Practical Series

PRACTICAL SERIES AUTOMATION LIBRARY
FUNCTIONAL SPECIFICATION

AUTHOR: MICHAEL GLEDHILL

7
i,

AUTOMATION LIBRARY




Published By: Practical Series of Publications
Published in the United Kingdom
mg@practicalseries.com

Copyright 2021 Michael Gledhill

Document No.: PS2001-5-2101-001
Document Template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto)

LICENCE This document and associated software are made available under the MIT License:

The MIT License (MIT)
Copyright © 2021 Michael Gledhill

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

2-268



DOCUMENT AUTHORISATION

NAME POSITION SIGNATURE DATE
Michael X
Author Gledhill Lead Engineer 0l May 2022

The signature of the author confirms that the document has been prepared in accordance with an
approved document management process, that all content is technically complete and that all relevant
material has been included.

. Frank Project '/’/ﬁ ,
Reviewed by Greenwood Manager 4 / - Z/’ { 01 May 2022
Yeflecallo~

The signature of the reviewer indicates that the document has been checked for technical content and
that it complies with the technical standards, specifications and conventions.

Christopher Quality / )
Approved by Wish Manager { /(// /// 01 May 2022
——— i

The signature of the Approver indicates that the document has been checked for compliance with the
quality management Procedures.

NAME POSITION _SIGNATURE DATE
) v e g
Approved b Alfred Operations / /
PP Y Featherstone Director

The signature of the Approver indicates that the document satisfies the Project quality and validation

01 May 2022

requirements of the Third Party’s quality system.

3-268



REVISION

REVISION DATE REVISED BY DESCRIPTION
. . Properties standardised across all documents
R02.00 0l May 2022  Michael Gledhill
Changes to interrupt functional group names
ROI.00 02 Jul 2020 Michael Gledhill ~ First released

4-268



CONTENTS

1. Introduction |
1.1 Scope and purpose of this document............uuueeeeeeeeccisnnnnnanee 12
1.2 Ownership, status & relationship to other documents......... 13
1.2.1 Ownership of the dOCUMENTt........c.cceerueeurerencrreererrecereeeeesseeeeaeeeseeaene 13
1.2.2 The status of this dOCUMENT........ccouceverveeeeeeeeeeee ettt s 13
1.2.3 Relationship to other documents 13
2. OVEIVIEW .ciiiiiiiiininnnncnninnnnnnnnnnnnensenssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssess 15
2.1 A description of the Project.............viiiiiisiiiiiiiiiiisisisnnnns 15
2.2 The approach ........eeeeeeenennnennnnnnnsssisssssssssssssssssssssssssssssssnnns 19
2.2.1 The structure of the SOftWare .........covveerereneresinsirese et seaeens 20
222 The standard MOAUIES ...ttt esens 22
223 USEI INEEITACE .ottt sttt sssasesessessssssseaes 24
224 Templates and dOCUMENTALION .......ccueeeurecereureeerenreeeneneessenseessenseessensens 25
225 Hardware test @NVIFONMENT.........c.cceueruereereniereessieseses s aesssessesssesaesessesanes 25
23 Background to the Project........eeeeeccciinnnnneeeeeccccisnnnnnneeeneens 26
2.4 Regulations and standards .........cccccciiiiiiiiiiiiiiiiininsissssssssssssnnnns 26
24.1 Regulations, legislation and standards...........ccceereveererencenenencenenencenenenes 27
2.5 Assumptions and limitations.......ccccceuuueueeeeeeccciiinnnnneeeeccccsnnnne 27
2.6 NONCONFOFMILY .cccccunnnnnneeeeicciiissnnnneeeescccssssnnneeeesccssssssssssseessces 28
2.7 Addressing the URS requirements ..........cccccceivvicsssssccicsssnnnns 28
3. HAarAWAre .....ciiiiiiiininninninssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 29
3.1 Hardware functions .31
3.1.1 General aArrangEMENLS ......c.ocvecueeurereureurirerseeisessessasessesessessessssesstsssssssasesssnsens 31
3.1.2 THE LEST DA ...ttt sttt ssssseas 35
3.1.3 The electrical PANEl........oc ettt seeaene 37
3.14 [O 5igNals AN ACCESS ...cuvrueurererinieireeietreeesetseeesessesaessestsessesssesseassseaseacs 43
3.1.5 NEtWOrk arrangements ..........c.eeeeueeeceneecereeseeeeeesessseseesessessessessessesssssessesnns 45
3.1.6 THE HMI ettt et sasesseasessesssssesssssessesesens 47
3.1.7 The Controller hardware ...........cenenensenenesenesesesesesesessesesessensens 47

