siemens also allow third-party “add-ins” to be created that can

interface with these new Workspaces. One such add-in (created by Siemens) provides

an interface to the version control system Git and its online partner GitHub.

(13) The Git add-in allows TIA Portal to interface with a Git controlled Workspace, Git

also supports various graphical user interfaces, in particular, Git can be controlled and

managed from within the Visual Studio Code (VSC) text editor, VSC is widely used

within the Practical Series of Publications and will be the preferred solution for provid-

ing a VCS interface for the PAL software.

8 XML or eXtensible Mark-up Language files are text files that are both machine and human

readable; very similar to HTML (HyperText mark-up Language) and widely used to store

documents in a manageable and readable format; it contains both content and structure.

https://git-scm.com/
https://github.com/

Doc: PS2001-5-2101-001 Rev: R02.00 75-268

5. The PAL software structure

5 The PAL software structure

(1) All non-documentation9 software modules within the PAL (be they standard modules,

application modules, or template modules) are grouped into subcategories or functional

groups that identify more closely the purpose of each module.

(2) These functional groups also determine the execution order of the PAL software. The

PAL has a predetermined order of programme execution; this is shown in Figure 5.1.

This shows the complete PAL programme structure.

(3) The structure of Figure 5.1 is the complete structure of the PAL software and is appli-

cable to any software developed using the PAL. Not all Controller programmes will

require all these groups (it depends on the application in question). However, where a

group is used, it must follow the execution order shown in Figure 5.1.

(4) For example, if a programme did not require INTERLOCKS AND PROTECTION or

SAFETY SYSTEMS, but had READ INSTRUMENTS and CONTINUOUS LOGIC, then the

CONTINUOUS LOGIC would follow the READ INSTRUMENTS (the INTERLOCKS and

SAFETY would not be present); CONTINUOUS LOGIC must not precede READ

INSTRUMENTS in the order of execution.

(5) Each of the steps in Figure 5.1 (referred to as functional groups) usually has both an

application block and at least one standard module associated with it; (there are some

steps, COMMAND EXECUTION being one, that do not have any associated standard

modules).

9 Documentation modules contain examples of how the Controller software is commented,

and are applicable to all modules irrespective of the function of the module.

76-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 5.1 Programme structure

Doc: PS2001-5-2101-001 Rev: R02.00 77-268

5.1 Functional group module numbering

(1) The PAL functional groups are allocated numbers within the block types of Table 4.9:

Table 5.1 Functional group number ranges

78-268 Doc: PS2001-5-2101-001 Rev: R02.00

Where: Range Specifies the functional group number range in the format GGnnn or GGppp

where GG is a two-digit number that represents the function group

nnn indicates any number in the range 0 to 999; thus, 37nnn is any number in

the range 37000-37999

ppp indicates any number in the range 1 to 999; thus, 02ppp is any number in

the range 02001-02999

 Class Specifies the type of module, Std is a standard module, App is an application

module and Tmt is a template module

5.1.1 Functional group summary

FUNCTION GROUP
STANDARD

MODULE NUMBER
APPLICATION

MODULE NUMBER
TEMPLATE

MODULE NUBER

Debug (start of cycle) N/A FC 20nnn FC 40nnn

System functions FC 01ppp FC 21nnn FC 41nnn

Read instruments FC 02ppp FC 22nnn FC 42nnn

Interlock & protection FC 03ppp FC 23nnn FC 43nnn

Safety systems FC 04ppp FC 24nnn FC 44nnn

Calculations & mathematics FC 05ppp FC 25nnn FC 45nnn

Continuous control N/A FC 26nnn FC 46nnn

Sequential control FC 07ppp FC 27nnn FC 47nnn

Command handling N/A FC 28nnn FC 48nnn

Reserved N/A N/A N/A

Device drivers FC 10ppp-15ppp FC 30nnn-35nnn FC 50nnn-55nnn

Message handling FC 16ppp FC 36nnn FC 56nnn

Communication handling FC 17ppp FC 37nnn FC 57nnn

(subroutines) FFC 18ppp N/A N/A

Debug (end of cycle) FC 19ppp FC 39nnn FC 59nnn

Table 5.2 Functional group summary

Doc: PS2001-5-2101-001 Rev: R02.00 79-268

5.2 Module naming conventions

(1) All software modules within the PAL are assigned to specific programming blocks

(OBs, FCs) and the data for these modules is stored using predefined user data types

(UDTs) and stored in data blocks (DBs). All such blocks and UDTs are identified by

a specific number (see Table 4.9 and Table 5.1).

(2) In addition to the number, all blocks and UDTs are also given a name. The combina-

tion of number and name form a unique symbolic address for the block

(3) The block name has the following structure:

ClassFunctionDescription

Class, Function and Description are explained below

5.2.1 Block class

(1) The Class is a three-letter abbreviation that specifies the category that the block be-

longs to. The abbreviation is in lower case with a leading capital letter:

Abb. Class Meaning

Std Standard Standard block —These are blocks that carry out a particular function;

for example, a valve device driver block.

App Application Application block — These are project specific blocks, written for a

particular project and configured to match the requirements of that

project.

Int Interrupt Interrupt block — Executed when specific interrupt conditions are

detected, this includes the main program execution interrupt (OB 1)

Tmt Template Template block — This is an example block that explains how functions

should be configured and executed

Doc Documentation Documentation block — Contains documentation examples for different

components of a project

Dy_ Dynamic DB/UDT only (contains live, dynamic, data)

St_ Static DB/UDT only (contains fixed, static data)

Rc_ Recipe (semi-static) DB only (data is loaded from a recipe)

Table 5.3PAL block naming — class

80-268 Doc: PS2001-5-2101-001 Rev: R02.00

5.2.2 Block function

(1) The Function is a five letter (max) abbreviation that identifies the functional area

within the programme structure (Figure 5.1) that the block is associated with. The ab-

breviation is in lower case with a leading capital letter:

 ABB. FUNCTION MEANING

 Sys System System blocks

Common system functions: common (global) signals,

diagnostic functions, system timing, clock synchronisation,

&c.

 Inst Instrumentation Instrument block

Analogue and digital instrument functions (read, scale, filter,

threshold detection, &c.)

 ILock Interlocks Interlock, permissive and trip logic

Identifies and maps the various interlock conditions

 Safe Safety Safety systems

Handles emergency stop and safety rated devices.

Manages redundant and high availability systems

 Calc Calculations Calculation and mathematics

Calculation, mathematical functions and algorithms (generally

of a complex nature i.e. not simple arithmetic)

 Cont Continuous Continuous control logic

Constant monitoring, evaluation and operation of plant

devices and process variables.

 Seq Sequences Sequential control logic

Sequential (step-transition) based operations

 Dev Device drivers Device drivers

Monitor and control individual devices connected to the

controller (valves, drives, PID loops &c.)

 Msg Messages Alarm, warning, event and prompt handling

Marshals the various alarms, organising them for SCADA and

HMI applications

 Comms Communications Communication handling

Executes system to system communications (Controller to

Controller, point-to-point, ProfiBus FMS &c.)

Doc: PS2001-5-2101-001 Rev: R02.00 81-268

 ABB. FUNCTION MEANING

 Sub Subroutines Subroutine functions

Various subroutines (called by other blocks) to execute

particular functions (subroutines are organised into similar

function areas)

 INrm Normal

Interrupts

Normal (non-error) interrupt functions

Usually associated with specific OBs, interrupts generated by

standard system events (time of day, cyclic, hardware &c.)

 IErr Error

Interrupts

Error interrupt functions

Usually associated with specific OBs, interrupts generated in

response to a system fault (IO failure, card fault &c.)

 Debug Debug Debug functions

Generally, start of cycle and end of cycle debug operations

and process simulation

 Gen General General scope

Applies to the whole project (such as explanatory

information and instructions)

 Table 5.4 PAL block naming — function

5.2.3 Block description

(1) The block description does not have a prescribed list of naming options; it is simply a

short form description of what the block does. Examples are:

 Abb. Meaning

 AnalogRead Analogue read

 ScaleAI Scale analogue input

 ValveMod Modulating valve

 DriveVSD Variable speed drive

 Table 5.5 PAL block naming — description

(2) Block descriptions are always written without spaces using camel case10.

10 Camel case is the practice of joining words together and capitalising the start of each word,

it is more formal known as medial capitals).

82-268 Doc: PS2001-5-2101-001 Rev: R02.00

5.2.4 Block naming restrictions

(1) The basic restrictions on naming blocks within the PAL are:

1 The Class abbreviation is three characters long and starts with a

capital letter

2 The Function abbreviation is no more than five characters long

and must start with a capital letter

3 The Description does not have a restriction on the number of

characters but should generally be kept short

4 Each separate word in the description is capitalised with all other

letters in lowercase (this includes the first word)

5 The overall length of the name (including class, function and

description) must be 20 characters or less

6 Only the characters [a-z], [A-Z], the numbers [0-9], the dash/hy-

phen [-] and the underscore [ _] are permitted

Doc: PS2001-5-2101-001 Rev: R02.00 83-268

5.3 Module symbolic names

(1) Within the PAL, symbolic names are simply the block number (e.g. FC11001) fol-

lowed by an underscore character (_) and then the block name (see § 5.2). For example,

if FC11001 had the block name StdDevValveIsol, the full symbolic name for

FC11001 would be:

FC11001_StdDevValveIsol

(2) The two letters at the start (FC) in the above example are the standard abbreviations

for the blocks within the PAL as follows:

 Abb. Meaning

 FB Function block

 FC Function

 OB Organisation block

 DB Data block

 ID Instance data block

 UT User data type

 Table 5.6 PAL block naming — block type prefixes

(3) Data blocks and user data types have the exactly the same name as the function or

function block with which they are associated. Only the class changes; this will be

either St_ (static) if the block holds configuration and constant values or Dy_ (dy-

namic) if it holds live (changing) data.

(4) A third option Rc_ is also possible if recipes are being used, see § #6.3.26.3.2.

84-268 Doc: PS2001-5-2101-001 Rev: R02.00

(5) Thus, extending the previous example, a full set of blocks and data types for the isolat-

ing valve within a project would be:

ADDRESS FULL SYMBOLIC NAME DESCRIPTION

FC11001 FC11001_StdDevValveIsol Isolating valve device driver block

FC31001 FC31001_AppDevValveIsol Isolating valve application block

DB11001 DB11001_St_DevValveIsol Static data block for isolating valves

DB31001 DB31001_Dy_DevValveIsol Dynamic data block for isolating valves

UT11001 UT11001_St_DevValveIsol Static data type structure for isolating valves

UT31001 UT31001_Dy_DevValveIsol Dynamic data type structure for isolating valves

Table 5.7 Block numbering, naming and symbols (an example)

Doc: PS2001-5-2101-001 Rev: R02.00 85-268

5.4 The PAL structure within a Controller

5.4.1 Application modules

(1) The PAL structure with in a Controller is primarily determined by the use of applica-

tion modules called from within OB 1.The complete OB 1 PAL structure is shown in

Figure 5.2. This shows application block calls to the thirteen functional groups (this

includes the 11 functional groups listed in Figure 5.1, plus two debug groups: a start of

cycle debug and end of cycle debug — debug functional groups are discussed in

§ #8.138.13).

Figure 5.2 Complete OB 1 PAL structure

(2) All of these functional groups with the exception of the system functions

(FC21000_AppSys) are optional (the requirements for these applications depends

86-268 Doc: PS2001-5-2101-001 Rev: R02.00

entirely on the purpose of the Controller); most Controllers will have a subset of these

functional groups.

(3) Application modules are specific to the software project in question and are pro-

grammed specifically for that project, they are not fixed modules like the standard

modules.

(4) There are three categories of application modules:

1 Coordinating Coordinating application blocks exist for each func-

tion group and are used to organise all the block

calls within that particular function group.

2 Marshalling Marshalling modules subdivide the coordinating

application modules into logical groupings within

the functional group.

3 Programmed Programmed modules contain extensive program-

ming statements, rather than the configuration ex-

ercises used with coordinating and marshalling

modules.

(5) These concepts are explained in section 7.

Doc: PS2001-5-2101-001 Rev: R02.00 87-268

5.4.2 Standard modules within the PAL structure

(1) Standard modules are the library modules issued with the PAL software.

(2) There are standard modules associated with most of the functional groups listed in

Table 5.2. These are summarised below:

FUNCTION GROUP
STANDARD

MODULE NUMBER QUALIFICATIONS

Debug (start of cycle) N/A Application level software only

System functions FC 01ppp

Read instruments FC 02ppp

Interlock & protection FC 03ppp

Safety systems FC 04ppp

Calculations & mathematics FC 05ppp

Continuous control N/A Application level software only

Sequential control FC 07ppp

Command handling N/A Application level software only

Reserved FC 09ppp Reserved for future expansion

Device drivers (Control loops) FC 10ppp

Device drivers (Valves) FC 11ppp

Device drivers (Drives) FC 12ppp

Device drivers (Reserved) FC 13ppp Reserved for future expansion

Device drivers (Reserved) FC 14ppp Reserved for future expansion

Device drivers (Reserved) FC 15ppp Reserved for future expansion

Message handling FC 16ppp

Communication handling FC 17ppp

(subroutines) FC 18ppp Standard subroutine functions

Debug (end of cycle) FC 19ppp Contains debug subroutines

Table 5.8 Standard module groups ppp indicates any number in the range 1 to 999; thus, 02ppp is

any number in the range 02001-02999

(3) The last three digits of a standard module number (e.g. FC GGppp) are never 000; stand-

ard module numbering starts at GG001 and can range up to GG999 where GG repre-

sents the functional group to which the standard module belongs (this itself will be in

the range 01 to 19).

88-268 Doc: PS2001-5-2101-001 Rev: R02.00

(4) Those groups that do not have standard modules associated with them: debug (start of

cycle), continuous control and command handling, do so because these groups are

entirely dependent on the purpose of the project software in question and are addressed

wholly with the use of programmed application modules (see § #7.37.3).

(5) The PAL software contains a large number of standard modules (see Section 8 for a

full list). Standard modules are programmed using functions (FCs) — the PAL does

not use FBs (the mechanisms for data storage using UDTs see Section 6, makes the

use of FBs largely unnecessary).

(6) All standard modules are parameterised and, generally, have the following appear-

ance:

Figure 5.3 Typical arrangement for a standard module

(7) The block in Figure 5.3, shows a typical arrangement for the calling of a standard mod-

ule, in this case the isolating valve, device driver, standard module. This module was

chosen as an example because it has a full set of the parameters types typically associ-

ated with a standard module.

Doc: PS2001-5-2101-001 Rev: R02.00 89-268

(8) All standard modules have parameters that conform with those shown in Figure 5.3:

PARAMETER
CATEGORY

TYPE OPTIONAL DESCRIPTION

System signals In No

Passes the full set of Controller logic and timing

signals to the module — needed for the internal

operation of the standard module (see § 5.4.4)

Input card

signals
In Yes

All input signals (such as valve limit switches) needed

by the block are passed as discrete parameters into

the block

Output card

signals
Out Yes

All output signals (such as valve energise outputs)

generated by the block are passed as discrete

parameters from the block

Discrete signals In Yes

The discrete signals are direct digital signals (usually

interlock and safety signals) generated elsewhere

within the software, but that have a direct impact on

the operation of the standard module in question

Stored data:

STATIC_DATA
In Yes

Most standard modules are configurable in some

way. The stored data contained in the

STATIC_DATA parameter determines this

configuration. STATIC_DATA is not modified by

the module. STATIC_DATA is always stored in a

data block in the form of a UDT

Stored data:

DYNAMIC_DATA
InOut Yes

Most standard modules require a read/write data

area that stores operational information (elapsed

time, status information &c.), all this information is

passed to the block in the DYNAMIC_DATA

parameter. DYNAMIC_DATA is always stored in a

data block in the form of a UDT

Table 5.9 Parameter categories for standard modules

(9) Standard modules are true library modules and conform to the standards required of

such modules, in terms of the Siemens Simatic programming standards this is:

• Library modules must not use global data access (of memory bits,

IO signals, timers, counters &c.)

• Library modules must not directly access data blocks or instance

data blocks

90-268 Doc: PS2001-5-2101-001 Rev: R02.00

(10) It is for this reason that the common system logic and timing signals (see § 5.4.4) are

passed parametrically to the block in the SYS_SIGNALS parameter; all standard modules

have this parameter and it is always the first parameter of the block.

(11) The SYS_SIGNALS parameter is always an In parameter11 (read only); the standard

modules require the signals in the SYS_SIGNALS parameter, but may not modify the

signals within it.

(12) Standard modules are used repeatedly within the PAL software, for example if the

Controller software had two isolating valves, then the isolating valve standard module

of Figure 5.3 (FC11001_StdDevValveIsol) would be called twice, from a marshal-

ling or coordinating application module (in this case a marshalling application mod-

ule) once for each valve, each such call of the module is referred to as an instance of

the block. In diametric form, it would have the following structure:

Figure 5.4 Multiple instances of a standard module

11 The exception being the standard module FC01001_StdSysGlobalData, this is the

standard module that generates the logic and timing signal and is the only compulsory stand-

ard module that must be present in the Controller software (see § 8.1); here, the

SYS_SIGNALS parameter is an InOut type.

Doc: PS2001-5-2101-001 Rev: R02.00 91-268

(13) In parametric terms, the two calls to FC11001_StdDevValveIsol would be:

Figure 5.5 Parametric difference for multiple instances of a standard module

(14) In the first instance (Network 3), all references are to V001, in the second instance

(Network 4) all references are to V002. The differences are highlighted in red.

(15) This is the mechanism by which all standard modules work. The blocks can be called

multiple times, each time the block is called, it receives different parameters that are

applicable to that instance of the call and no other; in Figure 5.5, the first call (Network

3) passes all the V001 data to the block and that instance of the block is entirely associ-

ation with V001. In the second instance (Network 4), all the parameters are for V002

and that instance of the block is entirely association with V002.

92-268 Doc: PS2001-5-2101-001 Rev: R02.00

5.4.3 Interrupt modules within the PAL structure

(1) The only interrupt module that is required by the PAL is OB1, this is the block that is

automatically executed by the Controller operating system at the start of each cycle.

(2) OB1 is the master programming block within the PAL software and is used to call the

subsequent marshalling application modules, this can be seen in the programming ex-

amples shown in Figure 7.1 to Figure 7.4.

(3) OB1 however, is not the only interrupt module, there are various organisation blocks,

each one supporting a different type of interrupt. The most commonly used is a cyclic

timed interrupt, this interrupts the main Controller cycle at regular intervals (ranging

from 100µs to 60 s). The following is a full list of standard interrupt organisation blocks

available within a Controller:

OB NUMBER PAL MODULE NAME DESCRIPTION

OB1 OB00001_IntINrmMainProgram
Controller main program cycle

Called at the start of each Controller cycle

OB10 OB00010_IntINrmTimeOfDay
Time of day Interrupt

Called by time and day of week

OB20 OB00020_IntINrmTimeDelay
Time delay Interrupt

Called after a specified delay has expired

OB30 OB00030_IntINrmCyclic
Timed cyclic Interrupt

Called at specified intervals

OB40 OB00040_IntINrmHardware
Hardware Interrupt

Called when a specified signal is detected

OB100 OB00100_IntINrmStartUp
Start-up Interrupt

Called when the CPU transitions to RUN

Table 5.10 Standard interrupt modules and organisation blocks

(4) Interrupt modules are also used to detect certain fault conditions:

OB NUMBER PAL MODULE NAME DESCRIPTION

OB80 OB00080_IntIErrCycleTimeErr
Error Interrupt

Maximum cycle time exceeded

OB82 OB00082_IntIErrModuleDiag
Error Interrupt

Module diagnostics signal received (module fault)

OB83 OB00083_IntIErrModuleChange
Error Interrupt

Module changed, removed or installed

OB86 OB00086_IntIErrRackErr
Error Interrupt

Rack failure or fault

OB40 OB00121_IntIErrProgramErr
Error Interrupt

Programming fault or error

OB100 OB00122_IntIErrIOErr
Error Interrupt

IO card access fault

Table 5.11 Fault interrupt modules and organisation blocks

Doc: PS2001-5-2101-001 Rev: R02.00 93-268

5.4.4 Third-party modules

(1) Third-party equipment manufacturers often provide their own software to interface

with their equipment, this is usually in the form of functions (FCs) and function blocks

(FBs) that can be installed within the project software.

(2) The PAL accepts that this is the case and such third-party modules can be installed

and used within the PAL. Such modules should be re-numbered to fall in the range 1-

999.

(3) It is also the case, that the project in question may have some equipment that is not

covered by the standard modules in the PAL. Where this is true, a new project specific

module may be required, these can be added to the PAL, preferably in the third-party

module area (1-999 numbering range); or alternatively, for devices, in one of the re-

served areas (13000-15999). This latter option should only be used if it is logical to do

so, this would be where there are a substantial number of modules required or where

such modules make a practical contribution to the PAL and may at some future point

be incorporated into it.

(4) Any project specific standard modules are new modules and not by default part of the

PAL (they have been written for the particular project in question). As such, those

modules must be thoroughly tested to the level required by the particular project.

94-268 Doc: PS2001-5-2101-001 Rev: R02.00

5.5 Common signals within the PAL

(1) There are several common logic and timing signals that are needed by all the PAL

software modules; these are referred to collectively as system global data signals (or in

short form as just system signals). These are the signals passed to the standard modules

with the SYS_SIGNALS parameter discussed in the previous section.

(2) These system signals are generated by the only compulsory standard module required

within the PAL: FC01001_StdSysGlobalData. This standard module is called at the

start of OB 1 (highlighted below):

Figure 5.6 Standard module for system signals

(3) The system signals standard module is called from the associated coordinating appli-

cation module (FC21000_AppSys); the only block that may precede this is the start of

cycle debug block (see § 8.13), this is a temporary block used during the testing phase

of software production and it will not be present in any final software developed using

the PAL.

(4) The PAL system signals are stored in two formats, first as a UDT data structure

(UT21001_Dy_SysSignals) in the system global data block (DB21001_Dy_Sys-

GlobalData) in the variable SysSignals. This form of the system signals is designed

to be passed as a parameter to all the standard modules using the SYS_SIGNALS param-

eter.

(5) Secondly, the same data is stored in bit memories, these can be accessed globally in all

application (project specific) blocks. The bit memories used to store the system signals

Doc: PS2001-5-2101-001 Rev: R02.00 95-268

are MB0 and MB1; the individual signals within the bytes being given symbolic tags in

the tag table PAL_SystemTags.

(6) Both forms of the data are discussed further in the following sections:

Note: There is absolutely no difference between the two form of the signals, it is simply

a question of which to use under what circumstances: parametric for standard

modules, direct for application modules

5.5.1 System signals: parametric access and direct access

(1) The guidelines for library modules state that standard blocks must not use global data

access to gather information from within the Controller (i.e. must not directly access

data), to do so, means that the block cannot be a true library module that can be used

on any system, it requires that system to have an underlying set of variables that existed

outside the block.

(2) Consequently, all standard (library) blocks have to receive all the data they require to

operate, via parameters passed to the block (parametric access). Hence the use here of

UDT data that can be passed as a single parameter into every standard block.

(3) The application blocks are by their nature, specific to the project being developed, they

are not library modules. As such the application modules can use direct access to read

the system signals. Hence the two versions:

• Parametric access — UDT parameter for standard modules

• Direct access — memory bits for application modules

96-268 Doc: PS2001-5-2101-001 Rev: R02.00

5.5.2 UDT system signals for parametric access

(1) The system signals for parametric access are stored in DB21001_Dy_SysGlobalData

in the variable SysSignals; this variable is a UDT of type

UT21001_Dy_SysSignals, it contains the 16 logic and timing signals of Table 5.12:

Data structure UT21000_Dy_SysSignal

Signal Type Function

_False Bool System Logic Bit — Always FALSE

_True Bool System Logic Bit — Always TRUE

_50ms Bool System Timing — 50 ms Pulse Scan synchronised

_100ms Bool System Timing — 100 ms Pulse Scan synchronised

_200ms Bool System Timing — 200 ms Pulse Scan synchronised

_500ms Bool System Timing — 500 ms Pulse Scan synchronised

_1s Bool System Timing — 1 s Pulse Scan synchronised

_2s Bool System Timing — 2 s Pulse Scan synchronised

_CycleTick Bool System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)

_CycleTock Bool System Timing — Cycle tock (active even cycles, alternates with _CycleTick)

_CycleFirst Bool System Timing — First cycle detected

_100msSqW Bool System Timing — 100 ms square wave Scan synchronised

_200msSqW Bool System Timing — 200 ms square wave Scan synchronised

_500msSqW Bool System Timing — 500 ms square wave Scan synchronised

_1sSqW Bool System Timing — 1 s square wave Scan synchronised

_2sSqW Bool System Timing — 2 s square wave Scan synchronised

Table 5.12 Data structure: UT21001_Dy_SysSignals

(2) This data is passed as a parameter to all standard modules; the parameter is named

SYS_SIGNALS on all standard modules, and is always the first IN parameter:

Figure 5.7 Example usage of the SYS_SIGNALS parameter

Doc: PS2001-5-2101-001 Rev: R02.00 97-268

5.5.3 Bit memory direct access and the PAL system tag table

(1) The direct access version of the system signals are stored in two consecutive memory

bytes: MB0 and MB1, see Table 5.13. These are given symbolic names (tags) that are

then used throughout the remaining PAL application modules.

(2) The tags for these bytes (MB0 and MB1) are specified in the plc tags entry in the

project tree, and are stored in the tag table:

PAL_SystemTags

(3) This tag table is provided as standard as part of the PAL. The system signals within its

contents are listed in Table 5.13

(4) The PAL_SystemTags tag table is a fixed tag table and is a fundamental part of the

PAL. It must not be modified.

(5) The bit memories contained in the bytes PAL_SystemTags tag table are similarly re-

served by the PAL and must these not be reallocated, renamed or used in any other

tag table.

(6) All PAL system tags contained within the PAL_SystemTags tag table are identified by

a leading underscore character (_).

98-268 Doc: PS2001-5-2101-001 Rev: R02.00

(7) The memory bit system signals are given identical names to those in the

UT21001_Dy_SysSignals data type (those used for parametric access, see § 5.5.2); as

follows (Table 5.13):

NAME TYPE ADDRESS DESCRIPTION

_SysSignals Int %MW0 System signals (logic and timing signals for direct access)

_SysSignals01 Byte %MB0 System memory byte 01 — Logic and scan synchronised pulses

_False Bool %M0.0 System Logic Bit — Always FALSE

_True Bool %M0.1 System Logic Bit — Always TRUE

_50ms Bool %M0.2 System Timing — 50 ms Pulse Scan synchronised

_100ms Bool %M0.3 System Timing — 100 ms Pulse Scan synchronised

_200ms Bool %M0.4 System Timing — 200 ms Pulse Scan synchronised

_500ms Bool %M0.5 System Timing — 500 ms Pulse Scan synchronised

_1s Bool %M0.6 System Timing — 1 s Pulse Scan synchronised

_2s Bool %M0.7 System Timing — 2 s Pulse Scan synchronised

_SysSignals02 Byte %MB1 System memory byte 02 — Scan signals and common square waves

_CycleTick Bool %M1.0 System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)

_CycleTock Bool %M1.1 System Timing — Cycle tock (active even cycles, alternates with _CycleTick)

_CycleFirst Bool %M1.2 System Timing — First cycle detected

_100msSqW Bool %M1.3 System Timing — 100 ms square wave Scan synchronised

_200msSqW Bool %M1.4 System Timing — 200 ms square wave Scan synchronised

_500msSqW Bool %M1.5 System Timing — 500 ms square wave Scan synchronised

_1sSqW Bool %M1.6 System Timing — 1 s square wave Scan synchronised

_2sSqW Bool %M1.7 System Timing — 2 s square wave Scan synchronised

Table 5.13 PAL direct access system signals

Doc: PS2001-5-2101-001 Rev: R02.00 99-268

5.5.4 System signal naming conventions

(1) The PAL direct access system signal tags and parametric access variables with in the

UT21001_Dy_SysSignals data structure are named according to the following con-

ventions:

1 Each tag is prefixed with the underscore [_] character

2 The remaining tag name is written in camel case

3 The name (including prefix) must be no more than 24 characters

4 It is permissible to separate parts of the name with an underscore

[_] character (e.g. _ClockMem_100msSqW)

5 Units (such as milliseconds, ms) are not capitalised

6 The dash/hyphen [-] is not to be used (use the underscore instead)

7 Only use the characters [a-z], [A-Z], the numbers [0-9], and the

underscore [_]

(2) All PAL system tags have a brief explanation of what the tag does stored in the com-

ment field of the tag.

5.5.5 Global logic signals

(1) The system signals have two fixed logic signals, these are allocated as follows:

NAME TYPE DESCRIPTION

_False Bool System Logic Bit — Always FALSE

_True Bool System Logic Bit — Always TRUE

(2) The two signals _False and _True are logically testable signals, the _False signal

being always set to 0 and the _True signal being always set to 1.

100-268 Doc: PS2001-5-2101-001 Rev: R02.00

5.5.6 Global timing signals

(1) There are two types of timing signals within the system signals: isochronous12 pulses

that are active for a single controller cycle (scan) and isochronous, even mark/space

ratio square waves. All timing signals are derived from the CPU clock memory func-

tions (see § 6.1).

Isochronous timing pulses

(2) The system signals include six individual timing pulses, these occur at intervals of

50 ms, 100 ms, 200 ms, 500 ms, 1 s and 2 s:

Name Type Description

_50ms Bool System Timing — 50 ms pulse

_100ms Bool System Timing — 100 ms pulse

_200ms Bool System Timing — 200 ms pulse

_500ms Bool System Timing — 500 ms pulse

_1s Bool System Timing — 1 s pulse (1000 ms)

_2s Bool System Timing — 2 s pulse (2000 ms)

(3) Each pulse is active for a single CPU cycle, and is activated at the start of the cycle

following the termination of the specified time interval.

(4) These timing pulses form the basis for all timed actions within the PAL software.

Timed events are measured by counting a number of occurrences of a timing pulse

signal (for example the duration of an hour would be 3600 occurrences of the _1s

pulse, a 10 s duration would be 100 pulses of the _100ms pulse).

(5) Timed events should generally use the shortest interval pulse compatible with the Con-

troller cycle time and the duration of the event being measured.

12 Isochronous signals (sometimes scan synchronised signals) are signals that are synchronised

with the Controller cycle, such signals only change state at the end of one scan and before

the start of the next, presenting the same state to all the software modules in a given Con-

troller cycle.

Doc: PS2001-5-2101-001 Rev: R02.00 101-268

Isochronous timing square waves

(6) The system signals include five individual timing square wave signals, these have fre-

quencies of 10 Hz (100 ms period), 5 Hz (200 ms period), 2 Hz (500 ms period), 1 Hz

(1 s period) and 0.5 Hz (2 s period):

Name Type Description

_100msSqW Bool System Timing — 100 ms square wave (10 Hz)

_200msSqW Bool System Timing — 200 ms square wave (5 Hz)

_500msSqW Bool System Timing — 500 ms square wave (2 Hz)

_1sSqW Bool System Timing — 1 s square wave (1 Hz)

_2sSqW Bool System Timing — 2 s square wave (0.5 Hz)

(7) In a similar manner to the timing pulses, the rising and falling edges of the timing

square wave occur at the start of a Controller cycle.

5.5.7 Cyclically dependent signals

(1) The system signals include three cycle dependent signals:

Name Type Description

_CycleTick Bool System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)

_CycleTock Bool System Timing — Cycle tock (active even cycles, alternates with _CycleTick)

_CycleFirst Bool System Timing — First cycle detected

(2) The first two of these signals (_CycleTick and _CycleTock) are alternating signals

that change state at the start of each cycle, the _CycleTick being active on every odd

cycle since the CPU started (cycles 1, 3, 5, 7 …). _CycleTock activates on each even

numbered cycle since the CPU started (cycles 2, 4, 6, 8 …).

(3) The _CycleTick and _CycleTock signals are often used as “dead-man” signals that

show the CPU is running.

(4) The _CycleFirst signal is active on the first cycle of the CPU after a stop → run

transition. The _CycleFirst signal is an important signal and is generally used to set

the Controller to a given start-up condition. It should be interpreted as telling the soft-

ware that the processor has just started and all modules should be initialised and set to

the correct start-up conditions.

102-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 103-268

6. Data handling within the PAL

6 Data handling within the PAL

(1) There are three forms of data commonly used with the PAL:

• Memory bits (reserved for the common system signals, see

§ 5.4.4)

• IO signals read from, and written to IO cards

• Data block data in the form of UDTs and symbolic variables

Note: The Simatic Controllers support additional data forms: timers and counters.

The number of timers and counters available within Siemens Controllers is re-

stricted, typically being 2048 of each. The PAL generally replaces the timers with

edge triggered pulse counters of which there can be any number and they can be

stored in data blocks. Counters are replaced with specific standard modules that

again store the derived counts in data blocks and again any number of which are

supported.

(2) All data within the PAL will be symbolically addressed (in the case of IO and memory

bits, with the use of tag tables).

6.1 Data in the form of memory bits

(1) The PAL does not generally use the memory bits available to a Controller, instead

storing data within the more flexible data blocks.

(2) There are two exceptions to this, the first is the use of the CPU clock memory (see

§ 4.2.4 for full details), this stores various CPU generated timing signals within a des-

ignated area of the memory bits (in this case MB10), these signals are required in the

generation of the isochronous system timing signals (see § 5.5.6).

(3) Secondly, the direct access system signals are store in a two-byte area of the memory

bits (MB0 and MB1), these are listed in § 5.5.3.

104-268 Doc: PS2001-5-2101-001 Rev: R02.00

(4) The remaining areas of the memory bits are unused (the S7-1500 has 131,072 such bits,

arranged in 16,384 bytes — the S7-1200 has either 32,768 or 65,536 such bits depend-

ing on the CPU in question, again arranged in bytes).

(5) Where memory bits are used, they must be addressed symbolically, each bit, byte,

word or double word must be given a unique symbol, referred to as a tag, these tags

are stored in a specific tag table.

(6) The tags for the CPU clock memory (MB10) and the direct access system signals (MB0

and MB1) are stored in the predefined tag table:

PAL_SystemTags

(7) This tag table is provided as standard as part of the PAL. A full list of its contents is

provided in Table 5.13.

(8) The PAL_SystemTags tag table is a fixed tag table and is a fundamental part of the

PAL. It must not be modified.

(9) The bit memories contained in the bytes MB0, MB1 and MB10 are similarly reserved by

the PAL and must these not be reallocated, renamed or used in any other tag table.

(10) The PAL makes very limited use of the memory bit allocations within the Controller,

essentially just for system signals; the further use of memory bits, while not encouraged,

in not prohibited by the PAL. The user is free to allocate memory bits as required;

however, the following restrictions apply:

• Memory bits cannot be passed to the PAL standard modules13,

these expect data to be passed in the form of UDTs

• Any additional memory bits must use a separate tag table, they

must not be added to the predefined PAL_SystemTags tag table

13 It would only be possible to pass memory bits to standard modules as discrete signals (see

§ 5.5.1.

Doc: PS2001-5-2101-001 Rev: R02.00 105-268

Name Type Ad-
dress

Description

_SysSignals Int %MW0 System signals (logic and timing signals for direct access)

_SysSignals01 Byte %MB0 System memory byte 01 — Logic and scan synchronised pulses

_False Bool %M0.0 System Logic Bit — Always FALSE

_True Bool %M0.1 System Logic Bit — Always TRUE

_50ms Bool %M0.2 System Timing — 50 ms Pulse Scan synchronised

_100ms Bool %M0.3 System Timing — 100 ms Pulse Scan synchronised

_200ms Bool %M0.4 System Timing — 200 ms Pulse Scan synchronised

_500ms Bool %M0.5 System Timing — 500 ms Pulse Scan synchronised

_1s Bool %M0.6 System Timing — 1 s Pulse Scan synchronised

_2s Bool %M0.7 System Timing — 2 s Pulse Scan synchronised

_SysSignals02 Byte %MB1 System memory byte 02 — Scan signals and common square waves

_CycleTick Bool %M1.0 System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)

_CycleTock Bool %M1.1 System Timing — Cycle tock (active even cycles, alternates with _CycleTick)

_CycleFirst Bool %M1.2 System Timing — First cycle detected

_100msSqW Bool %M1.3 System Timing — 100 ms Square wave Scan synchronised

_200msSqW Bool %M1.4 System Timing — 200 ms Square wave Scan synchronised

_500msSqW Bool %M1.5 System Timing — 500 ms Square wave Scan synchronised

_1sSqW Bool %M1.6 System Timing — 1 s Square wave Scan synchronised

_2sSqW Bool %M1.7 System Timing — 2 s Square wave Scan synchronised

_ClockMem Byte %MB10 Clock Memory (populated by the CPU)

_ClockMem_100msSqW Bool %M10.0 Clock Memory — 10.0 Hz square wave 0.1 s Period

_ClockMem_200msSqW Bool %M10.1 Clock Memory — 5.00 Hz square wave 0.2 s Period

_ClockMem_400msSqW Bool %M10.2 Clock Memory — 2.50 Hz square wave 0.4 s Period

_ClockMem_500msSqW Bool %M10.3 Clock Memory — 2.00 Hz square wave 0.5 s Period

_ClockMem_800msSqW Bool %M10.4 Clock Memory — 1.25 Hz square wave 0.8 s Period

_ClockMem_1000msSqW Bool %M10.5 Clock Memory — 1.00 Hz square wave 1.0 s Period

_ClockMem_1600msSqW Bool %M10.6 Clock Memory — 0.62 Hz square wave 1.6 s Period

_ClockMem_2000msSqW Bool %M10.7 Clock Memory — 0.50 Hz square wave 2.0 s Period

Table 6.1 PAL system bit memory usage (PAL_SystemTags table)

(11) All PAL system tags contained within the PAL_SystemTags tag table are identified by

a leading underscore character (_).

106-268 Doc: PS2001-5-2101-001 Rev: R02.00

6.2 IO Data

(1) The inputs and outputs associated with a project are unique to that project (they de-

pend on the plant being controlled). The PAL does not prescribe in anyway what IO

can be used. It does however, define certain rules for how that IO should be named

and where the tags should be stored.

(2) IO tags within the PAL are stored in their own tag table:

PAL_IOTags

(3) The following is an example of an IO tag table (this is part of the IO listed in Table 3.1

for the test rig):

SYMBOL TYPE ADDRESS DESCRIPTION

ESTOP_HEALTHY Bool %I0.0 Emergency stop healthy/pressed

M001_RUNNING Bool %I0.1 M001 is running/stopped

M001_TRIPPED Bool %I0.2 M001 is heathy/tripped

M002_RUNNING Bool %I0.3 M002 is running/stopped

M002_FAULT Bool %I0.4 M002 is heathy/inverter fault

M001_ROTATION Bool %I0.5 M001 rotation sensor (proximity PD001)

CV001_OPENED_LIM Bool %I0.6 CV001 opened limit switch active/inactive

CV001_CLOSED_LIM Bool %I0.7 CV001 closed limit switch active/inactive

V001_OPENED_LIM Bool %I1.0 V001 opened limit switch active/inactive

V001_CLOSED_LIM Bool %I1.1 V001 closed limit switch active/inactive

V002_OPENED_LIM Bool %I1.2 V002 opened limit switch active/inactive

V002_CLOSED_LIM Bool %I1.3 V002 closed limit switch active/inactive

V003_OPENED_LIM Bool %I1.4 V003 opened limit switch active/inactive

V003_CLOSED_LIM Bool %I1.5 V003 closed limit switch active/inactive

V004_OPENED_LIM Bool %I1.6 V004 opened limit switch active/inactive

V004_CLOSED_LIM Bool %I1.7 V004 closed limit switch active/inactive

M001_START_CMD Bool %Q0.0 M001 start command

M002_ENABLE_CMD Bool %Q0.1 M002 enable command

CV001_ENABLE_CMD Bool %Q0.2 CV001 enable command

V001_OPERATE_CMD Bool %Q0.3 V001 operate command (energise)

V002_OPERATE_CMD Bool %Q0.4 V001 operate command (energise)

V003_OPERATE_CMD Bool %Q0.5 V001 operate command (energise)

V004_OPERATE_CMD Bool %Q0.6 V001 operate command (energise)

M002_SPEED_ACT Int %IW268 M002 actual speed

CV001_POS_ACT Int %IW270 CV001 actual position

M002_SPEED_DEM Int %QW264 M002 demanded speed

CV001_POS_DEM Int %QW266 CV001 demanded position

Table 6.2 PAL IO tag table (example)

Doc: PS2001-5-2101-001 Rev: R02.00 107-268

6.2.1 IO Tag naming conventions

(1) There are some general rules for naming IO tags:

1 The IO tag name is in uppercase

2 The IO tag name must be no more than 24 characters

3 Only use the characters [A-Z], the numbers [0-9] and the under-

score character [_]

4 The underscore character should be used in place of a space to

separate words

(2) The structure of an IO tag is also defined (to some extent) within the PAL. This spec-

ifies the nomenclature used for various common signals.

(3) All IO tags are associated with some form of device or instrument (valves, drives, flow

meters, level transducers &c.). All of these devices will be allocated a particular equip-

ment number (also confusingly referred to as “tag numbers”).

(4) Equipment numbers usually have the form:

FFFnnn

Where FFF indicates the function of the equipment (e.g. FIC for FLOW INDICATION

CONTROL or LT for LEVEL TRANSMITTER); and nnn indicates a loop number.

(5) The requirement and format for equipment tags is dictated by the design of the plant

in question and the PAL will accommodate any format of equipment number. The

only restriction being that each device and instrument must have a unique equipment

number (that is the combination of the equipment function and its loop number must

be unique within the plant).

Note The requirement for unique equipment numbers is usually easy to accomplish;

instruments and devices are generally uniquely identified on the piping and in-

strumentation diagrams (P&ID) for the plant.

108-268 Doc: PS2001-5-2101-001 Rev: R02.00

(6) While a particular device or instrument is uniquely identified by its equipment number.

In terms of the IO associated with that equipment, there are usually several signals that

have to be named within the tag table. For example, an isolating valve may have an

open limit signal (the valve has achieved the fully opened state), a closed limit signal

(the valve has reached the fully closed state) and an operate signal (energised to open

the valve and de-energised to close the valve).

(7) All three signals would have the same equipment number; consequently the PAL IO

tag table requires further information to uniquely identify the individual signals asso-

ciated with a device linked to the controller.

(8) PAL IO tags generally have the following naming format:

FFFnnn_SIGNAL_QUALIFIER

(9) Where FFFnnn is the equipment number. SIGNAL indicates the primary function of

the signal (e.g. LIMIT for a valve limit switch); QUALIFIER is some qualifying param-

eter that further explains the function of the signal (e.g. LIMIT_CLOSED to identify the

closed limit switch of a valve).

(10) Both the SIGNAL and QUALIFIER components of the tag are optional; some digital

instruments have only one signal and the equipment number is sufficient to fully spec-

ify the function of the instrument (e.g. LSL001 identifies the instrument as a low level

switch, it would not be necessary to further qualify the tag: LSL001_LOW or

LSL001_LEVEL_LOW would not provide any more information than that given in the

equipment number).

(11) There are various predefined values for the SIGNAL and QUALIFIER components of an

IO tag. These are listed in the following tables and should be used where they are ap-

plicable.

Doc: PS2001-5-2101-001 Rev: R02.00 109-268

SIGNAL
APPLIES

TO MEANING STATES

AUTO Input Equipment is switched to automatic control 1 = Auto, 0 = Man (or not used)

CLOSE Output Signal to close a bistable valve, damper, louver &c. 1 = Close signal is energised

DISABLE Output Signal to disable the operation of a device 1 = Disable, 0 = Enable

DISABLED Input Device is disabled 1 = Disabled, 0 = Enabled

ENABLE Output Signal to enable the operation of a device 1 = Enabled, 0 = Disabled

ENABLED Input Device is enabled 1 = Enabled, 0 = Disabled

ESTOP Input Emergency stop Requires qualifier

FAULT Input Device is in fault 1 = Fault, 0 = OK

FBK Input Feedback signal Requires qualifier

FORWARD Output Signal to start a drive in the forwards direction 1 = Run Forwards signal is energised

HEALTHY Input Device is healthy 1 = Healthy, 0 = not healthy

ILOCK Input Interlock Requires qualifier

LIMIT Input Limit switch condition 1 = limit switch active, 0 = inactive

MAN Input Equipment is switched to manual control 1 = Man, 0 = Auto (or not used)

OPEN Output Signal to open a bistable valve, damper, louver &c. 1 = Open signal is energised

OPERATE Output Signal to operate a (monostable) device 1 = Device operate signal is energised

POSN Both Position (of something e.g. a modulating valve) Requires qualifier

RAW Both Raw (unscaled or unfiltered) signal Requires qualifier

REVERSE Output Signal to start a drive in the reverse direction 1 = Run Reverse signal is energised

RUNNING Input Device is running 1 = running, 0 = not running

SPEED Both Speed (of something e.g. a variable speed drive) Requires qualifier

START Output Signal to start a bistable device. 1 = Start signal is energised

STOP Output Signal to stop a bistable device. 1 = Stop signal is energised

TRIP Input Device is tripped 1 = Tripped, 0 = OK

Table 6.3 PAL IO tag SIGNAL values

(12) The above SIGNAL list for PAL IO is not exhaustive (there willl always be some special

device that is not accomodated by the entries above), but it does cover a wide range of

common signals and should be used in preference to other non-standard values.

110-268 Doc: PS2001-5-2101-001 Rev: R02.00

QUALIFIER
APPLIES

TO MEANING EXAMPLE

CLOSED Input The SIGNAL (e.g. LIMIT) represents a closed state LIMIT_CLOSED

CMD Output The SIGNAL is a command to a device (usually digital) OPERATE_CMD

DMD Output The SIGNAL is a demand to a device (usually analogue) SPEED_DMD

FBK Input Marks a SIGNAL as a feedback signal SPEED_FBK

OPENED Input The SIGNAL (e.g. LIMIT) represents an opened state LIMIT_OPENED

RAW Both Raw (unscaled or unfiltered) signal SPEED_RAW

Table 6.4 PAL IO tag QUALIFIER values

(13) Again, the above QUALIFIER list for PAL IO is not exhaustive, but it does cover a

wide range of common signals and should be used in preference to other non-standard

values.

A note on monostable and bistable output signals

(14) In the SIGNAL list (Table 6.3) there are four output signals that are specified as bistable:

• OPEN

• CLOSE

• START, FORWARDS, REVERSE

• STOP

(15) There is also one monostable output:

• OPERATE

(16) Bistable signals should be used where a device has two signals to make it change state;

consider a valve that has both an OPEN output signal and a CLOSE output signal.

(17) To open the valve the OPEN signal must be energised and the CLOSE signal de-ener-

gised. When the valve reaches the OPENED position, both signals can be de-energised

and the valve will remain in the OPENED state (it is stable in this condition and does

not require any signal to maintain it in this state, if there were a power failure the valve

would remain opened).

Doc: PS2001-5-2101-001 Rev: R02.00 111-268

(18) To close the valve the CLOSE signal must be energised and the OPEN signal de-ener-

gised. When the valve reaches the CLOSED position, both signals can again be de-ener-

gised and the valve will remain in the CLOSED state (again the valve is stable in this

condition and does not require any signal to maintain it in this state, if there were a

power failure the valve would remain closed).

(19) This is said to be a bistable device because once it is in a particular state, it does not

require any signal to be energised to maintain that state.

(20) The START and STOP signals operate in exactly the same way for drives and devices

that can broadly be described as running or stopped (it might for example be a more

complicated standalone piece of machinery such as a labelling device).

(21) Bistable devices are not very common; they tend to be used with very large motorised

valves and specialist machinery.

(22) Monostable devices are what would be consider the standard type of device. These are

usually things like a normally closed valve and direct online drives. Monostable de-

vices usually have just one signal that operates the device.

(23) Take for example a normally closed valve. This will have a single OPERATE signal. If

the OPERATE signal is energised, the valve will (either electrically or electro-pneumati-

cally) open. If the OPERATE signal is de-energised, the valve will return (mechanically,

usually via a spring) to the closed position. To keep the valve open, the OPERATE signal

must remain energised.

(24) Direct online drives work in much the same way. The OPERATE signal activates a relay

or contactor that applies electrical power to the drive, if the OPERATE signal is de-ener-

gised, the relay or contactor is mechanically opened (usually a spring mechanism that

opens the electrical contacts) and power is removed from the drive.

(25) Again, the OPERATE signal must remain active for the drive to run.

Most valves and drives are monostable and use the OPERATE command rather than the

OPEN/CLOSE or START/STOP signals.

112-268 Doc: PS2001-5-2101-001 Rev: R02.00

6.3 Data block data storage

(1) Data blocks are the primary mechanism for storing data within any PAL based project.

Data stored within data blocks is the main method for standard modules to communi-

cate with the rest of the project software, it is how application modules pass infor-

mation to and from the standard modules.

(2) Most standard modules received data block data in two forms: static (read only) data

and dynamic (read and write) data14. This data is passed to the block via the parameters

STATIC_DATA and DYNAMIC_DATA (see § 4.3.1). This data is always passed to the

standard module in the form of a user data type (UDT) that is specific to both the

module and to the static/dynamic data in question (the static data will use a different

UDT to that of the dynamic data).

(3) Standard modules will only have one STATIC_DATA parameter and one

DYNAMIC_DATA parameter each; all the stored data needed by the module must be

passed to the module by these parameters. Consequently, the UDTs that hold this data

can be extensive and relatively complex in nature.

(4) To simplify these UDTs, common naming practices are adopted for similar types of

signal; for example, data that reflects the status of the device or instrument being oper-

ated by a standard module is prefixed with the label status, similarly where operating

modes can be selected, the data is prefixed with the label mode. Configuration data is

prefixed CONFIG and alarms, messages and warning with the prefix msg &c.

(5) In this context, static data specifies constant (preset) values that have some meaning

for the block in question (e.g. the opening time of a valve, the hysteresis of an alarm

setpoint, limit switch arrangements for a valve &c.). Static data does not change (the

data is usually configured during the commissioning of the plant and then remains

fixed and unchanging for the lifetime of the plant).

(6) Dynamic data is live, operating data (e.g. if a valve is in the process of opening, the

elapsed time of the operation will be stored in the dynamic data area).

14 While most standard modules have both static and dynamic data, some have only dynamic

data and some (certain simple subroutines) require neither.

Doc: PS2001-5-2101-001 Rev: R02.00 113-268

(7) Static and dynamic data is always stored in a data block, the data block in question is

dependent on the number allocated to the standard module.

(8) This process is best explained with the use of an example, consider the standard mod-

ule associated with the reading, scaling and monitoring of an analogue instrument con-

nected to a Controller via an analogue input card.

(9) This standard module is designated (FC02001_StdInstAnalogRead) and is allocated

to the function FC 02001 within a Controller. This module would be called from a

marshalling application block (FC22001_AppInstAnalogRead):

Figure 6.1 Analogue instrument read example calling structure

(10) In this example, the first instance of FC02001_StdInstAnalogRead is reading the

value of a flow transmitting instrument (FT001), the second instance is reading the

value of a level transmitting instrument (LT001).