5-268



6-268

The controller software and StFUCLUFE ........ceeeeeeeeeeeeeceeeccereccescecesseceseecessecens 51
4.1 Internal structure of the Controllers ........cccceeeeeeeeeceenccennnnnes 52
4.1.1 Programmable blOcks .........c.cceeeeurieceniricirericeeeeiciseeeceseeeeeseeeeseeeeenees 52
4.1.2 Data Storage blOCKS .......cceececeneereeeeeeereneenenensessensenessesseaseseeseseesesseenes 53
4.1.3 BUilt in SYStemM BIOCKS .......cueueeeceiereciiereceecicee et eesseaeaess e aseanes 55
4.1.4 Block numbering, quantities and number ranges.........cccccceeveveuvcreneuncnnes 56
4.2 Execution of Controller sOftware .....ccccceeeceeeeccenecceneecenecceneecene 58
4.2.1 Cyclic Programme EXECULION ........c.cccuereerersemeseemsessessessessessessessessesessessees 58
4.2.2 THhe ProCess IMAZE ........ccceecereeereerererceresenessesesessessesessesesesseasesesseasesesseasescsens 6l
423 Process images Partitions ..........ccoeeceeeeencureurescesemeescssemeesessessesessemessessesesseses 62
424 ComMMON CPU PrOPerti€s.......ccuucereeeeeeeseesesemessessesessessessessessessessesses 63
4.3 The passing of data between modules ..............uuuuueeeeereecnnnnne. 64
4.3.1 BlOCK PArameters........ccecrecereuriceneuniceeuseceseaseesssaseesstsssesstasssssssasssesssasssessen 64
4.3.2 Data storage and passing of data to blocks........ccoeeeuvereveererevcerenescenenne 66
433 INStANCE data DIOCKS ...ttt aenens 68
4.4 Identification of modules and their type........cccceecuueuunnneeeenee. 69
4.5 Software Control Mechanism .......ccceeeecceencceneccenncceeeccnneccannees 72
4.5.1 Module revision numbering mechanism .........ccceceeeeecrereerceneneeserseneenennes 72
4.5.2 A VErsion CONEIrOl SYSTEIM .....cuvureevceceeecereeseeenaseseessessessessessesessesssssesssssesas 73
The PAL SOftWare StFUCEUFE ......cceeeeeeeeeeeceeencceenccensccassccsssccassccsssessssscassssassocans 75
5.1 Functional group module numbering...........cceeeeeccirnnnnneeecncen 77
5.1.1 Functional group SUMMArY .........c.ccecreveeneuneneenennecenennecesesseeesesseessesseessenns 78
5.2 Module naming CONVENLIONS........eeeeeeeeeciirnnnneeeeeeescsssnnneneecennes 79
5.2.1 BIOCK ClASS ..ttt 79
5.2.2 BlOCK fUNCLION. .....eeeeet ettt nan 80
523 BlOCK d@SCIIPLION ....ueuiieiuiecieeicietricieaseeeseastesseasiesseasaesstas st ssessensssessen 8l
524 Block Naming restriCtions ..........c.eceecueeureneeseureceseueiesseesesseassesseasssesssssaseses 82
53 Module symbolic names .........uuuuueeeeeeeiiiiinnnnneeeeeieciiisnnnneeeences 83
54 The PAL structure within a Controller...........cuueeeeeeeeeceennennne 85
54.1 APPlIcation MOAUIES ...ttt sseseesens 85
542 Standard modules within the PAL structure ...........eeeeeeeeverercrerennnee 87
543 Interrupt modules within the PAL SEruCtUre..........ccoceeereueeererncenerneererneenee 92
5.44 Third-party MOAUIES........c.cuvcececeeeeeeeeeeeeeeseasessesseasessessessessessesseesasesesas 93