114-268 Doc: PS2001-5-2101-001 Rev: R02.00

(11) In practical terms, the called blocks would be programmed as follows (within the mar-

shalling block):

Figure 6.2 Analogue instrument read example programmed blocks

(12) The standard module is assigned to the function FC 02001, the static data is assigned

to the data block with exactly the same number, in this case DB 02001 (specifically:

DB02001_St_InstAnalog Read). The dynamic data is assigned to the data block with the same num-

ber as the standard block + 20000, i.e. DB 22001 (specifically

DB22001_Dy_InstAnalog Read).

(13) The rules for the two data blocks are as follows:

1 The static DB has the same number as the standard module

2 The dynamic DB has the same number as the standard mod-

ule + 20000

3 The static DB has the same name as the standard module with

Std replaced by St_ (static)

4 The dynamic DB has the same name as the standard module with

Std replaced by Dy_ (dynamic)

Doc: PS2001-5-2101-001 Rev: R02.00 115-268

(14) In the example of Figure 6.2, both calls to the standard module (FC02001_StdIn-

stAnalogRead) use the same data block for the static data (DB02001_St_InstAnalog Read), they

also use the same data block for the dynamic data (DB22001_Dy_InstAnalog Read).

(15) I.e. all instruments that are read using FC 02001 use the same data block to store the

static data: DB 02001. The same is true for the dynamic data, all analogue instrument

reads use DB 22001. This can be seen by examining the two data blocks:

Figure 6.3 Analogue instrument read static data block

Figure 6.4 Analogue instrument read dynamic data block

(16) The two instruments FT001 and LT001 are each present in the two data block. In the

static data block, each instrument has a data type of the UT02001_St_InstAnalogRead, this is

the static UDT associated with the data, this again has the same number as the stand-

ard module UT02001 and has the same name as the static data block.

(17) Similarly, in the dynamic data block, each instrument has a data type of the

UT22001_St_InstAnalogRead, this is the dynamic UDT associated with the data,

like the dynamic DB, this has the same number as the standard module + 20000 and

has the same name as the dynamic data block.

116-268 Doc: PS2001-5-2101-001 Rev: R02.00

(18) By expanding the instrument variables within the two DBs, the internal structure of

the UDTs can be seen (here the FT001 instrument is expanded):

Figure 6.5 FT001 static data block UDT structure

(19) In Figure 6.6, the configuration information for FT001 is visible, it can be seen,

amongst other things, that the scaled range of the instrument is set to be from 0.0

(RANGE_SCALE_MIN) to 1000.0 (RANGE_SCALE_MAX), it can also be seen that all four alarms

and warnings are enabled (CONFIG_ALM_H_ENABLE, CONFIG_ALM_L_

ENABLE, CONFIG_WRN_H_ENABLE and CONFIG_WRN_L_ENABLE are all set to true).

(20) Comparing this with the same information for LT001:

Doc: PS2001-5-2101-001 Rev: R02.00 117-268

Figure 6.6 LT001 static data block UDT structure

(21) It can be seen that the data is different; in this case it is applicable to LT001, the scaled

range of the instrument is set to be from 0.0 (RANGE_SCALE_MIN) to 5.0

(RANGE_SCALE_MAX), it can also be seen that only the low alarm and low warnings are

enabled (only CONFIG_ALM_L_ENABLE and CONFIG_WRN_L_ENABLE are set to true).

(22) This is the mechanism by which data is stored and passed to the standard modules,

each instance of the standard modules is given static (or dynamic) data in the same

data block, but from a different variable within that data block, here the first instance

uses the variable FT001 and the second instance LT001.

118-268 Doc: PS2001-5-2101-001 Rev: R02.00

(23) This can be seen with the dynamic data too:

Figure 6.7 FT001 dynamic data block UDT structure

Doc: PS2001-5-2101-001 Rev: R02.00 119-268

(24) Compared with LT001:

Figure 6.8 LT001 dynamic data block UDT structure

120-268 Doc: PS2001-5-2101-001 Rev: R02.00

6.3.1 Data block and UDT naming conventions

(1) The following rules apply to naming variables within static data blocks and static

UDTs:

1 The name must be written in uppercase

2 The name must be no more than 21 characters

3 Only use the characters [A-Z], the numbers [0-9] and the under-

score character [_]

4 The underscore character should be used in place of a space to

separate words

5 All elements must have a comment in the block interface to ex-

plain the function and usage of the element.

(2) The following rules apply to naming variables within dynamic data blocks and static

UDTs:

1 The name must be written in camel case (unless it is an equipment

tag, in which case it will be in the case dictated by the tag)

2 The name must be no more than 25 characters

3 Only use the characters [a-z], [A-Z], the numbers [0-9] and the

underscore character [_]

4 All elements must have a comment in the block interface to ex-

plain the function and usage of the element.

Doc: PS2001-5-2101-001 Rev: R02.00 121-268

6.3.2 DBs holding recipe data

(1) Under certain (very limited) circumstances, the data in a static DB can be overwritten.

These circumstances arise when some form of recipe handling is being performed.

(2) Recipes consist of preconfigured data sets that are selected by the operator and then

loaded into the Controller (via some external device such as a SCADA or HMI). Such

recipe data sets are permitted to overwrite (overload) a static DB (essentially the static

DB is being selected for a particular set of production requirements).

(3) Once a recipe has overloaded a static DB, the data in that DB is then fixed (and will

not be overwritten) until the operator selects a different recipe.

(4) Data blocks that hold recipe data, and are under the control of a recipe, are given the

class Rc_ (rather than St_), the individual elements within the DB will retain the prop-

erties specified for static DBs in § 6.3.1 (i.e. all uppercase &c.).

122-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 123-268

7. Application modules

7 Application modules

(1) The complete OB 1 PAL structure is shown in Figure 7.1. This shows application

block calls to the thirteen functional groups (this includes the 11 functional groups

listed in Figure 5.1, plus two debug groups: a start of cycle debug and end of cycle

debug — debug functional groups are discussed in § 8.13).

(2) All of these functional groups with the exception of the system functions

(FC21000_AppSys) are optional (the requirements for these applications depends en-

tirely on the purpose of the Controller); most Controllers will have a subset of these

functional groups.

(3) Application modules are always installed in functions (FC) within the Controller and

do not, under any circumstances, use parametric assignments (unlike standard mod-

ules, application blocks have no parameters associated with them).

Figure 7.1 Complete OB 1 PAL structure

124-268 Doc: PS2001-5-2101-001 Rev: R02.00

7.1 Coordinating application modules

(1) The application blocks shown in Figure 7.1 are categorised as coordinating application

blocks, and these are used to coordinate all the block calls within that particular func-

tion group.

(2) Coordinating blocks are always functions (FCs) and the last three digits of the block

number are always zero; i.e. FCgg000 where gg reflects the functional group listed in

Table 5.1.Each coordinating application block can directly call the standard modules

that are associated with that functional group, or can call marshalling application mod-

ules that further subdivide the functional groups into logical areas, this can be seen in.

Figure 7.2

(3) Figure 7.2 shows a coordinating application module (FC21000_AppSys) calling two

standard modules: FC01001_StdSysGlobalData (used to generates the global timing

and logic signals) and FC01101_StdSysTimeSync (used to synchronise the Control-

ler’s internal real time clock).

Figure 7.2 Coordinating applications calling standard modules

(4) Coordinating modules may contain simple signal conditioning programming instruc-

tions that are directly associated with the standard modules being called from within

the module.

Doc: PS2001-5-2101-001 Rev: R02.00 125-268

7.2 Marshalling application modules

(1) Figure 7.3 shows a coordinating application module calling two marshalling modules

that subdivide the coordinating application modules into logical groupings within the

functional group.

(2) In Figure 7.3 the coordinating application module (FC22000_AppInst) calls two mar-

shalling application modules in turn, firstly: FC22001_AppInstAnalogRead and sec-

ondly FC22501_AppInstDigitalRead.

(3) Each of these marshalling blocks then call the standard modules associated with sub-

division of the functional group, in this instance, FC22001_AppInstAnalogRead re-

peatedly calls the standard module FC02001_StdInstAnalogRead (called repeat-

edly, once for each analogue instrument, to scale and monitor each instrument).

(4) FC22501_AppInstDigitalRead repeatedly calls the standard module

FC02501_StdInstDigitalRead (again, called repeatedly, once for each digital in-

strument, to filter and monitor each instrument).

(5) Marshalling modules may contain simple signal conditioning programming instruc-

tions that are directly associated with the standard modules being called from within

the module.

(6) As many marshalling blocks as required can be used, marshalling blocks have the fol-

lowing restrictions:

1 Marshalling blocks are always functions (FCs)

1 The last three digits of the marshalling block number must not be

000, this is reserved for coordinating application modules

126-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 7.3 Coordinating applications, marshalling applications and standard modules

Doc: PS2001-5-2101-001 Rev: R02.00 127-268

7.3 Programmed application modules

(1) There is a third type of application module: the programmed application module, these

are shown in Figure 7.4:

Figure 7.4 Programmed application modules

(2) Programmed application modules contain extensive programming statements, rather

than the configuration exercises used when calling standard modules.

(3) A programmed application module contains software that is specific to the purpose of

the Controller in question, such modules will contain logical statements (rather than

128-268 Doc: PS2001-5-2101-001 Rev: R02.00

simply calling a standard module and providing it with parameters applicable to the

device in question).

(4) For example, in Figure 7.4, the coordinating application module FC23000_AppIlock

calls two programmed application modules (FC23001_AppIlockAreaA and

FC23002_AppIlockAreaB), both these modules will contain project specific software

that analyses the instrument readings (see Figure 7.3) and device states to determine

what interlock conditions exist for devices in a particular plant area (Area A and Area

B). The logic contained within these programmed application modules is entirely de-

pendent on the requirements of the Controller application and it will be written entirely

for that application, there will be no pre-determined format for the software (it will

essentially be written from scratch).

(5) It is permissible for programmed applications to use standard modules (see

FC24001_AppSafeAreaA of Figure 7.4) wherever required. The standard modules

used must be either subroutine modules (see § 8.12) or be standard modules associated

with the same functional group as the programmed application module.

(6) As many programmed blocks as required can be used, with the following restrictions:

1 Programmed application blocks are always functions (FCs)

2 The last three digits of the programmed block number must not

be 000, this is reserved for coordinating application modules

Doc: PS2001-5-2101-001 Rev: R02.00 129-268

7.4 A summary of application module types

NAME AND SYMBOL BLOCK DESCRIPTION

Coordinating Application modules

FC

Coordinating modules call either marshalling blocks

or directly call standard modules

Coordinating blocks are limited to signal conditioning

and minor logic expressions associated with the

standard modules

Marshalling Application modules

FC

Marshalling modules directly call standard modules

marshalling blocks are limited to signal conditioning

and minor logic expressions associated with the

standard modules

Programmed Application modules

FC

Programmed modules contain extended

programming instructions and may call standard

modules if required

Table 7.1 Application module categories

130-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 131-268

8. Standard module library

8 Standard module library

(1) The standard modules associated with the PAL software are broken down in to func-

tional groups (see § 5.1), these are summarised below:

STANDARD MODULE
NUMBER FUNCTION GROUP

01ppp System functions

02ppp Read instruments

03ppp Interlock & protection

04ppp Safety systems

05ppp Calculations & mathematics

07ppp Sequential control

09ppp Reserved

10ppp Device drivers (Control loops)

11ppp Device drivers (Valves)

12ppp Device drivers (Drives)

16ppp Message handling

17ppp Communication handling

18ppp (subroutines)

19ppp Debug (end of cycle)

Table 8.1 Standard module functional groups

(2) The following sections list by function group, all the standard modules that are part of

the PAL software.

(3) Each entry gives a brief overview of the purpose of the module and the functions avail-

able to it. The Software Design Specification [Ref. 006] contains further information

and each standard module has its own Software module Design Specification (SMDS)

[Ref. 008] that give full details of the module and all associated data structure (UDTs)

and data blocks.

(4) Standard blocks are self-contained units of software, they do not use subroutines, they

may however use the built-in system blocks. Certain standard modules are associated

with or work in partnership with other standard modules (certain communication

mechanisms require both a send and receive module and the sequence modules have

more than one component).

132-268 Doc: PS2001-5-2101-001 Rev: R02.00

8.1 System function modules

TITLE Standard system global data

BLOCK FC 01001 FC01001_StdSysGlobalData

DESCRIPTION Generates the internal logic and timing signals needed by all the other PAL software

modules.

The block identifies the first cycle after start-up, and determines the last, maximum and

minimum cycle times.

The block converts the Controller real time clock value to discrete integers, making the

data globally available to all systems including non-Siemens equipment.

This block is a compulsory block within the PAL and must be called at the

start of OB 1.

TITLE Standard system time synchronisation (singe master server)

BLOCK FC 01101 FC01101_StdSysMonoTimeSync

DESCRIPTION Updates the Controller real time clock with a single (master) server.

Updates take place either daily or hourly (selectable) and can be set to automatically

update if a (configurable) time difference exists between the server and the CPU.

TITLE Standard system time synchronisation (dual master/slave servers)

BLOCK FC 01102 FC01102_StdSysDualTimeSync

DESCRIPTION Updates the CPU time with master/slave server pair.

Updates take place either daily or hourly (selectable) and can be set to automatically

update if a (configurable) time difference exists between the master server and the

CPU.

Should the master server fail, synchronisation will automatically switch to the slave

server.

Doc: PS2001-5-2101-001 Rev: R02.00 133-268

8.2 Instrument read modules

TITLE Standard analogue instrument read, scale and monitor

BLOCK FC 02001 FC02001_StdInstAnalogRead

DESCRIPTION This block reads and scales an analogue instrument signal received via an analogue input

card. The resultant scaled value is a real (floating point) number that matches the

calibrated range of the instrument in engineering units.

The block has the facility to generate up to two alarms and two warnings whenever the

signal is beyond a specific setpoint value (either above or below); the four signals are:

1 Alarm high

2 Warning high

3 Warning low

4 Alarm low

All signals can be time filtered and have associated hysteresis.

Generates out-of-range fault signals if the instruments is outside its normal calibrated

range and also generate an optional external fault signal from a hardwired fault input

from the instrument itself.

The block offers simulation facilities to allow the operator to override the signal.

TITLE Standard real value instrument read and monitor

BLOCK FC 02011 FC02011_StdInstRealValRead

DESCRIPTION This block reads an analogue instrument signal received as real (floating point) value

(usually from a ProfiBus or Profinet enabled instrument).

The received value can be rescaled by the block allowing the signal to be converted to

different measurement units, the resultant value is a real (floating point) number.

The block has the facility to generate up to two alarms and two warnings whenever the

signal is beyond a specific setpoint value (either above or below); the four signals are:

1 Alarm high

2 Warning high

3 Warning low

4 Alarm low

All signals can be time filtered and have associated hysteresis.

Generates out-of-range fault signals if the instruments is outside its normal calibrated

range and also generate an optional external fault signal from a hardwired fault input

from the instrument itself.

The block offers simulation facilities to allow the operator to override the signal.

134-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard instrument threshold detection

BLOCK FC 02101 FC02101_StdInstRealLimit

DESCRIPTION The block has the facility to generate a limit (threshold) signal whenever the signal is

beyond a specific setpoint value (configurable to be either above or below); the signal is:

Limit active

The limit signal can be time filtered and has associated hysteresis.

TITLE Standard digital instrument read and monitor

BLOCK FC 02501 FC02501_StdInstDigitalRead

DESCRIPTION Reads and controls the operation of a digital instrument signal, the instrument can be

active high or low (configurable) and time filtering is provided on both the activation

edge (signal must be active for a specified time) and on the deactivation edge (signal

remains active for a specified time).

The block offers simulation facilities to allow the operator to override the signal.

TITLE Standard digital filter

BLOCK FC 02601 FC02601_StdInstDigitalFilt

DESCRIPTION Provides digital signal filtering for any digital signal, the signal can be active high or low

(configurable) and time filtering is provided on both the activation edge (signal must be

active for a specified time) and on the deactivation edge (signal remains active for a

specified time).

Doc: PS2001-5-2101-001 Rev: R02.00 135-268

8.3 Interlock and protection modules

(1) Interlock handling modules provided the following types of interlock:

1 Interlock: a simple interlock that is active whenever a set of con-

ditions is true, it will force any associated devices to a safe state

2 Permissive: takes no action if a device is in a non-safe state, but

once the device is in a safe state will prevent a transition to a non-

safe state (i.e. will not force a valve to close, but once it is closed,

will prevent it from re-opening)

3 Trip: a latching interlock, it activates whenever a set of events are

true (like an interlock), but will not deactivate until the triggering

conditions are removed and a reset signal has been given (effec-

tively a latching interlock), it will force any associated devices to

a safe state

(2) The modules here are effectively configurable AND or OR gate structures that can com-

bine either 2, 4 or 8 discrete signals into a single interlock, permissive or trip condition.

(3) The modules are used in place of the standard AND or OR logic instruction available to

the Controller and provide individual indication for supervisor systems to highlight the

active path or paths through the modules.

(4) The permissive modules also monitor the state of the affected device to determine

whether the device is currently in a permitted non-safe state &c.

(5) The trip modules are latching modules that need a reset signal to remove the interlock

once the triggering conditions have cleared.

136-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard interlock 2 signal interlock with status reporting

BLOCK FC 03002 FC03002_StdILock02

DESCRIPTION This block monitors up to two discrete signals to determine if an interlock condition

exists.

The block is configurable as OR (interlock active if any signal is active) or AND (interlock

active when all signals are active). The interlock condition is automatically deactivated

when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any interlock, the block can be combined with other

blocks in this series to produce more complex interlock arrangements.

TITLE Standard interlock 4 signal interlock with status reporting

BLOCK FC 03004 FC03004_StdILock04

DESCRIPTION This block monitors up to four discrete signals to determine if an interlock condition

exists.

The block is configurable as OR (interlock active if any signal is active) or AND (interlock

active when all signals are active). The interlock condition is automatically deactivated

when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any interlock, the block can be combined with other

blocks in this series to produce more complex interlock arrangements.

TITLE Standard interlock 8 signal interlock with status reporting

BLOCK FC 03008 FC03008_StdILock08

DESCRIPTION This block monitors up to eight discrete signals to determine if an interlock condition

exists.

The block is configurable as OR (interlock active if any signal is active) or AND (interlock

active when all signals are active). The interlock condition is automatically deactivated

when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any interlock, the block can be combined with other

blocks in this series to produce more complex interlock arrangements.

Doc: PS2001-5-2101-001 Rev: R02.00 137-268

TITLE Standard interlock 2 signal permissive interlock with status reporting

BLOCK FC 03102 FC03102_StdILockPerm02

DESCRIPTION This block monitors up to two discrete signals to determine if a permissive interlock

condition exists. The block also monitors the affected device to determine whether the

device is currently in a permitted non-safe state.

The block is configurable as OR (permissive active if any signal is active) or AND

(permissive active when all signals are active). The permissive condition is automatically

deactivated when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any permissive, the block can be combined with other

blocks in this series to produce more complex interlock arrangements.

TITLE Standard interlock 4 signal permissive interlock with status reporting

BLOCK FC 03104 FC03104_StdILockPerm04

DESCRIPTION This block monitors up to four discrete signals to determine if a permissive interlock

condition exists. The block also monitors the affected device to determine whether the

device is currently in a permitted non-safe state.

The block is configurable as OR (permissive active if any signal is active) or AND

(permissive active when all signals are active). The permissive condition is automatically

deactivated when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any permissive, the block can be combined with other

blocks in this series to produce more complex interlock arrangements.

TITLE Standard interlock 8 signal permissive interlock with status reporting

BLOCK FC 03108 FC03108_StdILockPerm08

DESCRIPTION This block monitors up to eight discrete signals to determine if a permissive interlock

condition exists. The block also monitors the affected device to determine whether the

device is currently in a permitted non-safe state.

The block is configurable as OR (permissive active if any signal is active) or AND

(permissive active when all signals are active). The permissive condition is automatically

deactivated when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any permissive, the block can be combined with other

blocks in this series to produce more complex interlock arrangements.

138-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard interlock 2 signal trip interlock with status reporting

BLOCK FC 03202 FC03202_StdILockTrip02

DESCRIPTION This block monitors up to two discrete signals to determine if a trip interlock condition

exists.

The block is configurable as OR (trip active if any signal is active) or AND (trip active

when all signals are active). The trip condition is not automatically deactivated when

triggering conditions are no longer present, a reset signal must be supplied to actively

clear the interlock once the activation conditions are removed.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any trip, the block can be combined with other blocks

in this series to produce more complex interlock arrangements.

TITLE Standard interlock 4 signal trip interlock with status reporting

BLOCK FC 03204 FC03204_StdILockTrip04

DESCRIPTION This block monitors up to four discrete signals to determine if a trip interlock condition

exists.

The block is configurable as OR (trip active if any signal is active) or AND (trip active

when all signals are active). The trip condition is not automatically deactivated when

triggering conditions are no longer present, a reset signal must be supplied to actively

clear the interlock once the activation conditions are removed.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any trip, the block can be combined with other blocks

in this series to produce more complex interlock arrangements.

TITLE Standard interlock 8 signal trip interlock with status reporting

BLOCK FC 03208 FC03208_StdILockTrip08

DESCRIPTION This block monitors up to eight discrete signals to determine if a trip interlock

condition exists.

The block is configurable as OR (trip active if any signal is active) or AND (trip active

when all signals are active). The trip condition is not automatically deactivated when

triggering conditions are no longer present, a reset signal must be supplied to actively

clear the interlock once the activation conditions are removed.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any trip, the block can be combined with other blocks

in this series to produce more complex interlock arrangements.

TITLE Standard interlock message signal generation

BLOCK FC 03501 FC03501_StdILockMsgGen

DESCRIPTION This block generates a specific message when linked to any of the previous interlock

modules.

The message can be configured as an alarm, a warning or an event.

Doc: PS2001-5-2101-001 Rev: R02.00 139-268

8.4 Safety and safety system modules

(1) Safety modules group various emergency stop signals into zones that, if active, remove

power from specific devices.

(2) The safety systems operate at a hardwired level (the power is physically removed from

the devices, rather than by any software within the Controller).

(3) The purpose of the safety system modules is to ensure that the state of an affected

device will match the hardwired state of the device (for example, if the system requires

a drive to run for normal process reasons, but the safety system has physically removed

power from the drive, the safety system module detects this and stops the drive within

the software, following the true state imposed upon the drive).

(4) The safety modules provided the following types of zone control:

1 E-stop group: a simple group that is active whenever an emer-

gency stop signal is detected within the group, it will force any

associated devices to a safe state

2 E-stop trip group: a latching group, it activates whenever an

emergency stop signal is detected within the group, but will not

deactivate until the triggering conditions are removed and a reset

signal has been given, it will force any associated devices to a safe

state

(5) The modules here are always OR gate structures that can combine either 2, 4 or 8 dis-

crete signals into a single emergency stop group.

(6) The modules provide individual indication for supervisor systems to highlight the ac-

tive path or paths through the e-stop groupings.

140-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard safety 2 signal E-stop zone group with status reporting

BLOCK FC 04002 FC04002_StdSafeZoneNorm02

DESCRIPTION This block monitors up to two discrete signals to determine if an emergency stop

condition exists. Activation of either signal will cause the group emergency stop to

activate

The group is automatically deactivated when triggering conditions are no longer

present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any E-stop signal, the block can be combined with

other blocks in this series to produce more complex group arrangements.

TITLE Standard safety 4 signal E-stop zone group with status reporting

BLOCK FC 04004 FC04004_StdSafeZoneNorm04

DESCRIPTION This block monitors up to four discrete signals to determine if an emergency stop

condition exists. Activation of any signal will cause the group emergency stop to

activate

The group is automatically deactivated when triggering conditions are no longer

present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any E-stop signal, the block can be combined with

other blocks in this series to produce more complex group arrangements.

TITLE Standard safety 8 signal E-stop zone group with status reporting

BLOCK FC 04008 FC04008_StdSafeZoneNorm08

DESCRIPTION This block monitors up to eight discrete signals to determine if an emergency stop

condition exists. Activation of any signal will cause the group emergency stop to

activate

The group is automatically deactivated when triggering conditions are no longer

present.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any E-stop signal, the block can be combined with

other blocks in this series to produce more complex group arrangements.

Doc: PS2001-5-2101-001 Rev: R02.00 141-268

TITLE Standard safety 2 signal E-stop latching zone group with status reporting

BLOCK FC 04202 FC04202_StdSafeZoneTrip02

DESCRIPTION This block monitors up to two discrete signals to determine if an emergency stop

condition exists. Activation of either signal will cause the group emergency stop to

activate

The group is not automatically deactivated when the triggering conditions are no longer

present, a reset signal must be supplied to actively reset the group once the activation

conditions are removed.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any E-stop signal, the block can be combined with

other blocks in this series to produce more complex group arrangements.

TITLE Standard safety 4 signal E-stop latching zone group with status reporting

BLOCK FC 04204 FC04202_StdSafeZoneTrip04

DESCRIPTION This block monitors up to four discrete signals to determine if an emergency stop

condition exists. Activation of any signal will cause the group emergency stop to

activate

The group is not automatically deactivated when the triggering conditions are no longer

present, a reset signal must be supplied to actively reset the group once the activation

conditions are removed.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any E-stop signal, the block can be combined with

other blocks in this series to produce more complex group arrangements.

TITLE Standard safety 8 signal E-stop latching zone group with status reporting

BLOCK FC 04208 FC04208_StdSafeZoneTrip08

DESCRIPTION This block monitors up to eight discrete signals to determine if an emergency stop

condition exists. Activation of any signal will cause the group emergency stop to

activate

The group is not automatically deactivated when the triggering conditions are no longer

present, a reset signal must be supplied to actively reset the group once the activation

conditions are removed.

Common format status signals are provided to allow supervisory system to determine

and display the state and cause of any E-stop signal, the block can be combined with

other blocks in this series to produce more complex group arrangements.

TITLE Standard safety message signal generation

BLOCK FC 04501 FC04501_StdSafeMsgGen

DESCRIPTION This block generates a specific message when linked to any of the previous E-stop zone

modules.

The message can be configured as an alarm, a warning or an event.

142-268 Doc: PS2001-5-2101-001 Rev: R02.00

8.5 Calculations and mathematics modules

TITLE Standard calculation — simple average

BLOCK FC 05001 FC05001_StdCalcAvg

DESCRIPTION Calculates the average value of a set of n real numbers stored within a data block. The

set can be of any size up to the maximum capacity of a data block.

𝐴𝑣𝑔 =
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

𝑛

TITLE Standard calculation — rolling average

BLOCK FC 05002 FC05002_StdCalcAvgRolling

DESCRIPTION Calculates an unweighted rolling average of a specified number of real samples (n). The

samples will be taken at specified intervals and stored in a data block, when more than n

samples have been taken, the oldest sample will be removed from the bottom of the list

and a new sample added at the top.

The average (mean) is calculated for the current number of samples in the list

𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝐴𝑣𝑔 =
𝑥𝑐𝑢𝑟𝑟 + 𝑥𝑐𝑢𝑟𝑟−1 + ⋯ + 𝑥𝑐𝑢𝑟𝑟−(𝑛−1)

𝑛

TITLE Standard calculation — cumulative average

BLOCK FC 05003 FC05003_StdCalcAvgCumulate

DESCRIPTION Calculates an unweighted cumulative average of a continuing stream of real values.

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝐴𝑣𝑔𝑛 =
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

𝑛

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝐴𝑣𝑔𝑛+1 =
𝑥𝑛+1 + 𝑛(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝐴𝑣𝑔𝑛)

𝑛 + 1

The cumulative average can be restarted by triggering a reset signal.

TITLE Standard calculation — weighted rolling average

BLOCK FC 05004 FC05004_StdCalcAvgWeighted

DESCRIPTION Calculates a weighted rolling average of a specified number of real samples (n). The

samples will be taken at specified intervals and stored in a data block, when more than n

samples have been taken, the oldest sample will be removed from the bottom of the list

and a new sample added at the top.

The weighted average gives more emphasis to the most recent samples in the list

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑔 =
𝑛𝑥𝑛 + (𝑛 − 1)𝑥𝑛−1 + ⋯ + 2𝑥2 + 𝑥1

𝑛 + (𝑛 − 1) + ⋯ + 2 + 1

Doc: PS2001-5-2101-001 Rev: R02.00 143-268

TITLE Standard calculation — exponential rolling average

BLOCK FC 05005 FC05005_StdCalcAvgExp

DESCRIPTION Calculates an exponential moving average of a specified number of real samples (n). The

samples will be taken at specified intervals and stored in a data block, when more than n

samples have been taken, the oldest sample will be removed from the bottom of the list

and a new sample added at the top.

The exponential moving average will return the same value as the rolling average until n

samples have been taken, after this point the n + 1 sample will give a true exponential

moving average.

The exponential rolling average is calculated as:

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝐴𝑣𝑔𝑛+1 =
2

𝑛 + 1
(𝑥𝑛+1 − 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝐴𝑣𝑔𝑛) + 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝐴𝑣𝑔𝑛

Where:
2

𝑛+1
 is the standard smoothing coefficient.

TITLE Standard calculation — rate-of-change

BLOCK FC 05101 FC05101_StdCalcDiffRoC

DESCRIPTION Calculates the rate-of-change of a value over a given time period:

𝑅𝑎𝑡𝑒𝑂𝑓𝐶ℎ𝑎𝑛𝑔𝑒𝑛 =
𝑥𝑛 − 𝑥𝑛−1

𝑡𝑛 − 𝑡𝑛−1
=

𝑑𝑥𝑛

𝑑𝑡

TITLE Standard calculation — average rate-of-change

BLOCK FC 05102 FC05102_StdCalcDiffRoCAvg

DESCRIPTION Calculates an unweighted rolling average of a specified number of real samples (n) of a

rate-of-change value. The samples will be taken at specified intervals and the calculated

rate-of-change between values will be stored in a data block, when more than n samples

have been taken, the oldest sample will be removed from the bottom of the list and a

new sample added at the top.

The average (mean) is calculated for the current number of rate-of-change samples in

the list (the rate of change calculation is given in the previous module):

𝑅𝑎𝑡𝑒𝑂𝑓𝐶ℎ𝑎𝑛𝑔𝑒𝐴𝑣𝑔 =

𝑑𝑥𝑛
𝑑𝑡

+
𝑑𝑥𝑛−1

𝑑𝑡
+ ⋯ +

𝑑𝑥1
𝑑𝑡

𝑛

144-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard calculation — signal integration (area)

BLOCK FC 05201 FC05201_StdCalcIntArea

DESCRIPTION Continuously integrates a signal 𝑥(𝑡) relative to time:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑛 = ∫ 𝑥(𝑡)𝑑𝑡
𝑛𝑡

0

The integration uses piecewise linear intervals to calculate the current integral value, if

the time between samples is t, the integral value after n samples is:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑛 = 𝑡 (
𝑥𝑛 + 𝑥𝑛−1

2
) + 𝑡 (

𝑥𝑛−1 + 𝑥𝑛−2

2
) + ⋯ + 𝑡 (

𝑥1 + 𝑥0

2
)

The cumulative integral value for the next sample is thus:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑛+1 = 𝑡 (
𝑥𝑛+1 + 𝑥𝑛

2
) + 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑛

The integral value can be restarted by triggering a reset signal.

TITLE Standard calculation — convert a ranged value to a percentage

BLOCK FC 05301 FC05301_StdCalcValToPercent

DESCRIPTION Converts a real value (x) in the range 𝑥𝑚𝑖𝑛 to 𝑥𝑚𝑎𝑥 to a percentage value, using the

following formulae:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 100 (
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
)

TITLE Standard calculation — convert a percentage to a ranged value

BLOCK FC 05302 FC05302_StdCalcPercentToVal

DESCRIPTION Converts a percentage value (p) to a real value (x), x is in the range 𝑥𝑚𝑖𝑛 to 𝑥𝑚𝑎𝑥 , using

the following formulae:

𝑥 =
𝑝

100
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛

TITLE Standard calculation — convert a percentage to a variable mark/space square wave

BLOCK FC 05351 FC05351_StdCalcPercentToPulse

DESCRIPTION Converts a percentage value (p) to a square wave pulse train with a variable mark/space

ratio, the period of the square wave is a specified value (t). The mark/space ratio is

determined by the percentage value (p), a value of 33.3% would give a mark time of
𝑡

3

and a space time of
2𝑡

3
; the mark/space time calculations are given by:

𝑚𝑎𝑟𝑘𝑡𝑖𝑚 =
𝑝

100
𝑡

𝑠𝑝𝑎𝑐𝑒𝑡𝑖𝑚 = 𝑡 (1 −
𝑝

100
)

Doc: PS2001-5-2101-001 Rev: R02.00 145-268

TITLE Standard calculation — convert a percentage to a variable mark/space square wave

BLOCK FC 05352 FC05352_StdCalcPulseToPercent

DESCRIPTION Converts the mark/space ratio of a square wave pulse train to percentage value (p)

The period of the square wave (t) is automatically determined by the module.

The percentage value (p), is calculated as:

𝑃 = 100
𝑚𝑎𝑟𝑘𝑡𝑖𝑚

𝑡

The percentage value is calculated at on the rising edge of the square wave (i.e.

recalculated after each square wave period and is adjusted for variations in the square

wave period)

TITLE Standard calculation — convert a pulse train to an ON/OFF state

BLOCK FC 05361 FC05361_StdCalcPulseToState

DESCRIPTION If a square wave pulse train with a period shorter than a specified time (t) is present,

the block returns a TRUE.

If the pulse train period is longer than the time (t), the block returns a FALSE state; the

mark/space ratio of the signal is not relevant.

The block is typically use to detect rotation of a device and ensure it is above a

particular frequency.

TITLE Standard calculation — convert an ON/OFF state to a pulse train

BLOCK FC 05362 FC05362_StdCalcStateToPulse

DESCRIPTION If the monitored signal is TRUE, a square wave pulse train with a period (t) is generated

by the module.

If the monitored signal is FALSE, the square wave is stopped (set to zero).

TITLE Standard calculation — convert a square wave pulse train to a frequency

BLOCK FC 05363 FC05363_StdCalcPulseToFreq

DESCRIPTION Monitors a square wave pulse train and converts its period to a frequency value in both

Hertz and revolutions per minute

The period of the square wave (t) in seconds is automatically determined by the

module.

The frequency in Hz (f) is calculated as:

𝑓 =
1

𝑡

The revolutions per minute (RPM) is calculated as:

𝑅𝑃𝑀 =
60

𝑡

146-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard calculation — pulse generator 2 (dual) state

BLOCK FC 05502 FC05502_StdCalcPulseDual

DESCRIPTION Produces two repeating pulses of variable length. Each ON state will be active for a given

time period (this can be set to zero).

The sequence of Time1/State1, Time2/State2 will repeat continuously while the enable

signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the

pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current

state

TITLE Standard calculation — pulse generator 3 (tri) state

BLOCK FC 05503 FC05503_StdCalcPulseTri

DESCRIPTION Produces three repeating pulses of variable length. Each ON state will be active for a given

time period (this can be set to zero).

The sequence of Time1/State1, Time2/State2, Time3/State3 will repeat continuously while

the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the

pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current

state

TITLE Standard calculation — pulse generator 4 (quad) state

BLOCK FC 05504 FC05504_StdCalcPulseQuad

DESCRIPTION Produces four repeating pulses of variable length. Each ON state will be active for a given

time period (this can be set to zero).

The sequence of Time1/State1, Time2/State2 … Time4/State4 will repeat continuously

while the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the

pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current

state

Doc: PS2001-5-2101-001 Rev: R02.00 147-268

TITLE Standard calculation — pulse generator 8 (octa) state

BLOCK FC 05508 FC05508_StdCalcPulseOcta

DESCRIPTION Produces eight repeating pulses of variable length. Each ON state will be active for a given

time period (this can be set to zero).

The sequence of Time1/State1, Time2/State2 … Time8/State8 will repeat continuously

while the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the

pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current

state

TITLE Standard calculation — pulse generator 16 (hexa) state

BLOCK FC 05516 FC05516_StdCalcPulseHexa

DESCRIPTION Produces 16 repeating pulses of variable length. Each ON state will be active for a given

time period (this can be set to zero).

The sequence of Time1/State1, Time2/State2 … Time16/State16 will repeat continuously

while the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the

pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current

state

TITLE Standard calculation — waveform generator ramp function

BLOCK FC 05601 FC05601_StdCalcWaveRamp

DESCRIPTION Generates a single ramp waveform moving from start value to an end value over a

specified time period.

Triggering the function will cause a single ramp waveform to be produced, at the end of

which the module output will remain at the end value until reset or re-triggerd

TITLE Standard calculation — waveform generator continuous sawtooth wave function

BLOCK FC 05602 FC05602_StdCalcWaveSaw

DESCRIPTION Generates a continuous sawtooth waveform. The amplitude (a) of the waveform can be

specified, as can the period (t) and the offset (o) of the waveform:

148-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard calculation — waveform generator continuous triangular wave function

BLOCK FC 05603 FC05603_StdCalcWaveTri

DESCRIPTION Generates a continuous triangle waveform. The amplitude (a) of the waveform can be

specified, as can the period (t) and the offset (o) of the waveform:

TITLE Standard calculation — waveform generator continuous sine wave function

BLOCK FC 05604 FC05604_StdCalcWaveSin

DESCRIPTION Generates a continuous sine waveform. The amplitude (a) of the waveform can be

specified, as can the period (t) and the offset (o) of the waveform. The phase of the wave

(p) can also be adjusted:

TITLE Standard calculation — waveform generator continuous cosine wave function

BLOCK FC 05605 FC05605_StdCalcWaveCos

DESCRIPTION Generates a continuous cosine waveform. The amplitude (a) of the waveform can be

specified, as can the period (t) and the offset (o) of the waveform. The phase of the wave

(p) can also be adjusted:

The cosine waveform is identical to the sine wave form with a phase offset of 90°.

Doc: PS2001-5-2101-001 Rev: R02.00 149-268

TITLE Standard calculation — waveform generator continuous square wave function

BLOCK FC 05606 FC05605_StdCalcWaveSquare

DESCRIPTION Generates a continuous square waveform. The amplitude (a) of the waveform can be

specified, as can the period (t) and the offset (o) of the waveform. The mark (m)/space (s)

ratio can be adjusted and the onset can be delayed by a phase time (p):

150-268 Doc: PS2001-5-2101-001 Rev: R02.00

8.6 Sequential control

(1) Sequential control has its own section (section 9) that covers in detail the modules

listed here, the following is a summary of the standard sequence modules available

within the PAL.

TITLE Standard sequence — IEC compliant sequence manager (controller)

BLOCK FC 07001 FC07001_StdSeqIEC_Control

DESCRIPTION Sequence management module, it ensures that a sequence progresses correctly through

the operating state logic applied to it (see § 9).

Each sequence has a single FC07001 module associated with it; this manages all the

commands that can be issued to the sequence, performs error checking within the

sequence and identifies the current state of the sequence

This module is IEC compliant (see § 9.3.1).

TITLE Standard sequence — IEC compliant sequence operating state logic (OSL)

BLOCK FC 07011 FC07011_StdSeqIEC_OSL

DESCRIPTION Identifies the current operating state of a given sequence (see § 9).

The operating state is the determined by the operating state logic diagram and is identified

by the numeric range of the current sequence step (see § 9.1).

This module is IEC compliant (see § 9.3.1).

TITLE Standard sequence — IEC compliant sequence step/transition manager

BLOCK FC 07021 FC07021_StdSeqIEC_Step

DESCRIPTION Controls the phased operation of a single step within a sequence, each step has its own

instance of this module.

The module handles the transition from one step to another (up to eight different

transitions are possible) and handles the three phases within a step:

• Initialising

• Processing

• Terminating

The module manages step delay timers (specifying the minimum time within a step) and

step duration timers (measures how long the step has been active)

This module is IEC compliant, in that the terminating phase of the current step overlaps

the initialising phase of the next step (see § 9.3.1).

Doc: PS2001-5-2101-001 Rev: R02.00 151-268

(2) The following modules are non-IEC compliant version of the previous modules, the

URS [Ref. 003] requires IEC compliant modules and these are provided above.

(3) The non-compliant versions below are provided to observe the more common practices

used widely within the PLC programming community. Section 9.3.2 explains this dis-

tinction in more detail.

TITLE Standard sequence — non-IEC compliant sequence manager (controller)

BLOCK FC 07501 FC07501_StdSeqNonIEC_Control

DESCRIPTION Sequence management module, it ensures that a sequence progresses correctly through

the operating state logic applied to it (see § 9.1).

Each sequence has a single FC07001 module associated with it; this manages all the

commands that can be issued to the sequence, performs error checking within the

sequence and identifies the current state of the sequence

This module is NOT IEC compliant (see § 9.3.2).

TITLE Standard sequence — non-IEC compliant sequence operating state logic (OSL)

BLOCK FC 07511 FC07511_ StdSeqNonIEC _OSL

DESCRIPTION Identifies the current operating state of a given sequence (see § 9).

The operating state is the determined by the operating state logic diagram and is identified

by the numeric range of the current sequence step (see § 9.1).

This module is NOT IEC compliant (see § 9.3.2).

TITLE Standard sequence — non-IEC compliant sequence step/transition manager

BLOCK FC 07521 FC07521_ StdSeqNonIEC _Step

DESCRIPTION Controls the phased operation of a single step within a sequence, each step has its own

instance of this module.

The module handles the transition from one step to another (up to eight different

transitions are possible) and handles the three phases within a step:

• Initialising

• Processing

• Terminating

The module manages step delay timers (specifying the minimum time within a step) and

step duration timers (measures how long the step has been active)

This module is NOT IEC compliant, in that the terminating phase of the current step

occurs before the initialising phase of the next step, the two are not coincident (see

§ 9.3.2).

152-268 Doc: PS2001-5-2101-001 Rev: R02.00

8.7 Device drivers — control loops

(1) Device drivers are split into multiple sections: control loops, valves and drives. This

section is exclusively associated with control loops.

TITLE Standard device driver — control loops — standard PID loop

BLOCK FC 10001 FC10001_StdDevPID_Standard

DESCRIPTION Implements a standard three term (PID) controller.

The module has three operating modes:

• Off (loop is disabled, the output is zero or minimum value)

• Setpoint (the output is automatically adjusted to maintain a process variable at

the specified setpoint)

• Fixed Output (the PID loop maintains a fixed output)

The loop can be switched between manual and automatic, in manual all data is provided by

the operator. In automatic, all data is provided by the Controller programme.

Switching between modes and between automatic and manual is bumpless.

The block supports the use of interlock signals, these will set the PID output to a

particular value

TITLE Standard device driver — control loops — standard PID loop with gain scheduling

BLOCK FC 10011 FC10011_StdDevPID_Sched

DESCRIPTION Implements a standard three term (PID) controller with gain scheduling.

The module allows for all three PID terms to be changed as the process moves through

different phases, the PID terms applied are dependent on the PID loop error signal (the

difference between the process value and the setpoint), up to 10 different sets of PID

terms can applied to different error signal ranges.

The module has three operating modes:

• Off (loop is disabled, the output is zero or minimum value)

• Setpoint (the output is automatically adjusted to maintain a process variable at

the specified setpoint)

• Fixed Output (the PID loop maintains a fixed output)

The loop can be switched between manual and automatic, in manual all data is provided by

the operator. In automatic, all data is provided by the Controller programme.

Switching between modes and between automatic and manual is bumpless.

The block supports the use of interlock signals, these will set the PID output to a

particular value

Doc: PS2001-5-2101-001 Rev: R02.00 153-268

TITLE Standard device driver — control loops — split range modifier

BLOCK FC 10021 FC10021_StdDevPID_Split

DESCRIPTION The split range module accepts a PID loop output signal and converts it into a separately

scaled signal that can be applied to a particular actuator

This module allows the output of a PID loop to be split into multiple sub-ranges and each

sub-range can be applied to a separate actuator. The sub-ranges can be mutually exclusive

or can overlap to meet the requirements of the process.

The loop can be switched between manual and automatic, in manual all data is provided by

the operator. In automatic, all data is provided by the Controller programme.

TITLE Standard device driver — control loops — polyline modifier

BLOCK FC 10022 FC10022_StdDevPID_Poly

DESCRIPTION The polyline module accepts a PID loop output signal and converts it into a piecewise

linear polyline:

The polyline has a minimum of two points and a maximum of 100 points.

The loop can be switched between manual and automatic, in manual all data is provided by

the operator. In automatic, all data is provided by the Controller programme.

154-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard device driver — control loops — external (stand-alone) controller

BLOCK FC 10022 FC10101_StdDevPID_External

DESCRIPTION Provides an interface to an external (stand-alone) PID controller.

The module supports automatic and manual modes.

The module monitors the external module for hardwired faults and for failure to achieve

setpoint within a specified period.

TITLE Standard device driver — control loops — look-up table

BLOCK FC 10501 FC10501_StdDevPID_LookUp

DESCRIPTION Provides a two-dimensional look-up table, that monitors two discrete values (X and Y)

and depending on the relative values, returns a third output value (OUT) from the look-up

table:

The table can accommodate a 100 × 100 grid

The loop can be switched between manual and automatic, in manual all data is provided by

the operator. In automatic, all data is provided by the Controller programme.

Doc: PS2001-5-2101-001 Rev: R02.00 155-268

8.8 Device drivers — Valves

TITLE Standard device driver — valves — isolating valve

BLOCK FC 11001 FC11001_StdDevValveIsol

DESCRIPTION This module controls the operation of either a normally closed or normally open isolating

valve configured with either open, closed, both open and closed or no position feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the valve limit switch signals to be overwritten and set to follow the

demand output.

The module can be configured for normally closed (energise to open) or normally open

(energise to close) valves.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Open

2 Failed to Close

3 Failed while Open

4 Failed while Closed

5 External Fault

Separate operation times for opening and closing can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Closed

• Closing

• Open

• Opening

• Fault

The module also generates status signals for the selected operating modes and conditions.

156-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard device driver — valves — 3-way valve

BLOCK FC 11011 FC11011_StdDevValve3Way

DESCRIPTION This module controls the operation of 3-way valve with a common open port (the action

of the valve switches the common port to one of the other two ports) configured with

either position feedback or no position feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the valve limit switch signals to be overwritten and set to follow the

demand output.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Energise

2 Failed to De-energise

3 Failed while Energised

4 Failed while De-energised

5 External Fault

Separate operation times for energising and de-energising can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• De-energised port open

• Deenergising

• Energised port open

• Energising

• Fault

The module also generates status signals for the selected operating modes and conditions.

Doc: PS2001-5-2101-001 Rev: R02.00 157-268

TITLE Standard device driver — valves — bistable isolating valve

BLOCK FC 11101 FC11101_StdDevValveBi

DESCRIPTION This module controls the operation of a bistable isolating valve configured with either

open, closed, both open and closed or no position feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the valve limit switch signals to be overwritten and set to follow the

demand position.

The module can be configured to either maintain the output when the valve reaches the

demanded position, or de-energise the outputs when position is reached.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Open

2 Failed to Close

3 Failed while Open

4 Failed while Closed

5 External Fault

Separate operation times for opening and closing can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Closed

• Closing

• Open

• Opening

• Fault

The module also generates status signals for the selected operating modes and conditions.

158-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard device driver — valves — modulating valve

BLOCK FC 11501 FC11501_StdDevValveMod

DESCRIPTION This module controls the operation of either a positive acting (opens with increasing

signal) or negative acting (closes with increasing signal) modulating valve optionally

configured with an analogue position confirmation and, additionally, with either none,

open, closed or both open and closed limit switch position feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the analogue position feedback and valve limit switch signals to be

overwritten and set to follow the demand position.

The valve can be configured as positive acting (0% output = fully closed, 100% output =

fully opened) or negative acting (0% output = fully opened, 100% output = fully closed)

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to achieve demanded position

2 External Fault

Separate operation times for opening and closing can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Closed

• Open (or partially open)

• Fault

• Actual/demanded position

The module also generates status signals for the selected operating modes and conditions.

Doc: PS2001-5-2101-001 Rev: R02.00 159-268

8.9 Device drivers — Drives

TITLE Standard device driver — drives — direct online

BLOCK FC 12001 FC12001_StdDevDriveDOL

DESCRIPTION This module controls the operation of a direct online drive configured either with or

without running feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Start

2 Failed to Stop

3 Failed while Running

4 Failed while Stopped

5 External Fault

Separate operation times for starting (ramp up) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Starting

• Running

• Stopping

• Fault

The module also generates status signals for the selected operating modes and conditions.

160-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard device driver — drives — direct online reversing

BLOCK FC 12011 FC12011_StdDevDriveDOLRev

DESCRIPTION This module controls the operation of a reversable direct online drive configured either

with or without running feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Run Forward

2 Failed to Run Reverse

3 Failed to Stop

4 Failed while Running Forwards

5 Failed while Running Reverse

6 Failed while Stopped

7 External Fault

Separate operation times for starting forwards (ramp up forward), starting reverse (ramp

up reverse) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Starting Forwards

• Starting Reverse

• Running Forwards

• Running Reverse

• Stopping Forwards

• Stopping Reverse

• Fault

The module also generates status signals for the selected operating modes and conditions.

Doc: PS2001-5-2101-001 Rev: R02.00 161-268

TITLE Standard device driver — drives — bistable

BLOCK FC 12101 FC12101_StdDevDriveBi

DESCRIPTION This module controls the operation of a bistable direct online drive configured either with

or without running feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand state.

The module can be configured to either maintain the drive outputs when the drive

achieves the required state, or de-energise the outputs when required state is achieved.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Start

2 Failed to Stop

3 Failed while Running

4 Failed while Stopped

5 External Fault

Separate operation times for starting (ramp up) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Starting

• Running

• Stopping

• Fault

The module also generates status signals for the selected operating modes and conditions.

162-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard device driver — drives — bistable reversing

BLOCK FC 12111 FC12111_StdDevDriveBiRev

DESCRIPTION This module controls the operation of a reversable, bistable, direct online drive

configured either with or without running feedback.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand state.

The module can be configured to either maintain the drive outputs when the drive

achieves the required state, or de-energise the outputs when required state is achieved.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Run Forward

2 Failed to Run Reverse

3 Failed to Stop

4 Failed while Running Forwards

5 Failed while Running Reverse

6 Failed while Stopped

7 External Fault

Separate operation times for starting forwards (ramp up forward), starting reverse (ramp

up reverse) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals, and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Starting Forwards

• Starting Reverse

• Running Forwards

• Running Reverse

• Stopping Forwards

• Stopping Reverse

• Fault

• Actual and demanded speed

The module also generates status signals for the selected operating modes and conditions

Doc: PS2001-5-2101-001 Rev: R02.00 163-268

TITLE Standard device driver — drives — variable speed

BLOCK FC 12501 FC12501_StdDevDriveVSD

DESCRIPTION This module controls the operation of a variable speed drive optionally configured with

analogue speed feedback, and positive running indication.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to achieve demanded speed

2 External Fault

Separate operation times for starting (ramp up) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Starting

• Running

• Stopping

• Fault

• Actual/demanded speed

The module also generates status signals for the selected operating modes and conditions.

164-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard device driver — drives — variable speed reversing

BLOCK FC 12511 FC12511_StdDevDriveVSDRev

DESCRIPTION This module controls the operation of a reversable, variable speed drive optionally

configured with analogue speed feedback, and positive running indication.

The reversing mode can be controllable via the analogue signal, or by digital signals to

select the direction.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to achieve demanded speed

2 External fault

Separate operation times for increasing and decreasing speed can be defined.

The drive module supports all forms of interlock, permissive and trip signals and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Running Forwards

• Running Reverse

• Fault

• Actual/demanded speed

The module also generates status signals for the selected operating modes and conditions.