5.5 Common signals within the PAL............ccoeiieeirnerencscnnennnee 94
5.5.1 System signals: parametric access and direct access.........oeceeeveueecrrennene 95
552 UDT system signals for parametric aCCess ........coovuveeeerercereusecuseneesensenes 96
553 Bit memory direct access and the PAL system tag table ...................... 97
554 System signal NaMIiNg CONVENLIONS ........ccueueucueueencmreeerenneeerenneeesenseesnenens 99
5.5.5 Global 10giC SINAIS.....c.vurueeiereceireeireeeteeeecisee et seasens 99
5.5.6 Global timing SIZNAIS ......cuveeueeerrirrerrerrerreieeseieee e eseseessesessesessessessessenns 100
5.5.7 Cyclically dependent Signals...........ocvceveereenceceneeeeneeseeesensesessessessessessenne 101
Data handling within the PAL .............eeeeeecciinnnnnneeeeccccssssnnneeeccccsssnnes 103
6.1 Data in the form of memory bits .....ccccceeeiiieiiiiiiciiccccccennnnenne 103
6.2 JO DAt ..cuueeerrirnneencssneecssssnneecsssannesssssssesssssssessssssssesssssssesssssnns 106
6.2.1 IO Tag NamiNg CONVENTIONS........ccvuruceemreceiurecremsecsstuseesseaseseseasescsseaces 107
6.3 Data block data storage 112
6.3.1 Data block and UDT naming CONVENtions.........cccceeeeeeemseercmesncsseseenens 120
6.3.2 DBs holding recipe data..........ceceereceneurencenenecesisiesseseessessesessesessessenees 121
APPlication MOAUIES .......uuuueeeeeeeeiiiiiiinnnnneeeieccsissssnneeeesccssssssnssseeesscssssssssssae 123
7.1 Coordinating application modules.............ccuuueeeeeenennenneennnne. 124
1.2 Marshalling application modules ..........uuuuuueeeeieeriinnnnnnneeeennes 125
7.3 Programmed application modules..........uuueeeeeecccisnnnnneeeencens 127
74 A summary of application module types 129
Standard module library...........eeeeieiiiiinnnneeeeeccciissnnnneeeeecccssssnssneeeeecens 131
8.1 System function modules 132
8.2 Instrument read modules 133
8.3 Interlock and protection modules...........uuueeeeeeecccnnnnneeeenneen 135
8.4 Safety and safety system modules.............ccccuuuuuueeeercccccnnnne 139
8.5 Calculations and mathematics modules 142
8.6 Sequential control . 150
8.7 Device drivers — control loops .........cceeeeceunnnneeeeecccciisnnnneeee 152
8.8 Device drivers — Valves 155
8.9 Device drivers — Drives 159
8.10 Message handling . 166
8.11 Communication handling 169
8.12 SUDFOULINES ....cooruuriiriinnieninnnieniisnneescssaneenssssnseessssansesssssssenes 171
8.13 Debug subroutines .174




8-268

Standard seqUENCE OPEratioN ........eeeeeeeeecccissnnnneeeeeeccsssssnnseeecescssssssssssaneesees 181
9.1 Operating states and commands..........eeeeeeeeciisennneeeeeeeccnnnes 181
9.1.1 Normal sequential OPEration...........oeeeecererereerenserersensesersesesessesesessensens 184
9.1.2 Hold and error hold operation.............ccenceneeneensescsessessessessennes 185
9.1.3 Stop and abort OPeration........crrceneeenceneeeseseeeseeeeeesenseeeeseeaees 187
9.14 The reSet OPEIratioN.......cc.ceuecueucencueueecuneeeseuseessesseessessesssessesesssusesesssaens 188
9.1.5 The PAUSE OPEIraAtiON .....ccueeceuenemerrenirserensersenessesseesessseseesessessessessesesens 188
9.2 Steps and transitions within a sequence ...........uuuueeeeeecnnnne. 188
9.2.1 Simple steps and tranSItioNs........c.ceucceeererceseurerceseeesesseeesessesessessesessesseaees 190
9.22 Alternative branching ..........cvcvcnennncnensencnessesesesesesesesseseseseeaene 191
9.2.3 SIMUItANEOUS BranChes..........cececececenceceeiceeeeeeeeeeesesessessessessessesesens 194
924 JUMPS AN OOPS ...ouvunererieerieerceeieteeseeeeeeseese e easeseessessessessessessessssessens 195
9.3 Phases within @ step......ccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiisisssissssssssssssnnns 196
9.3.1 Phase timings for IEC compliant sequUence Steps.........ccecoveeeereurecerennence 198
9.3.2 Phase timings for non-IEC compliant sequence Steps.........coccoeeveuennee 199
9.4 Automatic step timing functions ..........eeeeeeeccciinnnneeeeeccccsnnne 200
9.5 Manual modes of operation..........cccccviiiiiiiiiiiiiiiiiiiiiisisissssnnns 201
9.5.1 Semi-manual MOde...........ieccreeereeeeeseseseasesens 201
9.5.2 Full manual Mode...... et eeesensessessessessessessesesns 201
Supervisory system User INtErface ....cccceeeeeeeeeeinineneeenieneneeeeeeneeeeeneeeeeeeeeeeeeene 203
10.1 Scope restrictions with the PAL.............ccoeeccnnnnnnneeeeeccccnnne 205
10.2 Symbols block icons and faceplates...........ccueeeeeeenennnenennnnnnnes 206
10.2.1 SYMDBOIS ...ttt aees 207
10.2.2 BIOCK ICONS ...ttt sasessaasessessessesssssssesens 216
10.2.3 FACEPIALES ...ttt s sasesseasessesstssessssenens 227
10.3 Graphical styles .......uuueeeeeennnnnnnnnnnnnnnnnnnnnnniiminssinsssssssssssssssseees 240
10.4 PAL Graphical arrangements ........ccceeeevuneeeeeeeccccsssnnnnaeecccces 243
10.4.1 Screen sizes and reSOIULIONS.......c.cccucucereeceneeeeeeseeeeessessessessessesseseeasens 245
10.5 Alarm handling ......eeeeeecccnnnnneeeieiccciiinnnneeeeccccssssnnseeeesccssenes 247
10.6 User Management ..cceeeeeeeeeeeeececeeeeceeeeneeneeeeeeeeeeeeeeseseseeseseenes 249
Template and documentation modules ..........uuuueeeeeeecccisnnnnnnneeeecccissnnnnnene 251
1.1 Template modules........uueeeeeeeeccissnnnneeeeecccsssssnneeeecessssanes 252
[1.1.1 Template modules for application and standard modules................... 252
1.1.2 Template modules for organisation blocks...........cccoeeveeveereernererrerncnnees 255
11.2 Document MOdUIES.......uuueeeeeeecciinnnnnneeeeeccsssssnnneeensccssssnnsssane 256




Regulatory reqUIrE€MENtS..... . ueeeeeeeeecccsssssnnnneeeecccssssssnssaeeesccsssssssssssecssssssssnns 257
12.1 Hardware regulatory requirements............cceeeereesunnnneeeenenes 257
12.1.1 GXP reqUIreMENTS.......cceeeecereecereeceresee et sseasesesseasesesseaens 257
12.1.2 RegUIAtory reqUIr€MENLS.......c.cuceecececenceeeneeensenenaeseesessesessesessesscsessens 258
12.2 Software regulatory requirements.........ccceeeesuuennneeeececccsnnnns 258
12.2.1 Regulation and legislative requirements ...........oooeeeceeerercereeencureceseunences 258
12.2.2 Software Standards ... 259
12.2.3 Maintenance and publication of verification certification..................... 259
12.3 Software restrictions 259
PAL user documentation...........eeeeivceeeecssnneeecsssenessssneessssssensssssnsesssssnsseseses 261
13.1 LI 114113 263
References and glosSary ..........eeeeeeeecccciinnnneeeeeecccssssnnneeeecccssssssssseeeseccsssnnes 265
14.1 Document references 265
14.2 Glossary of terms .266

9-268



BLANK PAGE

10-268 Doc:  PS2001-5-2101-001 Rev: R02.00



Introduction

This document is the Functional Specification (FS) for the Practical Series Automation
Library of software modules (the PAL).