Doc: PS2001-5-2101-001 Rev: R02.00 165-268

TITLE Standard device driver — drives — multiple speed

BLOCK FC 12601 FC12601_StdDevDriveMSD

DESCRIPTION This module controls the operation of a multiple speed drive, where multiple fixed speeds

are available and are selectable by digital signals. The module can be optionally configured

with speed feedback, and positive running indication.

The module supports up to 10 different speed selections.

The module supports automatic and manual control and can be configured with simulation

mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending

on the fault in question. The alarms within this block are:

1 Failed to Start

2 Failed to Stop

3 Failed while Running

4 Failed while Stopped

5 Failed to achieve demanded speed

6 External fault

Separate operation times for increasing and decreasing speed can be defined.

The drive module supports all forms of interlock, permissive and trip signals and

emergency stop signals. The module has the conditional facility to allow the operator to

bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

• Stopped

• Running

• Fault

• Selected speed

The module also generates status signals for the selected operating modes and conditions.

166-268 Doc: PS2001-5-2101-001 Rev: R02.00

8.10 Message handling

TITLE Standard message handler — analogue alarm

BLOCK FC 16001 FC16001_StdMsgAnalogAlm

DESCRIPTION The module compares an analogue value to a specified threshold setpoint; it has the

facility to generate an alarm whenever the signal is beyond the setpoint value (either

above or below).

The alarm signal can be time filtered and has associated hysteresis.

The alarm can be internally acknowledged (from within the Controller) or can rely on the

supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — analogue warning

BLOCK FC 16002 FC16002_StdMsgAnalogWrn

DESCRIPTION The module compares an analogue value to a specified threshold setpoint; it has the

facility to generate a warning whenever the signal is beyond the setpoint value (either

above or below).

The warning signal can be time filtered and has associated hysteresis.

The warning can be internally acknowledged (from within the Controller) or can rely on

the supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — analogue event

BLOCK FC 16003 FC16003_StdMsgAnalogEvent

DESCRIPTION The module compares an analogue value to a specified threshold setpoint; it has the

facility to generate an event whenever the signal is beyond the setpoint value (either

above or below).

The event signal can be time filtered and has associated hysteresis.

TITLE Standard message handler — digital alarm

BLOCK FC 16101 FC16101_StdMsgDigitalAlm

DESCRIPTION The module generate an alarm whenever the digital signal is active (signal can be active

high or active low).

The alarm signal can be time filtered.

The alarm can be internally acknowledged (from within the Controller) or can rely on the

supervisory system alarm handling acknowledgment facilities.

Doc: PS2001-5-2101-001 Rev: R02.00 167-268

TITLE Standard message handler — digital warning

BLOCK FC 16102 FC16102_StdMsgDigitalWrn

DESCRIPTION The module generates a warning whenever the digital signal is active (signal can be active

high or active low).

The warning signal can be time filtered.

The warning can be internally acknowledged (from within the Controller) or can rely on

the supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — digital event

BLOCK FC 16103 FC16103_StdMsgDigitalEvent

DESCRIPTION The module generates an event whenever the digital signal is active (signal can be active

high or active low).

The event signal can be time filtered.

TITLE Standard message handler — digital time-stamped alarm

BLOCK FC 16201 FC16201_StdMsgAlmTime

DESCRIPTION The module generates an alarm whenever the digital signal is active (signal can be active

high or active low). The time at which the alarm occurs is recorded (time-stamped), the

recorded time is extracted from the Controller real time clock and is accurate to the

millisecond. The block also records the signal deactivation time, the duration and the time

of acknowledgement.

The alarm can be internally acknowledged (from within the Controller) or can rely on the

supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — digital time-stamped warning

BLOCK FC 16202 FC16202_StdMsgWrnTime

DESCRIPTION The module generates a warning whenever the digital signal is active (signal can be active

high or active low). The time at which the warning occurs is recorded (time-stamped), the

recorded time is extracted from the Controller real time clock and is accurate to the

millisecond. The block also records the signal deactivation time, the duration and the time

of acknowledgement.

The warning can be internally acknowledged (from within the Controller) or can rely on

the supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — digital time-stamped event

BLOCK FC 16203 FC16203_StdMsgEventTime

DESCRIPTION The module generates an event whenever the digital signal is active (signal can be active

high or active low). The time at which the event occurs is recorded (time-stamped), the

recorded time is extracted from the Controller real time clock and is accurate to the

millisecond. The block also records the signal deactivation time and the duration.

168-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard message handler — prompt manager

BLOCK FC 16501 FC16501_StdMsgPrompMgr

DESCRIPTION Manages operator prompts (that appear on a supervisory system) on a first come, first

served basis (there is no queuing of prompts).

The prompt can be acknowledged by the operator (the acknowledgement being passed

back to the originating software module) or can be forcibly acknowledged by the

Controller software.

TITLE Standard message handler — prompt queue

BLOCK FC 16502 FC16502_StdMsgPrompQueue

DESCRIPTION Manages operator prompts (that appear on a supervisory system), by storing the prompts

in a queue. The queue can support different priority prompts (the prompt priority is a

number in the range 0 (low priority) to 99 (high priority), the priority is issued when the

prompt is raised); higher priority prompts take precedence over lower priority prompts.

The active prompt can be acknowledged by the operator (the acknowledgement being

passed back to the originating software module) or can be forcibly acknowledged by the

Controller software. Once a prompt has been acknowledged, the next prompt in the

queue becomes active.

Doc: PS2001-5-2101-001 Rev: R02.00 169-268

8.11 Communication handling

TITLE Standard communication handler — get data from a controller (small)

BLOCK FC 17001 FC17001_StdCommsGetSmall

DESCRIPTION Uses a single get instruction to read data from a partner controller via an Ethernet

network. This is the fastest mechanism for reading data, but the amount of data is

restricted:

For S7-1500 to S7-1500 a maximum of 880 bytes of data can be read.

If either Controller is an S7-1200 a maximum of 160 bytes of data can be read.

TITLE Standard communication handler — put data into a controller (small)

BLOCK FC 17002 FC17002_StdCommsPutSmall

DESCRIPTION Uses a single put instruction to write data to a partner controller via an Ethernet

network. This is the fastest mechanism for writing data, but the amount of data is

restricted:

For S7-1500 to S7-1500 a maximum of 880 bytes of data can be written.

If either Controller is an S7-1200 a maximum of 160 bytes of data can be written.

TITLE Standard communication handler — read data from a controller (65K of data)

BLOCK FC 17101 FC17101_StdCommsRead65K

DESCRIPTION Read module in a read/write partnership (in association with FC17102), used to transfer a

large amount of data between controllers via an Ethernet network. The maximum amount

of data that can be transferred is 65535 bytes and requires multiple Controller cycles to

complete (asynchronous operation).

This module cannot be used with S7-1200 Controllers.

TITLE Standard communication handler — write data to a controller (65K of data)

BLOCK FC 17102 FC17102_ StdCommsWrite65K

DESCRIPTION Write module in a read/write partnership (in association with FC17101), used to transfer

a large amount of data between controllers via an Ethernet network. The maximum

amount of data that can be transferred is 65535 bytes and requires multiple Controller

cycles to complete (asynchronous operation).

This module cannot be used with S7-1200 Controllers.

170-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard communication handler — dynamically configure Ethernet interface

BLOCK FC 17401 FC17401_ StdCommsSetIP

DESCRIPTION Used to dynamically configure or reconfigure an Ethernet or Profinet interface, the

module can change the following:

• IP address

• Subnet mask

• Router address

• Profinet device name (Profinet networks only)

TITLE Standard communication handler — read data via a point-to-point interface

BLOCK FC 17501 FC17501_StdCommsPtP_Rx

DESCRIPTION Read module in a read/write partnership (in association with FC17502), used to transfer

data between controllers via a point-to-point network (RS232/RS485 &c.).

Requires multiple Controller cycles to complete (asynchronous operation).

TITLE Standard communication handler — write data via a point-to-point interface

BLOCK FC 17502 FC17502_ StdCommsPtP_Tx

DESCRIPTION Write module in a read/write partnership (in association with FC17501), used to transfer

data between controllers via a point-to-point network (RS232/RS485 &c.).

Requires multiple Controller cycles to complete (asynchronous operation).

Doc: PS2001-5-2101-001 Rev: R02.00 171-268

8.12 Subroutines

(1) Subroutine modules are common modules that perform some specific function. Sub-

routine modules can be called from within any other block.

(2) Subroutines are simple modules the perform some function (convert a number to a

string for example) and are intended to provide commonly required utilities that are

often required in Controller programming.

(3) Subroutines can be called by any other software modules, as a generally rule, the PAL

standard modules do not use subroutines, simply for the reason that the standard mod-

ules should be stand-alone modules that do not require other modules to work.

TITLE Standard subroutines — scale an analogue input signal

BLOCK FC 18001 FC18001_StdSubScaleAI

DESCRIPTION This module reads and scales an analogue instrument signal received via an analogue input

card. The resultant scaled value is a real (floating point) number that matches the

calibrated range of the instrument in engineering units.

TITLE Standard subroutines — scale an analogue output signal

BLOCK FC 18002 FC18002_StdSubScaleAQ

DESCRIPTION This module takes a real number in a specified range and converts it to an integer value

suitable for writing to an analogue output card.

TITLE Standard subroutines — timer module (100 ms resolution)

BLOCK FC 18101 FC18101_StdSubTime100ms

DESCRIPTION This module is a countdown timer, counting down in 100 ms intervals.

The initial time and the elapsed time are specified in seconds as real numbers.

The timer is accurate for periods up to 27.78 hours (100,000 seconds).

The timer is accurate to within 100 ms.

TITLE Standard subroutines — timer module (1 s resolution)

BLOCK FC 18104 FC18104_StdSubTime1s

DESCRIPTION This module is a countdown timer, counting down in 1 s intervals.

The initial time and the elapsed time are specified in seconds as real numbers.

The timer is accurate for periods up to 11.5 days (1,000,000 seconds).

The timer should not be used to time events of less than 1 hour duration.

The timer is accurate to within 1 s.

172-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard subroutines — timer module, long duration timer

BLOCK FC 18111 FC18111_StdSubTimeLong

DESCRIPTION This module is a count-up timer that is capable of measuring long time durations with a

resolution of 1 ms.

The timer measures in integer units of days, hours, minutes, seconds and milliseconds.

The maximum value of the timer is 65535 days (approx. 179 years). The overall accuracy

of the timer is that of the internal clock of the CPU.

TITLE Standard subroutines — event duration timer (using the RTC)

BLOCK FC 18151 FC18151_StdSubTimeEventRTC

DESCRIPTION This module times the duration of an event to nanosecond resolution.

The block records the time the event started, the time the event ended and calculates the

duration of the event (end time minus the start time).

The start and end times are read from the real time clock of the Controller.

TITLE Standard subroutines — count up/down function

BLOCK FC 18201 FC18201_StdSubCounter

DESCRIPTION This module counts the number of rising edges detected on a signal.

The module can be configured for two signals, a rising edge on the first increments the

counter by a specified amount, a rising edge on the second decrements the counter by a

specified amount.

The count ranges positive and negative, the count is given as a real number.

The counter can be pre-loaded with a starting value and can be reset at any point.

TITLE Standard subroutines — string function — convert an integer to ASCII

BLOCK FC 18901 FC18901_StdSubStrIntToASC

DESCRIPTION Converts a decimal number stored in a double integer to an ASCII string. The number can

be in the range -2,147,483,648 to +2, 147,483,647, the number of characters can be

specified (the result will contain leading zeros where necessary).

The result can be shifted to include decimal places (the decimal will be encoded in the

string)

TITLE Standard subroutines — string function — convert a real to ASCII

BLOCK FC 18902 FC18902_StdSubStrRealToASC

DESCRIPTION Converts a real number to an ASCII string.

The string result will reflect the real value exactly, including any exponents.

Doc: PS2001-5-2101-001 Rev: R02.00 173-268

TITLE Standard subroutines — string function — convert a string to an integer value

BLOCK FC 18911 FC18911_StdSubStrASCtoInt

DESCRIPTION Converts a decimal number stored as a string to an integer value.

Non numeric characters are ignored (including any decimal point), a leading minus sign

will generate a negative number.

TITLE Standard subroutines — string function — convert a string to a real value

BLOCK FC 18912 FC18912_StdSubStrASCtoReal

DESCRIPTION Converts a decimal number stored as a string to a real value.

Non numeric characters are ignored, the decimal point and exponentials are supported; a

leading minus sign will generate a negative number.

TITLE Standard subroutines — string function — case conversion

BLOCK FC 18921 FC18921_StdSubStrCaseConv

DESCRIPTION Converts a string to upper case, lower case or sentence case.

TITLE Standard subroutines — string function — concatenate strings

BLOCK FC 18931 FC18931_StdSubStrConcat

DESCRIPTION Concatenates two strings.

TITLE Standard subroutines — string function — split a string

BLOCK FC 18932 FC18932_StdSubStrSplit

DESCRIPTION Splits a string into two strings at a particular character point.

TITLE Standard subroutines — string function — find a string within a string

BLOCK FC 18933 FC18933_StdSubStrFind

DESCRIPTION Finds the first occurrence of a string within another string, the starting point can be

specified.

174-268 Doc: PS2001-5-2101-001 Rev: R02.00

8.13 Debug subroutines

(1) Debug routines are generally used in the testing stages of software development, they

should not under any circumstances be present in deployed software.

(2) Debug subroutines are used in two separate locations:

• Start of cycle (SoC) debug, executed before any other software

(even FC01001StsSysGlobalData)

• End of scan (EoC) debug, called as the last entry in OB 1 and

executed after all other software

(3) The start of cycle debug is intended to allow IO signals to be manipulated, overwriting

any real IO data from the Controller IO card. The SoC debug also provides various

switch mechanism to allow various different aspects of the debug software to be acti-

vated or deactivated. Typically, these are:

• IO signal simulation

• Instrument simulation

• Device simulation

• Communication simulation

• Process simulation

• Sequence break point operation

(4) The end of cycle debug generally generates simulation signals, this can be limit switch

signals for a valve (allowing the valve to appear to operate correctly or to force fault

conditions), it can also include more complex simulations, even simulating process

operations (the heating of a vessel for example).

(5) The EoC debug is also responsible for setting sequence break point (stopping a se-

quence at a particular point to allow signal conditions to be assessed) or allowing “sin-

gle-step” operations of sequences.

Doc: PS2001-5-2101-001 Rev: R02.00 175-268

TITLE Standard debug subroutines — simulation — isolating valve

BLOCK FC 19001 FC19001_StdDebugValveIsol

DESCRIPTION Simulates the response of an isolating valve IO signals.

The simulation can be configured for a normally closed or normally open isolating valve,

with either opened, closed, or both opened and closed position feedback (simulation is

not required for valves with no position feedback).

The open and close times can be specified individually, each feedback signal can be

manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — bistable isolating valve

BLOCK FC 19002 FC19002_StdDebugValveBi

DESCRIPTION Simulates the response of a bistable isolating valve IO signals.

The simulation can be configured with either opened, closed, or both opened and closed

position feedback (simulation is not required for valves with no position feedback).

The open and close times can be specified individually, each feedback signal can be

manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — modulating valve

BLOCK FC 19003 FC19003_StdDebugValveMod

DESCRIPTION Simulates the response of a modulating valve IO signals.

The simulation can be configured for a positive acting or negative acting modulating valve,

the block will generate an analogue position feedback signal and opened, closed, or both

open and closed position feedback.

The open rate of change and close rate of change times can be specified individually, each

feedback signal can be manually changed to simulate fault conditions.

176-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard debug subroutines — simulation — drive DOL

BLOCK FC 19011 FC19011_StdDebugDriveDOL

DESCRIPTION Simulates the IO signal responses of a standard or reversing DOL drive.

The simulation can be configured to generate positive running feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can

be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — drive bistable

BLOCK FC 19012 FC19012_StdDebugDriveBi

DESCRIPTION Simulates the IO signal responses of a standard or reversing, bistable DOL drive.

The simulation can be configured to generate positive running feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can

be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — drive variable speed

BLOCK FC 19013 FC19013_StdDebugDriveVSD

DESCRIPTION Simulates the IO signal responses of a standard or reversing, variable speed drive.

The simulation can be configured to generate an analogue speed feedback and positive

running feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can

be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — drive multiple speed

BLOCK FC 19014 FC19014_StdDebugDriveMSD

DESCRIPTION Simulates the IO signal responses of a multiple speed drive.

The simulation can be configured to generate positive running feedback and selected

speed feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can

be manually changed to simulate fault conditions.

Doc: PS2001-5-2101-001 Rev: R02.00 177-268

TITLE Standard debug subroutines — simulation — instrument flow

BLOCK FC 19101 FC19101_StdDebugInstFlow

DESCRIPTION Simulates the response of a flow instrument to a change in the process configuration

(opening or closing a valve).

The flow range can be specified as can the response time. The module can simulate a

response to either a modulating valve (variable response) or an isolating valve (on/off

response).

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument level

BLOCK FC 19102 FC19102_StdDebugInstLevel

DESCRIPTION Simulates the response of a level instrument to a change in the process configuration.

The level range can be specified.

The module can simultaneously accommodate both a feed and a discharge arrangement

(feed increases the level; discharge reduces the level).

The rate of level change for both feed and discharge can be defined separately. The

module can simulate a response to either a modulating feed/discharge (variable response)

or a fixed feed/discharge (on/off response) or a combination of both.

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument temp

BLOCK FC 19103 FC19103_StdDebugInstTemp

DESCRIPTION Simulates the response of a temperature instrument to a change in the process

configuration.

The temperature range can be specified.

The module can simultaneously accommodate both a heating and cooling arrangement

(heating increases the temperature; cooling reduces the temperature).

The rate of temperature change for both heating and cooling can be defined separately.

The module can simulate a response to either a modulating heating/cooling (variable

response) or a fixed heating/cooling (on/off response) or a combination of both.

The generated signal can be manually changed to simulate fault conditions.

178-268 Doc: PS2001-5-2101-001 Rev: R02.00

TITLE Standard debug subroutines — simulation — instrument pressure

BLOCK FC 19104 FC19104_StdDebugInstPres

DESCRIPTION Simulates the response of a pressure instrument to a change in the process configuration.

The pressure range can be specified.

The module can simultaneously accommodate both a feed and a discharge arrangement

(feed increases the pressure; discharge reduces the pressure).

The rate of pressure change for both feed and discharge can be defined separately. The

module can simulate a response to either a modulating feed/discharge (variable response)

or a fixed feed/discharge (on/off response) or a combination of both.

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument 1st order response

BLOCK FC 19511 FC19151_StdDebugInst1Order

DESCRIPTION Simulates a first order process reaction in response to an input signal.

The range of both the input and output signals can be specified as can the gain and lag

constants.

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 ∙ 𝐺𝑎𝑖𝑛 ∙ (1 − 𝑒
−

𝑡
𝐿𝑎𝑔)

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument 2nd order response

BLOCK FC 19512 FC19152_StdDebugInst2Order

DESCRIPTION Simulates a second order process reaction in response to an input signal.

The range of both the input and output signals can be specified as can the gain and

damping constants.

The generated signal can be manually changed to simulate fault conditions.

Doc: PS2001-5-2101-001 Rev: R02.00 179-268

TITLE Standard debug subroutines — simulation — polyline response

BLOCK FC 19513 FC19153_StdDebugInstPoly

DESCRIPTION Simulates a piecewise linear polyline response to an input signal:

The polyline has a minimum of two points and a maximum of 100 points.

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — sequence breakpoint

BLOCK FC 19701 FC19701_StdDebugSeqBreak

DESCRIPTION Interrupts the normal sequence progression, and forces a sequence pause (breakpoint) at

each transition, allowing the sequence step/transition conditions to be examined and

debugged.

TITLE Standard debug subroutines — simulation — sequence breakpoint

BLOCK FC 19999 FC19999_StdDebugForceStop

DESCRIPTION Conditionally forces the CPU to a stop state.

180-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 181-268

9. Standard sequence ope ration

9 Standard sequence operation

(1) The standard sequence modules associated with the PAL software are designed to al-

low multiple, sequential operations to be configured and implemented within a Con-

troller.

(2) The sequences use a step and transition arrangement to control the progression of a

sequence.

9.1 Operating states and commands

(1) Sequential control within the PAL use a series of standard modules included with the

library these in turn are based upon the sequential function chart requirements of the

IEC 61131-3 standards [Ref. 012].

(2) Each sequence within the PAL operates by moving through a series of states that

broadly indicate what the sequences itself is doing (i.e. idle, starting, running, aborting

&c.).

(3) These states are referred to as the Operating State Logic (OSL) of the sequence; Figure

9.1 shows the full arrangement of Operating States available to the PAL sequences.

Note: It is not necessary for every sequence to use every state available to the OSL; most

sequences have a subset of the OSL depending on the functionality and complex-

ity of the sequence in question.

 It is true to say that all sequences must have at the very least: idle, starting, run-

ning, completing and completed states (even if these states are empty), these states

are necessary for the sequence to operate normally.

182-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 9.1 Sequential operating state logic (OSL)

Doc: PS2001-5-2101-001 Rev: R02.00 183-268

Figure 9.2 Operating state logic — key

(4) Each state of the sequence consists of various steps and transitions. The step performs

some action (opens a valve, start a drive &c.) and the transition consists of a series of

logical conditions that must be satisfied before the sequence can move to the next step.

(5) Each step within a sequence is given a unique number. The numbering ranges of the

steps indicate the OSL to which the step belongs:

 STEP NO. STATE (WITHIN THE OSL)

0 IDLE

01000-09999 STARTING

10000-19999 RUNNING

20000-28999 COMPLETING

29000 COMPLETED

30000-34999 HOLDING

35000 HELD

36000-39999 RESUMING

40000-44999 ERROR HOLDING

45000 ERROR HELD

46000-49999 ERROR RESUMING

50000-54999 STOPPING

55000 STOPPED

60000-64999 ABORTING

65000 ABORTED

 Table 9.1 OSL sequence step numbers

184-268 Doc: PS2001-5-2101-001 Rev: R02.00

(6) The step number is held in an unsigned integer, this spans the range 0 to 65,535.

(7) The dwell states are single points within the sequence, the sequence will remain in a

dwell state until it receives a command from an external source (external to the se-

quence itself); the IDLE state for example, is the state applicable to a non-active se-

quence (i.e. a sequence that is not currently running).

(8) The sequence will remain in the IDLE state (or any dwell state) until it receives a com-

mand (the Cmd_) of Figure 9.1. Such commands could be directly from the operator

(via a supervisory system) or from elsewhere within the software (for example, a back-

wash sequence might start at a particular time of day, or the sequence to empty at tank

may occur when the tank reaches a certain level).

9.1.1 Normal sequential operation

(1) The normal progression of a sequence would follow the flow paths shown in Figure

9.1. A sequence that is not running will be in the IDLE state and will wait in this con-

dition until it receives a start command (Cmd_Start). The start command causes the

sequence to activate and move to step 1000 (the first step of the STARTING state), the

STARTING state is used to setup the initial conditions for the sequence or to carry out

some preliminary actions prior to the main purpose of the sequence (for example per-

form a pressure test, run a sterilisation process, collect data from the operator &c.).

The STARTING state steps are numbered in the range 1000-9999 (i.e. there is a maxi-

mum of 9000 steps available to the state).

(2) It is perfectly possible for the STARTING state to be empty, in which case step 1000

will simply trigger the run command.

(3) When the STARTING state is complete, the sequence itself will automatically trigger

the Cmd_Run signal, at which point the sequence will advance to the RUNNING state at

step 10000. This is the sequence proper, and carries out the primary function of the

sequence.

(4) The RUNNING state is generally the largest section of the sequence and can accommo-

date up to10000 individual steps. A sequence will always have code within the

RUNNING state.

Doc: PS2001-5-2101-001 Rev: R02.00 185-268

(5) The RUNNING state automatically triggers the transition to the COMPLETING state by

triggering the Cmd_Complete signal, this forces the sequence to step 20000.

(6) The COMPLETING state is analogous to the STARTING state, it allows the sequence to

carry out various terminating (housekeeping) activities prior to the sequence ending

(this may be collecting data from the operator, recording final readings &c.).

(7) The final action of the COMPLETING state is to trigger the Cmd_Completed signal, this

forces the sequence to the COMPLETED dwell state at step 29000. The sequence will

now remain in this state, indicating that the sequence has run to completion and no

further actions will be taken.

(8) At this point, the sequence is effectively stopped and is once more inactive, the

COMPLETED dwell state informs any software monitoring the sequence that it has fin-

ished. The sequence returns to the IDLE state when the Cmd_RetIdle signal is issued.

(9) The sequence can be optionally configured to automatically trigger the Cmd_RetIdle

signal once the sequence is in the COMPLETED dwell state (this is a normal practice for

sequences that operate independently of other sequences or have little interaction with

other systems).

(10) Where sequences are used within other sequences (usually as part of a parallel arrange-

ment, see § 9.2.3) the COMPLETED dwell state is used to identify when all sections of

the parallel arrangement have completed.

9.1.2 Hold and error hold operation

(1) There are two modes of holding operations: these are triggered by the Cmd_Hold and

the Cmd_ErrHold signals.

(2) Both can only be triggered during the STARTING or RUNNING states (the commands

will be ignored in any other state), the Cmd_ErrHold signal is triggered in the event of

a fault being detected that is applicable to the sequence. The Cmd_ErrHold signal is

normally generated by monitoring logic, this may or may not be part of the sequence

itself, the signal can also be triggered by the operator if necessary.

(3) Once triggered, the Cmd_ErrHold signal causes the sequence change state to ERROR

HOLIDNG and to advance to step 40000.

186-268 Doc: PS2001-5-2101-001 Rev: R02.00

(4) The ERROR HOLIDNG state allows the sequence to put the areas of the plant controlled

by the sequence into a known safe condition (for example, isolating a filter or stopping

feed supplies &c.). Once this is done, the Cmd_ErrHeld signal is automatically trigged

and the sequence enters the ERROR HELD dwell state at step 45000. The sequence will

remain in this state, allowing the fault condition to be rectified.

(5) The operator must issue the Cmd_ErrResume signal to allow the sequence to continue.

(6) Triggering the Cmd_ErrResume signal forces the sequence to the ERROR RESUMING

state at step 46000. This state is used to return the plant to an operational state (by

restoring the plant to the previous condition prior to the ERROR HOLIDNG operations.

(7) At the end of the ERROR RESUMING state, there are various configurable options:

• The sequence can automatically return to the last step (in either

the RUNNING or STARTING states) it was at prior to the error con-

dition being detected

• It can start from a particular step (i.e. not the last step it was at,

but any specified step in the sequence

• It can restart from the beginning

(8) The required response is entirely dependent on the nature of the sequence in question.

(9) The Cmd_Hold signal operates in a similar fashion to the Cmd_ErrHold signal, how-

ever in this case, the Cmd_Hold signal can only be triggered by the operator (it is a

manual action).

(10) Triggering the Cmd_Hold signal moves the sequence to the HOLIDNG state (analogous

to the ERROR HOLIDNG state) beginning at step 30000; the automatic triggering of the

Cmd_Held signal places sequence in the HELD dwell state at step 35000. The sequence

will again remain in this state, allowing the operator to take whatever action is re-

quired.

(11) The operator must issue the Cmd_Resume signal to allow the sequence to continue.

(12) the Cmd_Resume signal forces the sequence to the RESUMING state at step 36000.

Again, this state is used to return the plant to an operational state

Doc: PS2001-5-2101-001 Rev: R02.00 187-268

(13) At the end of the RESUMING state, the sequence can continue with any of the configu-

rable options listed for the ERROR RESUMING state (listed above).

9.1.3 Stop and abort operation

(1) The stop and abort operations are alternative mechanisms for terminating a sequence

in the event that something goes wrong and the sequence operations are unrecoverable

(for example, the sequence is waiting for a condition such as a level or pressure that

can never be achieved because of some fault that cannot easily be rectified).

(2) The two modes of operation allow the sequence to be shut down in either a coordinated

and controlled manner (stopping) or more abruptly carrying out only those steps that

are necessary to safely terminate the sequence (aborting).

(3) Stopping and aborting are always triggered manually (or at least via logic external to

the sequence itself) by issuing either the Cmd_Stop or Cmd_Abort signal. The

Cmd_Stop signal can be issued during any state of the sequence excepting IDLE,

COMPLETED, STOPPING, STOPPED, ABORTING or ABORTED. The Cmd_Abort signal has

the same restrictions, except it can also be triggered in the STOPPING state (in this re-

gard aborting has a higher priority than stopping and can interrupt it).

(4) Triggering the Cmd_Stop signal forces the sequence to the STOPPING state (at step

50000) at the end of the STOPPING state, the Cmd_Stopped signal is automatically

trigged and the sequence enters the STOPPED dwell state at step 55000. The sequence

will remain in this state until the issues Cmd_RetIdle signal is triggered (usually by

the operator), at which point the sequence returns to the IDLE state.

(5) Triggering the Cmd_Abort signal forces the sequence to the ABORTING state (at step

60000) at the end of the ABORTING state, the Cmd_Aborted signal is automatically

trigged and the sequence enters the ABORTED dwell state at step 65000. The sequence

will remain in this state until the issues Cmd_RetIdle signal is triggered (usually by

the operator), at which point the sequence returns to the IDLE state.

188-268 Doc: PS2001-5-2101-001 Rev: R02.00

9.1.4 The reset operation

(1) The sequence command: Cmd_Reset this will force a reset of the sequence back to the

IDLE state, irrespective of whatever state the sequence is currently in.

(2) The reset command is an overriding command and will take precedence over any other

command that may have been issued.

(3) The Cmd_Reset signal should only be triggered by the operator. It is intended as a

recovery mechanism for a sequential operation that cannot be recovered by any other

mechanism (hold, error, stop or abort).

9.1.5 The pause operation

(1) The sequence has a final command: Cmd_Pause this is to some extent is a debug func-

tion, if active, it will pause the sequence in its current step, no transitions will be eval-

uated and the step duration and delay timers will pause at their current values.

(2) The sequence will remain in this state whilever the Cmd_Pause signal is in set to true.

Once released, the sequence will continue as if nothing had happened.

9.2 Steps and transitions within a sequence

(1) The non-dwell states within a sequence hold a series of steps and transitions that make

up the sequence, the steps perform an action, the transitions are a series of logical tests,

which, once satisfied, cause the sequence to progress from the current step to another

step (usually, the next step).

(2) Graphically, these sequences can be represented as the step-transition diagram of a

sequential flow chart (sometimes referred to as a GRAFCET15 diagram), see Figure

9.3:

15 GRAFCET, GRAPHe de Commande Etape-Transition, French. Literally, “stage-transition

command graph” a diagrammatic mechanism for showing steps and transitions within a se-

quence.

Doc: PS2001-5-2101-001 Rev: R02.00 189-268

Figure 9.3 Step transition diagram

190-268 Doc: PS2001-5-2101-001 Rev: R02.00

(3) Figure 9.3 shows all the step transition and branching mechanisms available to the

PAL sequences:

• Simple step and single transition

• Alternative (divergent) branches

• Simultaneous (parallel) branches

• Jumps (and loops) to a particular step

9.2.1 Simple steps and transitions

(1) Most steps within a sequence are simple step and transition arrangements that move

from one step directly to the next step when the transition conditions are satisfied:

Figure 9.4 Simple step and transition arrangements

Doc: PS2001-5-2101-001 Rev: R02.00 191-268

(2) Figure 9.4 shows a simple sequence progressing through the minimum number of

states (IDLE, STARTING, RUNNING, COMPLETING and COMPLETED). Figure 9.4 shows

the step numbers (and associated transitions) that would be assigned for such a se-

quence.

(3) Where there is a transition from one state to anther (e.g. starting to running), the

final step of the first state automatically triggers the command to move to the next, this

can be an instantaneous action that triggers when the step becomes active, or it can be

linked to a transition condition for the step. Figure 9.5 shows the two symbols for firstly

(on the left) automatic instantaneous command triggering and (on the right) transition

dependent command triggering:

Figure 9.5 Automatic command issuing arrangements

(4) The step numbers used in Figure 9.4 increment in intervals of 10; this is done to allow

space for additional step between the existing steps (for example it would be possible

to add an additional 9 steps between step 1000 and step 1010). This approach is not an

essential requirement (it would be perfectly possible to increment the steps by 1 and

leave no gaps), it does however, reflect good practice and is a recommended approach

for sequences using the PAL software.

9.2.2 Alternative branching

(1) Alternative branching is a common requirement for sequential actions, it allows the

sequence to progress down multiple divergent paths. The following diagrams show

divergent sequence arrangements.

(2) The simplest alternative branch splits the sequence path into two, Figure 9.6:

192-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 9.6 Simple alternative branch Figure 9.7 More complex alternative branch

(3) In Figure 9.6, step 10010 has two transitions associated with it (10010a and

10010b), if transition 10010a activates first, the sequence will move to step 10100

and the alternative leg (with step 10200) will be ignored and never executed.

(4) Similarly, if 10010b activates first, the sequence will move to step 10200 and the

alternative leg (with step 10100) will be ignored and never executed. Whichever

branch is executed, the result will arrive at step 10300 and the sequence will continue

from there.

Doc: PS2001-5-2101-001 Rev: R02.00 193-268

(5) More complex arrangements can be made (Figure 9.7), here the 10010a and 10010b

transitions operate exactly as Figure 9.6, the 10010c transition, however, diverts the

sequence down the step 10400 path and this bypasses completely the merge point of

the 10010a and 10010b transitions (at step 10300) and moves to a new merge point

at step 10500.

(6) Alternative branches can be as complicated as required and can include commands:

Figure 9.8 Alternative branch with commands

(7) Each step within the PAL sequences can have up to eight separate transitions

(8) In the event of two transitions becoming active at the same time, the lowest number

transition will take priority.

194-268 Doc: PS2001-5-2101-001 Rev: R02.00

9.2.3 Simultaneous branches

(1) Simultaneous branches are more complicated in their execution than alternative

branches. With alternative branches there is only ever one step active at any given

point in time; simultaneous branches have multiple steps active at the same time and

this is not possible with the PAL sequence arrangements.

(2) Within the PAL, simultaneous branches are achieved by using separate sub-sequences

for each branch as follows:

Figure 9.9 Simultaneous branches with sub-sequences

(3) The sub-sequences are just PAL sequences, the main sequence triggers the two sub-

sequences by activating the Cmd_Start signal for each sub-sequences, each sub-se-

quence will then operate in its own right.

(4) At some point both sub-sequences will finish and will be at the COMPLETED dwell state,

the transition T10000 is waiting for this condition (i.e. for both sub-sequence 01 to be

in the COMPLETED state AND for sub-sequence 02 to be in the COMPLETED state), at this

point the main sequence will advance to step 10010, this step would issue the

Cmd_RetIdle signals for the sub-sequences.

(5) As many sub-sequences as required can be used (i.e. there is no limit to the number of

simultaneous branches).

Doc: PS2001-5-2101-001 Rev: R02.00 195-268

9.2.4 Jumps and loops

(1) Jumps and loops are very similar in operation to alternative branches, they cause the

sequence to jump to different points depending upon which transition becomes true:

Figure 9.10 Jumps and loops

(2) In practical terms, jumps and loops are identical, they simply move the sequence to a

step that is not the logical next step in the sequence. The terminology simply reflects

the direction of the movement: a jump advances the sequence forward to a step that

has not yet been executed, a loop moves the sequence back to a previous step (creating

the potential for a loop)

(3) The execution of a jump or loop is identical to that of an alternative branch, the step

has multiple transitions, each jumping (or looping) to a different step.

196-268 Doc: PS2001-5-2101-001 Rev: R02.00

9.3 Phases within a step

(1) At its simplest level, each step within a sequence executes a set of actions (close a valve,

start a drive, wait for a time period &c.); however, each step is equipped with phases

that reflect different aspects of the step:

1 Initialising

2 Processing

3 Terminating

(2) These three phases effectively allow a step to be interpreted as a three-step sequence in

its own right:

Figure 9.11 Jumps and loops

(3) Each step has three digital signals that identify the current phase: PHS_INIT, PHS_PROC

and PHS_TERM. The initialising phase is active for one Controller cycle when the step

first becomes active. After this cycle, the step will advance to, and remain in the pro-

cessing phase until a transition condition becomes true. At this point, the processing

phase is deactivated and the terminating phase activates. The terminating phase is active

for just one Controller cycle.

Doc: PS2001-5-2101-001 Rev: R02.00 197-268

(4) This phased approach to a step allows a single step to carry out a complete set of ac-

tions, consider a sequence that is filling a tank, it will take the following actions:

1 Open valve V001 (tank inlet)

2 Wait for the tank level (LIT001) to reach the target level (T001)

3 Close valve V001

(5) In practical terms, if a step within a sequence simply carried out a single set of actions

(the unphased approach), this series of events would require two steps:

Figure 9.12 Unphased approach to a sequence step

(6) With a phase approach, the series of events is accomplished within the phases of a

single step:

Figure 9.13 Phased approach to a sequence step

198-268 Doc: PS2001-5-2101-001 Rev: R02.00

(7) With the phase approach, the actions of the step take place (in this instance) in the

initialising and terminating phases, the processing phase is simply waiting for the transi-

tion condition.

(8) This phased approach to sequence steps is a practical approach to simplifying se-

quences; it allows the scope of a single step to accommodate multiple actions that are

related to each other.

9.3.1 Phase timings for IEC compliant sequence steps

(1) The following diagram shows the phase timing arrangements between two consecutive

steps:

Figure 9.14 IEC compliant phase timing

(2) Here, it can be seen that the terminating phase of stepn is coincident (occurs in the

same cycle) with the initialisation phase of stepn+1.

Doc: PS2001-5-2101-001 Rev: R02.00 199-268

(3) This arrangement is required for compliance with IEC 61131-3 [Ref. 012].

(4) This effectively means the stepn+1 and stepn are both active in at the same time (within

the same Controller cycle).

(5) This methodology is required by the User Requirement Specification [Ref. 003, § 4.2.2

(21)] and has consequently been implemented in the PAL sequence software.

9.3.2 Phase timings for non-IEC compliant sequence steps

(1) This methodology highlighted in the previous section, whilst being complainant with

the IEC 61131-3 specification, is not widely used or highly regarded by those who

practice the programming of Controllers and PLCs.

(2) The more conventional view is that steps within a sequence should not overlap, the

preferred timing arrangement being:

Figure 9.15 Non-IEC compliant phase timing

200-268 Doc: PS2001-5-2101-001 Rev: R02.00

(3) Here, it can be seen that the terminating phase of stepn is concluded the cycle before

the initialisation phase of stepn+1.

(4) Both the IEC 61131-3 [Ref. 012] compliant and the non-IEC compliant versions are

offered as part of the PAL sequence software. This satisfies the requirement specified

in the User Requirement Specification [Ref. 003]; whilst providing the more conven-

tional, and widely used, implementation as well.

9.4 Automatic step timing functions

(1) Every step within a sequence has two timers that operate automatically:

• A step duration timer

• A step delay timer

(2) The step duration time is a measure of how long the particular step has been active, it

counts up from zero (from when the step first became active) in 100 ms intervals.

(3) The step duration counter is stored as a real variable that measures the current time

the step has been active in seconds (accurate to 0.1 of a second).

(4) The step duration timer can be used to trigger a transition (for example, a step could

transition to the next step if a particular level is reached or if the step has been active

for a specified time).

(5) The step delay timer ensures that the step will remain active for a minimum period of

time (given in the step delay timer).

(6) The transition conditions for a step will not be evaluated until the step delay timer has

counted down to zero.

(7) The step delay timer can be specified for any step and is again a real variable that

specifies the minimum time the step will be active in seconds (accurate to 0.1 second).

The step delay timer counts down from the specified value. If the step delay timer is

set to zero (the default value), there is will be no delay associate with that step.

Doc: PS2001-5-2101-001 Rev: R02.00 201-268

9.5 Manual modes of operation

(1) All sequences have both a manual and a semi-manual mode. Both allow the operator

to take control of the sequence.

9.5.1 Semi-manual mode

(1) In semi-manual mode, the sequence will not automatically issue any commands, it will

simply wait at the point where the command would have been issued and wait for the

operator to issue the command manually.

(2) Once the command is issued, the sequence will continue automatically through the

next state (carrying out steps and transmissions automatically), until it again reaches

the point where a command is needed to progress to the next state.

(3) At any point, the operator can issue a command to divert the sequence to another state

(or even back to a previous state).

9.5.2 Full manual mode

(1) Full manual mode provides all the same features as semi-manual mode, however,

manual intervention is required at each step, to activate the transition conditions. It

effectively allows the operator to single-step through a sequence and lets the operator

choose which transition is activated after each step.

(2) Full manual mode also allows the operator to jump to a particular step in a sequence.

202-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 203-268

10. Supervisory system user interface

10 Supervisory system user

interface

(1) All physical equipment (valves, drives, instrumentation &c.) connected to a Controller

usually have some form of graphical representation on a supervisor system such as a

SCADA or HMI16. While these systems are outside the scope of this Project, the inter-

face between these systems and the PAL software modules is not; and this must be

clearly defined in order to provide the necessary signals to display and interact with

the any supervisory system.

(2) The interface between a supervisory system and the PAL software modules is defined

in this section; it includes example graphical arrangements that are compliant with the

data available from each type of device.

(3) The interface for each of the different types of equipment will all be different (the in-

terface to an instrument will for example be completely different to that of a valve);

however, a commonality of approach (and where possible, signals) is adopted to give

consistency to these interfaces, for example, where devices have a manual mode, the

same signal name will be used across all devices and the mechanisms of operation and

selection will be as common as possible.

(4) Additionally, signals of similar type (alarms, device status, operating modes &c) will

have common prefixes and grouping to allow the type of signal to be readily identified

(for example, status signals are prefixed status_, alarms and warnings prefixed msg_

and operating modes prefixed mode_).

16 SCADA (supervisory control and data acquisition) system is a computer system used to

gather and analyse real time data from the control system, it will display the status of the

equipment (graphically showing if a valve is opened or closed, if a drive is running, instrument

readings &c.), it will show alarm and warnings and will allow the operator to issue commands

to the control system (start a sequence, take manual control of a device &c.).

HMI (human machine interface) is generally a panel mounted computer-based system similar

in functionality to a SCADA system, but generally more restricted in its facilities and capa-

bilities.

 Collectively SCADA and HMI systems are referred to as supervisory systems.

204-268 Doc: PS2001-5-2101-001 Rev: R02.00

(5) Figure 10.1 shows an example of how a PAL mimic is expected to look:

Figure 10.1 Example supervisory system graphical mimic

(6) Graphical mimics have several aspects:

• There are fixed graphics that are not animated (typically, pipe-

work, tanks, vessels, labelling &c.)

• There are dynamic objects (valves, drives, instruments &c.)

• There are navigation areas (the buttons at the top of the page) that

allow the operator to select different parts of the plant

• Thera are command areas (the buttons at the bottom) that allow

the operator to perform some action (start batch in the example)

(7) The PAL has specific requirements in terms of graphical objects.

Doc: PS2001-5-2101-001 Rev: R02.00 205-268

10.1 Scope restrictions with the PAL

(1) The development of supervisory systems (SCADA and HMI) is not within the scope

of this Project. However, consideration has been given to the nature of the interface

between the PAL software modules and any such supervisory system.

(2) It is anticipated that a future project will undertake the development of a supervisory

system and that this system will utilise the PC based WinCC Professional application

available within the TIA Portal software.

(3) To this end, the PAL expects the supervisory system to interface with the PAL software

modules in a particular way and to have specific graphical objects that link correctly

with the standard modules.

(4) The objects described in the following sections demonstrate how the PAL software

expects a supervisory system to be configured and the facilities and functions listed

here establish the full functions that would be available to an operator via that super-

visory system.

(5) The objects listed here and the design implications inherent within them are all capable

of being implemented by the WinCC Professional application, this being the baseline

system for any such development. This does not preclude other supervisory systems

being used — however if such systems have restricted capabilities compared with the

WinCC system, the full functionality of the PAL software modules may not be avail-

able to the operator.

(6) All the graphical objects and mimics listed here are compliant with the current engi-

neering standards for supervisory systems specified in the EEMUA17 201 [Ref. 016]

standard for Process Plant Control.

(7) All alarm handling and reporting capabilities listed here are compliant with the current

standards for such mechanisms: the EEMUA 191 [Ref. 015] Guide for Alarm Systems.

17 EEMUA — Engineering Equipment and Materials Users' Association

206-268 Doc: PS2001-5-2101-001 Rev: R02.00

10.2 Symbols block icons and faceplates

(1) All plant equipment whether devices that can be operated by the Controller (valves,

drives, motors, pumps &c.) or pseudo-devices such as PID loops (these are internal

constructs of the Controller, but act as devices in their own right) or instruments that

are read by the Controller, require an operator interface, the operator must be able to

see what the devices are doing or what the instruments are reading, and where neces-

sary take control of those devices.

(2) The PAL achieves these requirements through the use of symbols and block icons, two

such groups of symbol and block icon are shown below:

Figure 10.2 Isolating valve symbol and block icon Figure 10.3 Modulating valve symbol and block icon

(3) The symbol provides a graphical representation of a device and what state it is in (open,

closed, fault &c.), the block icon provides additional information about the device (op-

erating modes, energised state &c.).

(4) Examining these in turn:

Doc: PS2001-5-2101-001 Rev: R02.00 207-268

10.2.1 Symbols

(1) Symbols are animated objects that represent a particular device and visually indicate

what the device is doing (what state it is in; e.g. for a valve this could be opened, closed,

in fault &c.).

(2) Each symbol is designed to link directly with the static and dynamic data that is appli-

cable to a particular standard module (typically a device driver).

(3) All the symbols listed here are based on the standard process and instrumentation dia-

gram (P&ID) symbols.

(4) All the symbols shown here are compliant with EEMUA 201 [Ref. 016] standard for

Process Plant Control; this dictates that objects appear in a grey colour when inactive

and are highlighted only when the device is in a non-passive state (i.e. when a valve is

energised or a drive is running), the PAL uses muted greens to indicate open and run-

ning states and muted reds for fault conditions.

(5) This section lists all the symbolic representations available to the standard device driv-

ers listed in §§ 8.7, 8.8 and 8.9.

(6) Multiple symbols are available for each module, this is particularly true of drives, for

example, a direct online drive may be a pump, motor, compressor, &c. it may also be

a completely different form of device (such as a heating element), these all however,

operate in an identical fashion to a direct online drive.

(7) Similarly, the isolating valve module may utilise normally closed or normally open

symbology, or it may use a motorised valve symbol.

(8) The following sections show the most common symbols for the device driver modules.

208-268 Doc: PS2001-5-2101-001 Rev: R02.00

Analogue instruments

(9) Generally, analogue instruments are represented by block icons (see § 10.2.2) rather

than symbols, there are exceptions when showing values associated with vessels (level,

pressure &c.), here it is often necessary to give a dynamic, animated indication of the

property, this can be seen in Figure 10.1, where the tank level is shown graphically as

a green bar rising vertically.

(10) Where instruments have alarm and warning points, these can also be shown:

Figure 10.4 Analogue instrument symbols

(11) The alarm and warning points (the triangles in Figure 10.1) are dynamically positioned

relative to the bottom of the bar graph. The actual position is determined by the alarm

and warning setpoint values specified in the individual module data.

Doc: PS2001-5-2101-001 Rev: R02.00 209-268

Analogue instrument symbols FC02001_StdInstAnalogRead/ FC02011_StdInstRealValRead

Scaled Graduated Clean S IGNAL DESCRIPTION

actual_Vale Scaled value

Inactive Active S IGNAL DESCRIPTION

Status_AlmH Alarm high condition

Status_WrnH Warning high condition

Status_Desc Any message condition (or threshold)

Status_WrnL Warning low condition

Status_AlmL Alarm low condition

Table 10.1 Symbols — Analogue instruments

Digital instruments

(12) Digital instruments are represented by block icons (see § 10.2.2) rather than symbols;

occasionally, where necessary, the state of the instrument can be graphically repre-

sented using the alarm and warning condition symbols specified for the analogue in-

struments.

210-268 Doc: PS2001-5-2101-001 Rev: R02.00

Isolating valves

Isolating valve symbols FC11001_StdDevValveIsol

Standard

NC valve

Standard

NO valve

Motorised

NC valve

Motorised

NO valve
S IGNAL DESCRIPTION

Status_Closed Closed

Status_Opening Opening

Status_Opened Opened

Status_Closing Closing

Status_Fault Fault (valve body shows state)

N/A Loss of communications

Table 10.2 Symbols — Isolating valve NC — Normally closed NO — Normally open

3-way isolating valves

3-way isolating valve symbols FC11011_StdDevValve3Way

 S IGNAL DESCRIPTION

Status_PortD Closed

Status_PortDtoE Opening

Status_PortE Opened

Status_PortEtoD Closing

Status_Fault Fault (valve body shows state)

N/A Loss of communications

Table 10.3 Symbols — 3-way isolating valve E = Energised, D = De-energised

(14) Three-way valves have many orientations, only a selection are shown here, the head

of the valve shows the de-energised path, the port with a circle is the common port.