This Functional Specification has been produced by Michael Gledhill, under his own
authority as the Lead Engineer of the Practical Series Automation Library of software
modules project (hereafter referred to as the Project).

The Functional Specification defines how the system is to function from an operational
point of view and the design of the system that makes this possible; as such it describes:

(O How the system operates
The functions that are carried out automatically by the system
The facilities available to the users of the system

The equipment used to control the system

@ ® O O

The interfaces between the various parts of the system

11-268



1.1 Scope and purpose of this document

The scope of this document includes the complete control system associated with the
PAL, broadly this includes:

Q) The control system hardware, including the following:

. Simatic S7-1500 Controllers

° Electrical panels
. Instrumentation
. Hardware documentation

@  The control system software, including the following:
o PAL software modules
J Software documentation
The purpose of this FS is to ensure that:
® All the requirements of the Project are properly documented
(@  All requirements are clear, precise and unambiguous
O All requirements are specific, measurable, realistic and testable

The FS and its subsidiary documents: the Hardware Design Specification (HDS)
[Ref- 006], Software Design Specification (SDS) [Ref. 006/, Software Module Design
Specifications (SMDSs) [Ref. 008] and the Style Guide (SG) /Ref. 010] will collectively
provide a design that satisfies all the requirements of the Project specified in the User
Requirements Specification (URS) /Ref. 003].

12-268



1.2 Ownership, status & relationship to other
documents

This document, the Functional Specification (FS) is a fundamental document for the
Project, the ownership of the document (those whom control it and are able to modify
it), its status within the Project and its relationship to all other primary documents are
important factors and are explained below:

1.2.1 Ownership of the document

This Functional Specification has been produced, and is controlled and maintained by
the Practical Series of Publications (PSP).

This Functional Specification and all the referenced documents produced by the PSP
are subject to the change control management procedures for this Project, these are
detailed in the Project Quality Plan (QP), /Ref. 001].

1.2.2 The status of this document

The Functional Specification (this document) is a contractual document and is a deliv-
erable item under the terms of the Project. The Functional Specification is an approved
document and this approval must take place prior to the commencement of any other
Project design activity.

The document must be approved by the Practical Series of Publications Operations
Manager.

1.2.3 Relationship to other documents

The Functional Specification is the primary design document for the Project, it will
form the basis of all the Project design work. The full document flow-path for the Pro-
ject including the Functional Specification is shown in Figure 1.1; full details of this
document within this flow-path can be found in the Project Quality Plan (QP),
[Ref 001] and Validation Plan (VP), /Ref 002].

13-268



TRACING REPORTING

DOCUMENTATION

o
-
>
z
z
Validation Plan o Test Plan Gz)
= TP
X
m
0
User Requirements c
P R
« Specification ;
URS m
z
-
%
< Functional FSgeclﬁcahnn THIS DOCUMENT A
i~
a
a,
a 5
a o3 Hardwa;re D.H ign Proof of Concept
% A x Specification POC
2 HDS
o
=
Software Desi -
oftware Design . m
« Specificafion Siylesgmdz v
SDS @
z
P
<
Design Review
Report DRR v
b
2 ]
E c
g =
3 =]
[}
E
&
E = Hardware Factory Hardware Factory A
=z 2 Acceptance Test Acceptance Test
2 Report TR H-FAT
e
F v
= Software Module urce
] Test Report < <
3. -
» m
wn
-
Integrated Source
Integration Test Code Review <_J
Report SITR Specification SITS SCR
Software Factory y

Software Factory
Acceptance Test [
Report S-FATR

Installation
Qualification

HARDWARE

COMMISSIONING

Installation
Qualification
K

Acceptance Test
S-FAT

DEPLOYMENT

LN3IWAOId3a

KEY

|

Report OQR

System Acceptance
Report
SAR

0

SOFTWARE g g
COMMISSIONING >z
-=

Optional E :