Doc: PS2001-5-2101-001 Rev: R02.00 211-268

Bistable valves

Bistable (motorised) valve symbols FC11101_StdDevValveBi

Motorised bistable S IGNAL DESCRIPTION

Status_Closed Closed

Status_Opening Opening

Status_Opened Opened

Status_Closing Closing

Status_Indeterminate Indeterminate (unknown) state

Status_Fault Fault (valve body shows state)

N/A Loss of communications

Table 10.4 Symbols — Bistable (motorised) valve

Modulating valve

Modulating valve FC11501_StdDevValveMod

Modulating (control) valve S IGNAL DESCRIPTION

Status_Closed Closed (0%) or closed limit

Status_PartOpen1 Partially open (≤20%)

Status_PartOpen2 Partially open (20-40%)

Status_PartOpen3 Partially open (40-60%)

Status_PartOpen4 Partially open (60-80%)

Status_Opened Opened (≥80%) or opened limit

Status_Fault Fault (valve body shows state)

N/A Loss of communications

Table 10.5 Symbols — Modulating valve

212-268 Doc: PS2001-5-2101-001 Rev: R02.00

Direct online drive

Direct online drive symbols FC12001_StdDevDriveDOL

Pump Blower Motor General S IGNAL DESCRIPTION

Status_Stopped Stopped

Status_Starting Starting

Status_Running Running

Status_Stopping Stopping

Status_Fault Fault (body shows state)

N/A Loss of communications

Table 10.6 Symbols — DOL drive Note: starting and stopping states are momentary unless slow ram times are used

Reversing direct online drive

Reversing direct online drive symbols FC12011_StdDevDriveDOLRev

Motor Alternate General Alternate S IGNAL DESCRIPTION

 Status_Stopped Stopped

 Status_StartingF Starting forwards

 Status_RunningF Running forwards

 Status_StoppingF Stopping forwards

Status_StartingR Starting reverse

Status_RunningR Running reverse

Status_StoppingR Stopping reverse

 Status_Fault Fault (body shows state)

 N/A Loss of communications

Table 10.7 Symbols — Reversing DOL Note: starting and stopping states are momentary unless slow ramp times are used

Doc: PS2001-5-2101-001 Rev: R02.00 213-268

Bistable drive

Direct online bistable drive symbols FC12101_StdDevDriveBi

Bistable drives generally use the symbols for the FC12001_StdDevDriveDOL (direct online drive) module

— it is not generally necessary to identify a drive as a bistable device within a supervisory system symbol

Table 10.8 Symbols — Bistable DOL drive

Bistable reversing drive

Direct online bistable reversing drive symbols FC12111_StdDevDriveBiRev

Bistable reversing drives generally use the symbols for the FC12002_StdDevDriveRevDOL (direct online

reversing drive) module — it is not generally necessary to identify a drive as a bistable device within a

supervisory system

Table 10.9 Symbols — Bistable DOL drive

Variable speed drive

Variable speed drive symbols FC12501_StdDevDriveVSD

Pump Blower Motor General S IGNAL DESCRIPTION

Status_Stopped Stopped

Status_PartRun1 Running (≤20% speed)

Status_PartRun2 Running (20-40% speed)

Status_PartRun3 Running (40-60% speed)

Status_PartRun4 Running (60-80% speed)

Status_Running Running (≥80% speed)

Status_Fault Fault (body shows state)

N/A Loss of communications

Table 10.10 Symbols — Variable speed drive

214-268 Doc: PS2001-5-2101-001 Rev: R02.00

Reversing variable speed drive

Reversing variable speed drive symbols FC12511_StdDevDriveVSDRev

Motor Alternate General Alternate S IGNAL DESCRIPTION

 Status_Stopped Stopped

 Status_PartRunF1 Running forward (≤20% speed)

 Status_PartRunF2 Running forward (20-40% speed)

 Status_PartRunF3 Running forward (40-60% speed)

 Status_PartRunF4 Running forward (60-80% speed)

 Status_RunningF Running forward (≥80% speed)

Status_PartRunR1 Running reverse (≤20% speed)

Status_PartRunR2 Running reverse (20-40% speed)

Status_PartRunR3 Running reverse (40-60% speed)

Status_PartRunR4 Running reverse (60-80% speed)

Status_RunningR Running reverse (≥80% speed)

 Status_Fault Fault (body shows state)

 N/A Loss of communications

Table 10.11 Symbols — Reversing variable speed drive

Doc: PS2001-5-2101-001 Rev: R02.00 215-268

Multiple speed drive

Multiple speed drive symbol FC12601_StdDevDriveMSD

Pump Blower Motor General S IGNAL DESCRIPTION

Status_Stopped Stopped

Status_Starting Starting

Status_Running

Status_Speed
Running

(small number indicates speed)

Status_Stopping Stopping

Status_Fault Fault (body shows state)

N/A Loss of communications

Table 10.12 Symbols — Multispeed Drive Note: starting and stopping states are momentary unless slow ram times are used

216-268 Doc: PS2001-5-2101-001 Rev: R02.00

10.2.2 Block icons

(1) All devices have a block icon, the block icon identifies the device (by tag number, see

§ 6.2.1) and provides additional information about the device. In the case of analogue

instruments, the primary use of the block icon is to display the value the instrument is

reading.

(2) Block icons are located adjacent to any device symbol that may be in use; generally,

block icons are positioned below the device in question and this is the preferred posi-

tion. It is accepted however, that this is not always possible and it is permissible to

position the block icon either above the device or to either side.

(3) There are generally multiple styles of block icons available to each device, these are of

different size and complexity. For example, the PID loop block icon has three formats:

Figure 10.5 PID full block icon Figure 10.6 PID standard block icon Figure 10.7 PID compact block icon

(4) The style of block icon is entirely at the user’s discretion. Generally, however, which-

ever style is chosen should be applied to all similar objects on the graphical display

page.

(5) Where alternative block icons exist, these are also shown in the following sections.

Where the block icon display changes to reflect particular operating modes, these are

also shown.

(6) Each block icon is designed to link directly with the static and dynamic data that is

applicable to a particular standard module (typically a device driver or instrument

block); where possible, the variables that drive the individual aspects of the block icon

are listed — for certain block icons, these variables require further explanation, the

details of which are contained in the Software Module Design Specification (SMDS)

[Ref. 008] for the block in question.

Doc: PS2001-5-2101-001 Rev: R02.00 217-268

Analogue instruments

Analogue instrument block icon FC02001_StdInstAnalogRead/ FC02011_StdInstRealValRead

ALTERNATIVE BLOCK ICON STYLES

Standard

Compact

Table 10.13 Block icon — Analogue instruments

(7)

218-268 Doc: PS2001-5-2101-001 Rev: R02.00

Analogue threshold block icon FC02101_StdInstRealLimit

ALTERNATIVE BLOCK ICON STYLES

 Standard

Compact

Table 10.14 Block icon — Analogue threshold

Doc: PS2001-5-2101-001 Rev: R02.00 219-268

Digital instruments

Digital instrument/filter block icon FC02501_StdInstDigitalRead/FC02601_StdInstDigitalFilt

ALTERNATIVE BLOCK ICON STYLES

 Standard

Compact

Table 10.15 Block icon — Digital instruments

220-268 Doc: PS2001-5-2101-001 Rev: R02.00

Control loops

PID loop block icon FC10001_StdDevPID_Standard/ FC10011_StdDevPID_Sched

ALTERNATIVE BLOCK ICON STYLES AND MODES

Large

Off

Standard

Off

Compact

Off

Large

Setpoint

Standard

Setpoint

Compact

Setpoint

Large

Fixed output

Standard

Fixed output

Compact

Fixed output

Table 10.16 Block icon — Control loops Details of the displayed quantity, displayed quantity value and units variables

are explained in the associated SMDS

Doc: PS2001-5-2101-001 Rev: R02.00 221-268

Isolating valves

Isolating valve block icon FC11001_StdDevValveIsol

Table 10.17 Block icon — Isolating valve

3-way isolating valves

3-way Isolating valve block icon FC11011_StdDevValve3Way

3-way isolating valves use the block icon for the FC11001_StdDevValveIsol (isolating valve) module

Table 10.18 Block icon — 3-way isolating valve

Bistable valves

Bistable (motorised) valve block icon FC11101_StdDevValveBi

Bistable valves use the block icon for the FC11001_StdDevValveIsol (isolating valve) module

Table 10.19 Block icon — Bistable isolating valve

222-268 Doc: PS2001-5-2101-001 Rev: R02.00

Modulating valve

Modulating valve block icon FC11501_StdDevValveMod

ALTERNATIVE BLOCK ICON STYLES

Standard

Compact

Table 10.20 Block icon — Modulating valve

Doc: PS2001-5-2101-001 Rev: R02.00 223-268

Direct online drive

Direct online drive block icon FC12001_StdDevDriveDOL

Table 10.21 Block icon — Direct online drive

Reversing direct online drive

Reversing direct online drive block icon FC12011_StdDevDriveDOLRev

DOL reversing drives use the block icon for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.22 Block icon — Reversing DOL drive

Bistable drive

Direct online bistable drive block icon FC12101_StdDevDriveBi

Bistable drives use the block icon for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.23 Block icon — Bistable drive

224-268 Doc: PS2001-5-2101-001 Rev: R02.00

Bistable reversing drive

Direct online bistable reversing drive block icon FC12111_StdDevDriveBiRev

Bistable reversing drives use the block icon for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.24 Block icon — Bistable reversing drive

Variable speed drive

Variable speed drive block icon FC12501_StdDevDriveVSD

ALTERNATIVE BLOCK ICON STYLES

Standard

Compact

Table 10.25 Block icon — Variable speed drive

Doc: PS2001-5-2101-001 Rev: R02.00 225-268

Reversing variable speed drive

Reversing variable speed drive block icon FC12511_StdDevDriveVSDRev

ALTERNATIVE BLOCK ICON STYLES

Standard

Compact

Standard

Running reverse

Compact

Running reverse

Table 10.26 Block icon — Reversing variable speed drive

226-268 Doc: PS2001-5-2101-001 Rev: R02.00

Multiple speed drive

Multiple speed drive block icon FC12511_StdDevDriveMSD

ALTERNATIVE BLOCK ICON STYLES

Standard

Compact

Table 10.27 Block icon — Multiple speed drive

Doc: PS2001-5-2101-001 Rev: R02.00 227-268

10.2.3 Faceplates

(1) All plant equipment (instruments, valves, drives, motors, pumps &c.) or pseudo-de-

vices such as PID loops have selectable and configurable operating modes (e.g. manual

mode, simulation mode &c.). These modes are optional (each mode can be disabled

in the static data for the device); however, where these options are used, it is necessary

to have an operator interface that allows the various modes to be selected.

(2) To this end, the modes are selected through the use of a faceplate, this is a pop-up win-

dow that appears on the supervisory system, overlaying the plant mimic. Each type of

device has its own faceplate and multiple devices can have their faceplates open at the

same time.

(3) An active faceplate can be considered to be a window in its own right and can be

dragged to different positions on the screen (Figure 10.8).

Figure 10.8 Example Faceplate

(4) Each device has the ability to disable the faceplate operation from within its configu-

ration data within the Controller.

228-268 Doc: PS2001-5-2101-001 Rev: R02.00

(5) Where a device permits a faceplate to be used, the supervisory system generally limits

the access of a particular user to ensure that only specific user groups are able to operate

particular faceplate functions.

(6) Faceplates typically have six functional areas:

1 Status

Shows the status of the device and clearly identifies the selected

operating modes

2 Mode

Displays the operating modes available to the device and allows

the operator to activate or deactivate any such modes

3 Interlocks

Shows the interlock states and allows the interlocks to be by-

passed (if permitted)

4 Simulation

Allows the device to be switched to simulation mode and lets

the operator select the various simulation modes

5 Configuration

Displays the primary configuration information for the device

(operating times, alarm limits &c.) and in certain cases allows

the operator the modify the values

6 Messages

Displays any alarms, warning or messages that may be active for

the device

(7) The signals needed to operate the faceplates are provided by the dynamic and static

data interfaces to the block. The detailed requirements for which are specified in the

Software Module Design Specification (SMDS) [Ref. 008] for the relevant module.

(8) The following sections show typical examples of various types of faceplates (it should

be noted that these are examples and the final faceplates may have minor differences.

However, these examples remain representative of any final faceplates).

Doc: PS2001-5-2101-001 Rev: R02.00 229-268

Analogue instruments

Analogue instrument faceplate FC02001_StdInstAnalogRead/ FC02011_StdInstRealValRead

Table 10.28 Faceplate — Analogue instruments

230-268 Doc: PS2001-5-2101-001 Rev: R02.00

Digital instruments

Digital instrument/filter faceplate FC02501_StdInstDigital/FC02601_StdInstDigitalFIlter

Table 10.29 Faceplate — Digital instruments

Doc: PS2001-5-2101-001 Rev: R02.00 231-268

Control loops

PID loop faceplate FC10001_StdDevPID_Standard/ FC10011_StdDevPID_Sched

Table 10.30 Faceplate — Control loops

232-268 Doc: PS2001-5-2101-001 Rev: R02.00

Isolating valves

Isolating valve faceplate FC11001_StdDevValveIsol

Table 10.31 Faceplate — Isolating valve

Doc: PS2001-5-2101-001 Rev: R02.00 233-268

3-way isolating valves

3-way Isolating valve faceplate FC11011_StdDevValve3Way

Table 10.32 Faceplate — 3-way Isolating valve

Bistable valves

Bistable (motorised) valve faceplate FC11101_StdDevValveBi

Bistable valves use the faceplate for the FC11001_StdDevValveIsol (isolating valve) module

Table 10.33 Faceplate — Bistable Isolating valve

234-268 Doc: PS2001-5-2101-001 Rev: R02.00

Modulating valve

Modulating valve faceplate FC11501_StdDevValveMod

Table 10.34 Faceplate — Modulating valve

Doc: PS2001-5-2101-001 Rev: R02.00 235-268

Direct online drive

Direct online drive faceplate FC12001_StdDevDriveDOL

Table 10.35 Faceplate — Direct online drive

236-268 Doc: PS2001-5-2101-001 Rev: R02.00

Reversing direct online drive

Reversing direct online drive faceplate FC12011_StdDevDriveDOLRev

Table 10.36 Faceplate — Reversing DOL

Bistable drive

Direct online bistable drive faceplate FC12101_StdDevDriveBi

Bistable drives use the faceplate for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.37 Faceplate — Bistable DOL drive

Doc: PS2001-5-2101-001 Rev: R02.00 237-268

Variable speed drive

Variable speed drive faceplate FC12501_StdDevDriveVSD

Table 10.38 Faceplate — Variable speed drive

238-268 Doc: PS2001-5-2101-001 Rev: R02.00

Reversing variable speed drive

Reversing variable speed drive faceplate FC12511_StdDevDriveVSDRev

Table 10.39 Faceplate — Reversing variable speed drive

Doc: PS2001-5-2101-001 Rev: R02.00 239-268

Multiple speed drive

Multiple speed drive faceplates FC12601_StdDevDriveMSD

Table 10.40 Faceplates — Multiple speed Drive

240-268 Doc: PS2001-5-2101-001 Rev: R02.00

10.3 Graphical styles

(1) The PAL does not at this stage formally prescribe the graphical styles that must be used

(although future projects may do so), this to a certain extent is dependent on the super-

visory system being used. The PAL does require that all the graphical objects and mim-

ics are compliant with the current engineering standards for supervisory systems spec-

ified in the EEMUA 201 [Ref. 016] standard for Process Plant Control.

(2) The graphical depictions shown in the previous sections (for symbols, block icons and

faceplates) are accurate representations of what the graphical representation must ac-

commodate as a minimum requirement.

(3) The following figures illustrate some of the different graphical approaches that may be

taken:

Figure 10.9 Standard graphical arrangement with “3D” effects

Doc: PS2001-5-2101-001 Rev: R02.00 241-268

(4) The subtle three-dimensional effect of Figure 10.9 is considered to be a typical, stand-

ard graphical arrangement.

(5) Figure 10.10 shows the same arrangement with a “flattened” appearance, there are no

gradient colours and fewer embellishments.

Figure 10.10 Graphical arrangement with “flat” appearance

242-268 Doc: PS2001-5-2101-001 Rev: R02.00

(6) The final example is a variation of the flattened version and is more minimalistic.

Figure 10.11 Graphical arrangement with minimal effects

(7) All of these are just examples to illustrate the nature of a graphical interface.

Doc: PS2001-5-2101-001 Rev: R02.00 243-268

10.4 PAL Graphical arrangements

(1) All supervisory systems have some mechanism for navigation around the various

graphical mimics and for issuing commands to the Controller, the PAL defines certain

arrangements for navigation, command and other displayed functions.

(2) The basic arrangements for a graphical page that is compliant with the PAL is shown

below:

Figure 10.12 PAL graphical page arrangements

244-268 Doc: PS2001-5-2101-001 Rev: R02.00

(3) The graphical page is broken down into eight discrete areas:

1 Alarm banner

This is a single line area at the top of the screen, it dis-

plays the most recent unacknowledged alarm, if all

alarms are acknowledged, it displays the most recent

acknowledge, but active alarm

2 Date and time

Displays the system time and date. The time must use

the 24-hour clock with leading zeros (i.e. 13:04:20). The

date must be displayed in an unambiguous format:

23 Jun 20 (month identified as letters)

2020-07-23 (ISO 860118 international standard)

3 Logo

Display area for a logo of some description.

4 User

Shows the username of the current user logged on to the

particular supervisory system terminal.

5 Navigation button area

This shows the active plant area mimic (active mimic is

in blue in the background), the ▼ button allows the user

to select any sub-screens associated with the plant area.

The other buttons show any active alarms/warnings (A

button), operator prompts (O button) and messages (M

button).

6 Title bar

Contains the title of the graphical mimic being displayed.

18 ISO 8601 [Ref. 017], is the international format for recording dates. It has a standard form:

YYYY-MM-DD and avoids the ambiguity of the American/English date formats: MM/DD/YY

and DD/MM/YY respectively.

Doc: PS2001-5-2101-001 Rev: R02.00 245-268

7 Graphical mimic area

Displays the graphical interpretation of the plant area

(usually based on the P&ID diagram for the plant area).

The symbols, block icons and faceplates used in this area

are discussed in §§ 10.2-10.3.

8 Command button bar

This is a mimic dependent area that allows the operator

to issue specific commands to the Controller (e.g. to start

a particular sequence or function &c.).

Command buttons are dynamic and can be enabled or

disabled by the Controller depending on the current

plant conditions.

10.4.1 Screen sizes and resolutions

(1) Supervisory systems are generally PC based SCADA systems or smaller (panel

mounted) HMI devices.

HMI systems

(2) Where HMIs are used, the size of the HMI is usually dependent on the complexity of

the plant in question, for plants of a simple arrangement (or where the function of the

HMI is extremely limited, or restricted to a very small aspect of plant control), small

screen HMIs may be used.

(3) More typically, where HMIs are representing a local area of plant in the same detail as

a SCADA system, larger HMIs must be used.

(4) The default PAL HMI is considered to be a HMI with a capacity equal to or better

than a Siemens Simatic TP1200 Comfort Touch panel (part no.: 6AV2128-3MB06-

0AX0), this is the same HMI specified as part of the test rig (see Section 3).

(5) This HMI has a screen resolution of 1280 × 800 pixels and this is considered to the

minimum practical screen resolution for an HMI application of all but the simplest

functions.

246-268 Doc: PS2001-5-2101-001 Rev: R02.00

PC based supervisory systems

(6) PC based supervisory (or SCADA) systems are more powerful than local HMI panel

and may be single stand-alone stations or multiple-user, server-client systems.

(7) The PAL minimum requirement for a supervisory system is based around the Siemens

Simatic WinCC Professional application.

(8) This WinCC application does not in itself set specifications for the PC hardware upon

which it is to run (apart from a basic minimum specification), the PAL, however, does

set certain minimum specifications:

• Each stand-alone station or client station (if using a server ar-

rangement) will be dual monitor station and each monitor will

have a minimum resolution of 2460 × 1440 pixels.

• Stand-alone stations and servers will have 32 GB of internal

RAM

• Stand-alone stations and servers will have 6 TB of hard disk stor-

age available

• Client stations will have a minimum of 16 GB of internal RAM

• Client stations will have a minimum of 3 TB of hard disk storage

available

• High power CPUs will be used (Intel i7 or better)

Doc: PS2001-5-2101-001 Rev: R02.00 247-268

10.5 Alarm handling

(1) Alarm handling is generally a supervisory system function; all instrumentation and

plant devices connected to the Controller (either for monitoring or control purposes)

are constantly examined for fault and failure conditions. The failure of any such equip-

ment will result in an alarm condition being generated and displayed on the supervi-

sory system.

(2) Whatever supervisory system is used; it must be compliant with the current standards

for such alarm handling: the EEMUA 191 [Ref. 015] Guide for Alarm Systems.

Broadly, this requires that alarms and warnings have the following facilities:

• All alarms and warnings are time stamped and can be filtered

• Alarms and warnings can be suppressed by process area with a

dedicated display showing all suppressed alarms

• State-based smart alarm/warning hiding that will hide alarms and

warnings when not required (i.e. when part of the plant is not in

operation)

• Alarms and warnings will be given priorities and will be colour

coded to indicate the type of alarm

• alarms and warnings will be logged (archived) and can be recov-

ered when required

(3) The supervisory system will log and display all plant alarm and warning conditions,

the most recent unacknowledged, (or if all alarms and warnings are acknowledged, the

most recent acknowledged alarm/warning that is still active) alarm/warning will be

displayed in the alarm banner on each graphical mimic screen and will always be visi-

ble.

(4) Where required, alarms and warning signals may be marshalled into specific data

blocks (or other common area), this is dependent on the specific requirement of the

supervisory system in question.

248-268 Doc: PS2001-5-2101-001 Rev: R02.00

(5) The system will accommodate the following types of alarms:

ALARM TYPE DESCRIPTION

Process Alarm/

warning

Process alarms are generally derived from analogue instruments (such as flow,

temperature, pressure &c.) and indicate that there is something wrong from

the point of view of the manufacturing process (e.g. low pressure). Process

alarms can also be generated from digital instruments monitoring for a

particular alarm condition associated with the process (e.g. a low seal pressure

switch).

Discrete (Digital)

Alarm

Discrete alarms are generally digital alarms reporting specific occurrences of an

event outside of the normal process, for example an emergency stop condition,

or failure of a service supplied to the system.

Device Alarm

Device alarms are associated with a particular piece of equipment controlled by

the system (a valve or drive). Device alarms are generated whenever the device

is not responding correctly (or within it operational time) to the demands of

the system. E.g.:

Valve Failed to Open

Valve Failed to Close

Instrument Alarm

Instrument alarms are associated with the state of an instrument itself (rather

than the process value it is reading). Instrument alarms are generated whenever

the instrument is giving out of range or fault signals.

Derived Alarm/

warning

Derived alarms are conditions that are determined by the system performing a

calculation based on two or more monitored values, for example a low rate of

change would be a derived alarm based on a value changing with time (value

and time being the two monitored values).

System Alarm

A system alarm is associated directly with the Control System and its

infrastructure (communication networks &c.). E.g.

Communication Failure

Component Failure – Failure of a Controller card, rack or component &c.

Table 10.41 Alarm Types

(6) The Supervisory system will organise alarms into groups associated with different

plant areas (typically, organised in the same arrangement as the navigation area).

(7) The Supervisory system will also have a global alarm page that shows all the currently

active alarms and warnings across the whole system. The Operator will be able to ac-

cess this global alarm page directly from all screens (usually by clicking the alarm ban-

ner at the top of each screen).

Doc: PS2001-5-2101-001 Rev: R02.00 249-268

(8) Alarm logging (the recording of when alarms occur, when and by whom they were

acknowledged and when they were cleared from the system) for record keeping pur-

poses, is a supervisory system activity requiring that an Operator be logged-on to the

system.

(9) All alarms screens have different fields associated with the alarms and warnings (time

of occurrence, time of acknowledgement, alarm description, current state &c.), these

screens will be filterable by any of the associated fields.

(10) The PAL software has some independent (Controller based) alarm routines that allow

the Controller to time stamp particular alarm conditions (this improve the accuracy of

the alarm time stamp) under specific conditions (usually where high speed reporting is

required, e.g. electrical switchgear monitoring).

(11) It is also possible for PAL software to disable specific alarms under designated condi-

tions and even automatically acknowledge active alarms.

10.6 User management

(1) The supervisory system must support individual user logon and user groups.

(2) Different users will have different capabilities within the system. Each user will be as-

signed to a specific user group and each group will have specific privileges and re-

strictions.

(3) The PAL does not prescribe the number of user groups, nor does it specify the privi-

leges and restrictions to be applied to each group; these are determined by the plant in

question and the requirements of the plant operators. It does however, require that the

supervisory system (both SCADA and HMI) support such facilities.

(4) Generally, if no user is logged on, the supervisory system will display a blank screen

showing only the logon window. It is permissible for a supervisory system to allow

read-only access to the graphical screens when no user is logged on (the plant can be

viewed and alarms and warnings examined, but no actions can be taken, including the

acknowledgement of alarms); this read only facility, while permissible is not generally

recommended, its use should only be considered where necessary; e.g. plant mounted

HMIs may be required to constantly display specific information.

250-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 251-268

11. Template and docume ntation modules

11 Template and documentation

modules

(1) A series of template and documentation modules will be provided to give worked ex-

amples of how the standard and application modules should be used in a control system

project.

(2) The template modules will provide an example of each type of application module,

demonstrating how each application module is to be used and how it calls its associ-

ated standard modules.

(3) The documentation modules are specific examples of how to comment the various

aspects of software written using the PAL, these give a consistent look and feel to the

software. The documentation modules contain summaries of the various styles and

comment formats that can be copied and used within software modules. These are

essentially quick reference (proforma) guides that can be used as the outline for applica-

tion modules &c.

252-268 Doc: PS2001-5-2101-001 Rev: R02.00

11.1 Template modules

(1) The template modules explain how to use and deploy the various standard and applica-

tion modules and also the various organisation blocks (OBs) that may be required in

various circumstances. The template modules provide detailed example usage for all

the standard modules and demonstrate different operating modes and configurations.

11.1.1 Template modules for application and standard modules

(1) There is a template module associated with each of the application modules. Each

template module gives an example of how its associated application module should be

used and coded. Where application modules are numbered 20,000 to 39,999, the tem-

plate modules are numbered 40,000 to 59,999; thus, template module 42,000 is an ex-

ample of how application module 22,000 is to be used.

(2) The following table gives the associated numbering between template modules and

application modules:

FUNCTION GROUP
TEMPLATE

MODULE NUBER
ASSOCIATED APPLICATION

MODULE NUMBER

Debug (start of cycle) FC 40nnn FC 20nnn

System functions FC 41nnn FC 21nnn

Read instruments FC 42nnn FC 22nnn

Interlock & protection FC 43nnn FC 23nnn

Safety systems FC 44nnn FC 24nnn

Calculations & mathematics FC 45nnn FC 25nnn

Continuous control FC 46nnn FC 26nnn

Sequential control FC 47nnn FC 27nnn

Command handling FC 48nnn FC 28nnn

Device drivers (control loops) FC 50nnn FC 30nnn

Device drivers (valves) FC 51nnn FC 31nnn

Device drivers (drives) FC 52nnn FC 32nnn

Message handling FC 56nnn FC 36nnn

Communication handling FC 57nnn FC 37nnn

Debug (end of cycle) FC 59nnn FC 39nnn

Table 11.1 Template module and application module associations

Doc: PS2001-5-2101-001 Rev: R02.00 253-268

(3) The template modules are based around a small fermenter project; this is a relatively

simple project, but covers all aspects of the PAL software, to this end it provides a

worked example of all the common elements of a project:

1 System management and global signal generation

1 Instrumentation handling (read, scale and evaluation)

2 Interlock functions

3 Safety systems

4 Calculations

5 Continuous logic control

6 Sequence logic control

7 Command execution logic (convert continuous and sequential

logic decisions to physical output signals)

8 Device handling (control loops)

9 Device handling (valves, drives &c.)

10 Message handling (alarms, warnings, user prompts &c.)

11 Communications

(4) All template modules will be fully documented and will reflect the PAL documenta-

tion standards given in the Style Guide (SG) [Ref. 010].

(5) The documentation for the template fermenter project is contained within document

module FC 65000.

(6) The following table give a full list of the template modules included in the PAL soft-

ware:

254-268 Doc: PS2001-5-2101-001 Rev: R02.00

Template modules Associated

Coordinating Marshalling Programming application module

FC40000_TmtDebugSOS FC20000_AppDebugSOS

 FC40101_TmtDebugInst FC20101_AppDebugInst

FC41000_TmtSysFunctions FC21000_AppSysFunctions

FC42000_TmtInstRead FC22000_AppInstRead

 FC42001_TmtInstAnalogRead FC22001_AppInstAnalogRead

 FC42001_TmtInstDigitalRead FC22001_AppInstAnalogRead

FC43000_TmtILock FC23000_AppILock

 FC43101_TmtILockArea1 FC23101_AppILockArea1

 FC43201_TmtILockArea2 FC23201_AppILockArea2

 FC43301_TmtILockArea3 FC23301_AppILockArea3

 FC43401_TmtILockArea4 FC23401_AppILockArea4

FC44000_TmtSafe FC24000_AppSafe

 FC44101_TmtSafeZone1 FC24101_AppSafeZone1

FC45000_TmtCalc FC25000_AppCalc

 FC45001_TmtCalcAvg FC25001_AppCalcAvg

 FC45700_TmtCalcNabla FC25700_AppCalcNabla

FC46000_TmtContLogic FC26000_AppContLogic

 FC46101_TmtContStt FC46101_AppContStt

 FC46201_TmtContInoc FC46201_AppContInoc

 FC46301_TmtContVent FC46301_AppContVent

FC47000_TmtSeqLogic FC27000_AppSeqLogic

 FC47101_TmtSeqExec FC27101_AppSeqExec

 FC47201_TmtSeqSter FC27201_AppSeqSter

 FC47301_TmtSeqFerm FC27301_AppSeqFerm

 FC47401_TmtSeqCIP FC27401_AppSeqCIP

 FC47601_TmtSeqAgit FC27601_AppSeqAgit

FC48000_TmtCmdHandler FC28000_AppCmdHandler

 FC48001_TmtCmdPID FC28001_AppCmdPID

 FC48101_TmtCmdVlvIsol FC28101_AppCmdVlvIsol

 FC48151_TmtCmdVlvMod FC28151_AppCmdVlvMod

 FC48201_TmtCmdDriveDOL FC28201_AppCmdDriveDOL

 FC48251_TmtCmdDriveVSD FC28251_AppCmdDriveVSD

FC50000_TmtDevDriver FC30000_AppDevDriver

 FC50001_TmtDevPID FC30001_AppDevPID

 FC51001_TmtDevVlvIsol FC31001_AppDevVlvIsol

 FC51501_TmtDevVlvMod FC31501_AppDevVlvMod

 FC52001_TmtDevDrvDOL FC32001_AppDevDrvDOL

 FC52501_TmtDevDrvVSD FC32501_AppDevDrvVSD

FC56000_TmtMsgHandling FC36000_AppMsgHandling

 FC56101_TmtMsgClassify FC36101_AppMsgClassify

FC57000_TmtCommsHandling FC37000_AppCommsHandling

 FC55101_TmtCommsCon2 FC35101_AppCommsCon2

FC59000_TmtDebugEOS FC39000_AppDebugEOS

 FC59101_TmtDebugSim FC39101_AppDebugSim

 FC59201_TmtDebugSeq FC39201_AppDebugSeq

Table 11.2 Full list of template modules and associated application modules

Doc: PS2001-5-2101-001 Rev: R02.00 255-268

11.1.2 Template modules for organisation blocks

(1) The PAL utilises organisation blocks for fault and interrupt handling. Each such or-

ganisation block has a template module that can be copied into the relevant OB to

provide the necessary functions required by the PAL, these templates form the basis of

each interrupt block providing the basic functions and minimum requirements needed

by each.

(2) The template modules for organisation blocks are numbered in the FC 60000 to

FC 60999 range, specifically they have the default OB number plus 60000, thus the

OB 35 template module is given the number FC60035.

(3) The following lists all the template modules for organisation block and their associated

OB number:

TEMPLATE MODULE ASSOCIATED OB INTERRUPT TYPE

FC60001_TmtINrmMainProgram OB00001_IntINrmMainProgram
Controller main program cycle

Called at the start of each Controller cycle

FC60010_TmtINrmTimeOfDay OB00010_IntINrmTimeOfDay
Time of day Interrupt

Called by time and day of week

FC60020_TmtINrmTimeDelay OB00020_IntINrmTimeDelay
Time delay Interrupt

Called after a specified delay has expired

FC60030_TmtINrmCyclic OB00030_IntINrmCyclic
Timed cyclic Interrupt

Called at specified intervals

FC60040_TmtINrmHardware OB00040_IntINrmHardware
Hardware Interrupt

Called when a specified signal is detected

FC60080_TmtIErrCycleTimeErr OB00080_IntIErrCycleTimeErr
Error Interrupt

Maximum cycle time exceeded

FC60082_TmtIErrModuleDiag OB00082_IntIErrModuleDiag
Error Interrupt

Module diagnostics signal received (module fault)

FC60083_TmtIErrModuleChange OB00083_IntIErrModuleChange
Error Interrupt

Module changed, removed or installed

FC60086_TmtIErrRackErr OB00086_IntIErrRackErr
Error Interrupt

Rack failure or fault

FC60100_TmtIErrStartUp OB00100_IntIErrStartUp
Start-up Interrupt

Called when the CPU transitions to RUN

FC60121_TmtIErrProgramErr OB00121_IntIErrProgramErr
Error Interrupt

Programming fault or error

FC60122_TmtIErrIOErr OB00122_IntIErrIOErr
Error Interrupt

IO card access fault

Table 11.3 Template modules for organisation blocks

256-268 Doc: PS2001-5-2101-001 Rev: R02.00

11.2 Document modules

(1) The PAL software is extensively documented and makes use of various naming con-

ventions for variables, constants &c.

(2) The standards and conventions for documenting the PAL software are detailed in a

separate document, the Style Guide [Ref. 010].

(3) The Style Guide, defines a series of rules, guidelines and practices that produce a con-

sistent (and pleasing) programming style. It is the basis for all documentation within

the PAL modules and templates.

(4) The practices specified in the style guide are summarised within the documentation

modules, these are intended to be proforma examples of comments, variable and con-

stant naming and block parameterisation.

(5) The document modules have the following allocations:

NUMBER CLASS FUNCTION

FC61000 Doc

Example block comments, containing the following:

• Block title

• Block description (typical)

• Revision and modification history

• Headings, list and indented text

• Body text

• Table, equations & figures

• Special characters

• Network comments

FC62001 Doc Block allocations and block naming conventions

FC62002 Doc Tag, variable and constant naming conventions

FC62003 Doc UDT and data block variable naming conventions

FC62101 Doc Structuring block comments (general)

FC62102 Doc Building tables, equations and figures in block comments

FC62103 Doc Special requirements for OB 1 block comments

FC62201 Doc UDT and data block comments

FC62202 Doc Block properties and how to use them

FC63001 Doc Version control and revision management

FC65000 Doc Template project documentation

Table 11.4 Document modules for the PAL

Doc: PS2001-5-2101-001 Rev: R02.00 257-268

12. Regulat ory requi rements

12 Regulatory requirements

12.1 Hardware regulatory requirements

12.1.1 GxP requirements

(1) This Project will comply with, and be written to, the standards necessary for Good

Manufacturing Practice (GMP), generally referred to as GxP (see § 2.4).

(2) The GxP requirements are encapsulated in the International Society for Pharmaceuti-

cal Engineering (ISPE) guidelines, referred to as Good Automation Manufacturing

Practice (GAMP), currently at revision 5 (GAMP 5), [Ref. 011].

(3) The hardware requirements are determined by GAMP 5, this provides two hardware

categories:

CATAGORY DESCRIPTION EXAMPLE REQUIREMENTS

1

Standard

hardware

components

Commercially available

equipment

Assembled equipment using

standard components

Instruments, PLCs, valves,

drives, inverters &c.

Electrical panels

Record:

 Version, model No.,

 Serial No. &c.

Verify installation

Terminal schedules &c.

2

Custom built

hardware

components

Specialist laboratory equipment

Hardware design specifically to

suit the process

Custom interfaces

non-standard instruments

bespoke valve or drive

As category 1 plus:

URS

Supplier assessment

Tests against URS

Table 12.1 GAMP 5 hardware classifications

(4) All hardware used within the Project will be of category 1, i.e. standard hardware com-

ponents that are commercially available from multiple sources.

(5) Standard components are often referred to as “commercial, off-the-shelf”, indicating that

these are common, commercially available items that have not been specifically de-

signed or built for this particular application. Such items are readily available, can eas-

ily be replaced and allow for spares holding.

258-268 Doc: PS2001-5-2101-001 Rev: R02.00

12.1.2 Regulatory requirements

(1) The Project hardware: electrical installation, panel, instrumentation and all associated

equipment and wiring will comply with the following standards and regulations:

• Electrical Equipment (Safety) Regulations 2016

• Supply of Machinery (safety) Regulations 2008

• BS 7671 IET Wiring Regulations 17th Edition

• BS EN60204 Safety of machinery - Electrical equipment of machines

• EN 13850 Safety of machinery – Emergency stop function

• EN 60947-5-5 Electrical emergency stop devices with mechanical latching functions

• BS 6739 Code of Practice for Instrumentation in Process Control Systems:

Installation Design and Practice

• BS EN60439-1 Specification for low voltage switchgear and control gear assemblies.

• IEC 61508 Functional safety of electrical/electronic/programmable electronic

safety related systems

12.2 Software regulatory requirements

12.2.1 Regulation and legislative requirements

(1) There are two specific sets of regulations that apply to control systems in pharmaceu-

tical environments:

• CFR 21 Part 11 US Code of Federal Regulations, Title 21, Food and Drugs, Part 11 –

Electronic Records, Electronic Signatures [Ref. 013]

• EudraLex Vol 4

Annex 11

EU Regulations Volume 4: Pharmaceutical legislation – Medicinal Products

for Human and Veterinary use – Good Manufacturing [Ref. 014]

(2) Generally, if a system is compliant with GAMP 5 it will satisfy the EU Regulations

Volume 4, Annex 1119.

19 There are some additional documentation requirements and these are specifically addressed

in the Project Validation Plan (VP), [Ref. 002].

Doc: PS2001-5-2101-001 Rev: R02.00 259-268

(3) CFR 21 Part 11 is concerned with the accuracy, reliability and storage of electronic

signatures; this is more relevant to supervisory systems rather than the Controller soft-

ware of this Project; however, were applicable the PAL software will comply with

these regulations.

(4) The Practical Series Automation Library software will be written to comply with the

above regulations, the software will also conform to the standards specified below:

12.2.2 Software standards

(1) The Practical Series Automation Library software will be written to the standards set

down in the International Electrotechnical Commission (IEC) publication 61131-3: Pro-

grammable controllers - Part 3: Programming languages, listed here as [Ref. 012].

12.2.3 Maintenance and publication of verification certification

(1) The software library will be validated and will be fully GMP compliant (see § 2.4). The

details of the validation process are given in the Validation Plan (VP), [Ref. 002].

(2) The completed verification documents (e.g. test specification, calibration certificates,

&c.) will be made available as secure documents that clearly identify the software mod-

ule and its version number. Each document will be complete with signatures and all

attachments.

12.3 Software restrictions

(1) This software must not be deployed within high-speed applications. The software is

designed to run on systems with a response time of 100 ms or greater.

260-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 261-268

13. PAL user document ation

13 PAL user documentation

(1) TIA portal supports various mechanisms for storing the user documentation of soft-

ware modules; the PAL makes extensive use of this facility.

(2) All software modules within the PAL are extensively documented within the modules

themselves, see the Style Guide [Ref. 010] for details, this includes block headers and

individual network comments.

(3) In addition, the TIA facility for user documentation (referred to as TIA User Documen-

tation) is also used. This facility allows documents to be stored in a variety of formats:

PDF documents, text documents, Microsoft Word documents and also as web pages.

(4) Of all these formats, the PDF format offers the most flexibility, it is readily produced

from the Software Module Design Specifications [Ref. 008] (written in Word DOCX

format), can be configured to use the document headings as navigable bookmarks and

can be rendered in most standard web browser.

(5) The PAL user documentation will also provide links to the various documents gener-

ated within this project. This includes the following:

• The User Guide [Ref. 009]

• The software Design Specification [Ref. 006]

• Individual Software Module Design Specifications [Ref. 008]

• The Style Guide [Ref. 010]

(6) The PAL user documentation will also be developed as a full website. This website

provides a standard format for displaying the PAL user documentation, it has the fol-

lowing appearance:

262-268 Doc: PS2001-5-2101-001 Rev: R02.00

Figure 13.1 PAL Typical PAL user documentation web page

Doc: PS2001-5-2101-001 Rev: R02.00 263-268

(7) The PAL user documentation website will support the following functions in addition

to the standard displaying of text:

• Utilise embedded fonts

• Be responsive to screen resolution (support for phone and tablet

devices)

• Utilise JavaScript and jQuery

• Utilise persistent “sticky” navigation to ensure ease of use

• Provide facilities for:

 • Allowing images to be overlayed on the screen

“lightbox” imaging

• Display code fragments

• Display mathematical formulae

(8) The PAL user documentation website will be distributed within the library software

(distributed as part of the software project itself).

(9) The PAL user documentation website will be available in its own right from with the

PSP internal intranet.

13.1 Training

(1) The User Guide [Ref. 009] forms the principle training document for the PAL software,

formal training based around the User Guide will be provided for all PSP personnel

involved with the deployment and use of the software.

(2) The PAL software requires the implementation of software within the Simatic S7-

1500 and S7-1200 ranges of Controller; as such, it should only be used by those whom

have a detailed knowledge of Simatic Controller and the TIA Portal programming en-

vironment.

264-268 Doc: PS2001-5-2101-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2101-001 Rev: R02.00 265-268

14. References and glossary

14 References and glossary

14.1 Document references

REF DOCUMENT NO. AUTHOR TITLE/DESCRIPTION

001 PS2001-5-0101-001 PSP Quality Plan (QP)

002 PS2001-5-0121-002 PSP Validation Plan (VP)

003 PS2001-5-1101-001 PSP User Requirements Specification (URS)

004 PS2001-5-1111-001 PSP Requirement Traceability Matrix (RTM)

005 PS2001-5-2101-001 PSP Functional Specification (FS) (THIS DOCUMENT)

006 PS2001-5-2211-001 PSP Hardware Design Specification (HDS)

007 PS2001-5-2311-001 PSP Software Design Specification (SDS)

008 PS2001-5-2312-fcNo PSP Software Module Design Specifications (SMDSs)

009 PS2001-5-7111-001 PSP User Guide (UG)

010 PS2001-5-2313-011 PSP Style Guide (SG)

011 GAMP 5 ISPE Good Automated Manufacturing Practice

012 IEC6113-3 IEC
Programmable controllers - Part 3:

Programming languages

013 CFR 21, Part 11 US CFR
US Code of Federal Regulations, Title 21, Food and Drugs,

Part 11 – Electronic Records, Electronic Signatures

014
EudraLex Vol 4

Annex 11

EU

Regulations

Vol 4: Pharmaceutical legislation – Medicinal Products for

Human and Veterinary use – Good Manufacturing

015 EEMUA 191 EEMUA
Alarm systems - a guide to design, management and

procurement

016 EEMUA 201 EEMUA
Control rooms: a guide to their specification, design,

commissioning and operation

017 ISO 8601 ISO Date and time format

018 PS2001-5-2301-001 PSP Register of software modules and revisions

019 PS2001-5-2302-011 PSP Software Control Mechanism (SCM)

Table 14.1 Table of references

266-268 Doc: PS2001-5-2101-001 Rev: R02.00

14.2 Glossary of terms

 ABBREVIATION DESCRIPTIONS

AC Alternating Current

AI Analogue Input

AQ Analogue Output

ASCII American Standard Code for Information Interchange

BS British Standard

BS EN British standards (BS) adoption of a European Standard (EN)

CFR Code of Federal Regulations

CPU Central Processing Unit

CSS Cascading Style Sheet

DC Direct Current

DB Data Block

DI Digital Input

DOL Direct Online

DQ Digital Output

EEMUA Engineering Equipment and Materials Users' Association

EoC End of Cycle

EN European Standards

EudraLex European Union Drug Regulation Authority Legislation

EU European Union

FAT Factory Acceptance Test

FB Function Block

FC Function

FMS Fieldbus Message Specification

FS Functional Specification

GAMP Good Automated Manufacturing Practice

GMP Good Manufacturing Practice

GRAFCET GRAPHe de Commande Etape-Transition (sequence documentation)

GxP Collective abbreviation for GMP and GXP

HDS Hardware Design Specification

HMI Human Machine Interface

HTML Hypertext Mark-up Language

iDB Instance Data Block

Doc: PS2001-5-2101-001 Rev: R02.00 267-268

 ABBREVIATION DESCRIPTIONS

IEC International Electro-technical Commission

IEC 61131-3 IEC standard for the syntax and semantics for PLC programming

languages

IET Institution of Engineering and Technology

IM Interface Module

IO Input/Output

IP Internet Protocol

IQ Installation Qualification

ISPE International Society for Pharmaceutical Engineering

ISO International Standards Organisation

JavaScript A web-based scripting language

jQuery A library of JavaScript objects, commonly used in web development

Ladder Ladder Logic (PLC programming language)

MDF Medium-density Fibreboard

MIT Massachusetts Institute of Technology (Licence)

NC Normally Closed (type of valve)

NO Normally Open (type of valve)

OB Organisation Block

OQ Operational qualification

OSL Operating State Logic

PAL Practical Series Automation Library

P&ID Piping and Instrumentation Diagram

PDF Portable Document Format

PDT PLC Data Type

PI Process Image

PID Proportional, Integral, Derivative — a common type of control loop

PII Process Image of Inputs

PIP Process Image Partition

PIPI Process Image Partition of Inputs

PIPQ Process Image Partition of Outputs

PIQ Process Image of Outputs

PLC Programmable Logic Controller (another name for a Siemens

Controller)

ProfiBus Process Field Buss

Profinet Process Field Net

PSP Practical Series of Publications

QP Quality Plan

268-268 Doc: PS2001-5-2101-001 Rev: R02.00

 ABBREVIATION DESCRIPTIONS

RAL Colour standards (Reichs-Ausschuß für Lieferbedingungen und Gütesicherung)

RAM Random Access Memory

RoC Rate of Change

RTD Resistance Temperature Device

RTM Requirements Traceability Matrix

SCADA Supervisory Control and Data Acquisition

SCM Software Control Mechanism

SDS Software Design Specification

SG Style Guide

SMDS Software Module Design Specification

SoC Start of Cycle

STL Statement List (PLC programming language)

TIA Totally Integrated Solutions (TIA Portal, a Siemens programming tool)

TC Thermocouple (when referring to IO cards)

TCP/IP Transmission Control Protocol/Internet Protocol

UDT User Data Type

UG User Guide

UI or U/I Voltage and current (when referring to IO cards)

URS User Requirements Specification

US United States of America

UT User Data Type (alternative abbreviation)

VAC Voltage (alternating current)

VDC Voltage (direct current)

VP Validation Plan

VSD Variable Speed Drive

 Table 14.2 Glossary

	Title page
	Licence
	Authorisations
	Revision history
	Contents
	1. Introduction
	1.1 Scope and purpose of this document
	1.2 Ownership, status & relationship to other documents
	1.2.1 Ownership of the document
	1.2.2 The status of this document
	1.2.3 Relationship to other documents

	2. Overview
	2.1 A description of the Project
	2.2 The approach
	2.2.1 The structure of the software
	2.2.2 The standard modules
	2.2.3 User interface
	2.2.4 Templates and documentation
	Documentation modules

	2.2.5 Hardware test environment

	2.3 Background to the Project
	2.4 Regulations and standards
	2.4.1 Regulations, legislation and standards

	2.5 Assumptions and limitations
	2.6 Nonconformity
	2.7 Addressing the URS requirements

	3. Hardware
	3.1 Hardware functions
	3.1.1 General arrangements
	3.1.2 The test bed
	3.1.3 The electrical panel
	General arrangements
	Power supply and safety systems
	Panel equipment

	3.1.4 IO signals and access
	3.1.5 Network arrangements
	3.1.6 The HMI
	3.1.7 The Controller hardware

	4. The controller software and structure
	4.1 Internal structure of the Controllers
	4.1.1 Programmable blocks
	Organisation Blocks (OBs)
	Functions (FCs)
	Function Blocks (FBs)

	4.1.2 Data storage blocks
	Data blocks (DBs)
	Instance data blocks (iDBs)
	User Data Types (UDTs)

	4.1.3 Built in system blocks
	4.1.4 Block numbering, quantities and number ranges

	4.2 Execution of Controller software
	4.2.1 Cyclic programme execution
	4.2.2 The process image
	4.2.3 Process images partitions
	4.2.4 Common CPU properties

	4.3 The passing of data between modules
	4.3.1 Block parameters
	4.3.2 Data storage and passing of data to blocks
	4.3.3 Instance data blocks

	4.4 Identification of modules and their type
	4.5 Software Control Mechanism
	4.5.1 Module revision numbering mechanism
	4.5.2 A version control system

	5. The PAL software structure
	5.1 Functional group module numbering
	5.1.1 Functional group summary

	5.2 Module naming conventions
	5.2.1 Block class
	5.2.2 Block function
	5.2.3 Block description
	5.2.4 Block naming restrictions

	5.3 Module symbolic names
	5.4 The PAL structure within a Controller
	5.4.1 Application modules
	5.4.2 Standard modules within the PAL structure
	5.4.3 Interrupt modules within the PAL structure
	5.4.4 Third-party modules

	5.5 Common signals within the PAL
	5.5.1 System signals: parametric access and direct access
	5.5.2 UDT system signals for parametric access
	5.5.3 Bit memory direct access and the PAL system tag table
	5.5.4 System signal naming conventions
	5.5.5 Global logic signals
	5.5.6 Global timing signals
	Isochronous timing pulses
	Isochronous timing square waves

	5.5.7 Cyclically dependent signals

	6. Data handling within the PAL
	6.1 Data in the form of memory bits
	6.2 IO Data
	6.2.1 IO Tag naming conventions
	A note on monostable and bistable output signals

	6.3 Data block data storage
	6.3.1 Data block and UDT naming conventions
	6.3.2 DBs holding recipe data

	7. Application modules
	7.1 Coordinating application modules
	7.2 Marshalling application modules
	7.3 Programmed application modules
	7.4 A summary of application module types

	8. Standard module library
	8.1 System function modules
	8.2 Instrument read modules
	8.3 Interlock and protection modules
	8.4 Safety and safety system modules
	8.5 Calculations and mathematics modules
	8.6 Sequential control
	8.7 Device drivers — control loops
	8.8 Device drivers — Valves
	8.9 Device drivers — Drives
	8.10 Message handling
	8.11 Communication handling
	8.12 Subroutines
	8.13 Debug subroutines

	9. Standard sequence operation
	9.1 Operating states and commands
	9.1.1 Normal sequential operation
	9.1.2 Hold and error hold operation
	9.1.3 Stop and abort operation
	9.1.4 The reset operation
	9.1.5 The pause operation

	9.2 Steps and transitions within a sequence
	9.2.1 Simple steps and transitions
	9.2.2 Alternative branching
	9.2.3 Simultaneous branches
	9.2.4 Jumps and loops

	9.3 Phases within a step
	9.3.1 Phase timings for IEC compliant sequence steps
	9.3.2 Phase timings for non-IEC compliant sequence steps

	9.4 Automatic step timing functions
	9.5 Manual modes of operation
	9.5.1 Semi-manual mode
	9.5.2 Full manual mode

	10. Supervisory system user interface
	10.1 Scope restrictions with the PAL
	10.2 Symbols block icons and faceplates
	10.2.1 Symbols
	Analogue instruments
	Digital instruments
	Isolating valves
	3-way isolating valves
	Bistable valves
	Modulating valve
	Direct online drive
	Reversing direct online drive
	Bistable drive
	Bistable reversing drive
	Variable speed drive
	Reversing variable speed drive
	Multiple speed drive

	10.2.2 Block icons
	Analogue instruments
	Digital instruments
	Control loops
	Isolating valves
	3-way isolating valves
	Bistable valves
	Modulating valve
	Direct online drive
	Reversing direct online drive
	Bistable drive
	Bistable reversing drive
	Variable speed drive
	Reversing variable speed drive
	Multiple speed drive

	10.2.3 Faceplates
	Analogue instruments
	Digital instruments
	Control loops
	Isolating valves
	3-way isolating valves
	Bistable valves
	Modulating valve
	Direct online drive
	Reversing direct online drive
	Bistable drive
	Variable speed drive
	Reversing variable speed drive
	Multiple speed drive

	10.3 Graphical styles
	10.4 PAL Graphical arrangements
	10.4.1 Screen sizes and resolutions
	HMI systems
	PC based supervisory systems

	10.5 Alarm handling
	10.6 User management

	11. Template and documentation modules
	11.1 Template modules
	11.1.1 Template modules for application and standard modules
	11.1.2 Template modules for organisation blocks

	11.2 Document modules

	12. Regulatory requirements
	12.1 Hardware regulatory requirements
	12.1.1 GxP requirements
	12.1.2 Regulatory requirements

	12.2 Software regulatory requirements
	12.2.1 Regulation and legislative requirements
	12.2.2 Software standards
	12.2.3 Maintenance and publication of verification certification

	12.3 Software restrictions

	13. PAL user documentation
	13.1 Training

	14. References and glossary
	14.1 Document references
	14.2 Glossary of terms