; %o

Operational > z
Qualification 4=

0Q Project activifies, o g

primary flow path(s) z o

Documented evidence,
= reports and credentials

for validation

bk

m

VALIDATED SYSTEM — RELEASED FOR USE t E
w

Figure 1.1 Project Documentation "

Doc: PS2001-5-2101-001 Rev: R02.00

14-268



Overview

This overview sets out a brief description of the Project and its design. It also explains
the approach that is to be taken in defining the specification for the design, this is in
terms of the strategy being deployed and the breakdown of the requirements into de-
tailed functional specifications.

2.1 A description of the Project

The Practical Series Automation Library (PAL) Project is a library of software mod-
ules and templates that are to be made available for the Siemens Simatic S7-1500 range
of Controllers (and to a lesser extent the S7-1200 range).

The PAL is configured and deployed using the Siemens Simatic TTA Portal program-
ming environment.

The PAL software structure is designed such that it is applicable to virtually all indus-
trial applications that can generally controlled by a programmable logic controller
(PLO).

Such applications can generally be thought of as processes that operate with a response
time of more than 100 ms. L.e. the system would not be expected to respond to some
stimuli faster than 100 ms. In practice, a Controller may (and usually will) respond
faster than this; however, a response time of 100 ms is considered to be an acceptable
limit for PLC control.

The Siemens Simatic S7-1500 and S7-1200 range of Controllers are, what would be generally
understood to be, program logic controllers (PLCs); Controller is simply the common term
used within Siemens literature for this type of device. For clarity, where a Siemens Control-
ler is being referred to, the word Controller is capitalised (to indicate it is a Siemens Con-
troller, rather than some non-specific controlling device).

15-268



The PAL software being developed as part of this Project, is considered to be suitable
for use in the following types of industries (this is not an exhaustive list):

o Water and waste water treatment

) Pharmaceutical and batch production
) Brewing and fermentation

o Chemical manufacturing

o Oil and gas systems

o Power plants

. Food and beverage production

At its most basic level, the PAL will be a library of software modules that control the
fundamental aspects of an industrial plant; such modules would for example read the
value of an instrument, operate a valve or drive, perform a calculation &c.

Such software modules are referred to as standard modules, these are fixed modules
that perform a particular function and are identical across all software installations.

The PAL has many such modules; making up the bulk of the PAL.

The PAL also contains application specific modules; these contain software that is ap-
plicable to the plant being controlled.

For example, if a project were to control five valves, there would be an application
module that called the standard valve device driver five times and each instance would
link the standard module to the particular signals and internal storage locations associ-
ated with the valve in question.

16-268



The standard modules within the PAL will be fixed modules, the software within these
modules will be written, tested and validated as part of this Project and at only that
point will the modules be released for use. Once released, the modules must not be
modified or changed in any unauthorised way, to do so would invalidate the software.

The further modification of any of these standard modules (or indeed the addition of
further standard modules) will only take place under the Project change control put in
place by this the Quality Plan /Ref. 001] or under the control of subsequent future pro-
jects.

Application modules are specific to each individual plant within which the PAL is de-
ployed; they will be written for a particular project and are configured to match the
requirements of that project.

Although individual in nature, the type of application modules required by a particular
project will be part of a universal set of such modules, this set of modules determines
the fundamental structure of the software, for the PAL, these are broadly:

. System (internal) signal generation
o Instrumentation

o Safety and interlock systems

. Calculations

o Continuous control

. Sequence control

. Command execution logic

. Device handling (valves, drives &c.)

. Alarm handling

° Communications

17-268



Each application module will also have to conform to the standards, formats and spec-
ifications laid out in the various requirements and design documentation associated
with the PAL project.

As such, a comprehensive set of template application modules will be designed, devel-
oped, tested and issued as part of the Practical Series Automation Library Project.

These modules will serve as example modules to demonstrate how the PAL modules
should be used, and the best practices for doing so.

There will also be a series of documentation modules that demonstrate how the mod-
ules should be documented, commented and named.

Certain modules within the PAL library, will have operator interfaces; typically, these
are modules for reading instruments, managing equipment (drives, valves, loops) and
controlling various aspects of the plant control (sequences for example). These inter-
faces require that the mechanisms for displaying the status of instruments and devices
and for controlling those instruments and devices, be established as part of this design.

Note: Although the interfaces for display and control are defined as part of this Project,
the supervisory systems themselves (SCADA, HMI &c.) will not be developed as
part of this Project, the interfaces (and to some extent the expected appearance of
the graphical symbols that would be used in such systems) will be developed in
their entirety.

18-268



2.2 The approach

The requirements for this Project specified in the User Requirements Specification
(URS) [Ref. 003], are to build a library of Siemens Simatic Controller software modules
that will be applicable to virtually all industrial applications that can generally be con-
trolled by such a Controller.

The design necessary to achieve these requirements can be broken down into the fol-

lowing components:

Q)

®

Determine the overall structure of the software that is to be used
as the basis for all industrial application deployments, this will
form the basis of the required application modules

Determine the standard modules that are to form the library

The design of the end-user interface for certain specific modules
that require such an interface

Establish a series of template and document modules that can pro-
vide example usage of all the standard and application module in
context

Design the hardware test environment that allows modules and
applications to be developed and tested

A brief overview (a summary or abstract) of each of these five areas is given below, this
is intended to provide an introduction to the detailed functional specifications that fol-
low in subsequent sections.

19-268



2.2.1 The structure of the software

Software within a Controller is generally structured in a logical order, and that order
is determined by the order that Controller is to process the information available to it
and then act on that information.

For example, if it were the function of a Controller to close a valve if a tank reached a
target level and open it if below that level, the logical order of events would be:

(D Read the tank level instrument
@  Evaluate the level (is it above the target level)
(®  Acton that information to either open or close the valve

There is no hard and fast rule for how a Controller programme should be structured;
it can be done many in different ways. That said, there are certain common approaches
and some measure of good engineering practice that are generally applied to the struc-
ture of a programme and these will be adopted within the PAL.

The PAL will broadly adopt the following overall software structure:

@ System Functions

Generates common (global) system signals and timing pulses.
Reads Controller cycle and real time clock information.

Reads and identifies any module and system faults.

@ Read Instruments

Reads all analogue and digital instruments.

Analogue instruments are scaled and converted to real engineering units; high and low
alarms and warnings are generated.

Digital instruments signals are filtered and stored

@ Interlocks and protection

Interlocks are overriding conditions that prevent something from happening (or ensure
something does happen) when a particular condition (or set of conditions) is present.

@ Safety systems

Safety systems are used for both machine and personnel protection (emergency stop
systems &c.).

20-268



Calculations

Perform any discreate calculations required by the process, this may be mathematical
calculations, timing calculations or even logical calculations

Continuous Control Logic

Continuous control is the constant monitoring and evaluation of plant devices and process
variables. The continuous control logic assess the condition of the plant and generates
actions to produce the required process conditions.

Sequential Control Logic
Sequential logic operates in a series of successive steps, each step carrying out an action
and waiting for transition conditions to be satisfied before moving to another step.

Sequential logic is often triggered by the continuous logic

Command execution

Both continuous and sequential control logic generate actions, these actions require
something to happen (a valve to open, a drive to start &c.). The command execution
blocks martial these signals and trigger the appropriate response (issues the command).

Device Drivers (control loops)
Control loop device drivers monitor and control the various different types of control
loops employed by an application

Each loop has an individual driver, that determines if fault condition exist, applies any
interlock conditions, &c.

Device Drivers (control loops, valves, drives &c.)
Valve and drive device drivers monitor and control individual valves and drives connected
to the controller.

Each device has an individual driver, that driver determines if the devices is in a healthy or
fault condition, applies any interlock conditions that are associated with the device and
operates the device in response to any command generated within at the command
execution stage.

Messages

Handles Controller messages: alarms, warnings, events and prompts that require some
form of user interaction

Communications

Executes any system-to-system communications (Controller to Controller) and any other
form of communication required by the system (point-to-point serial communications,
ProfiBus field messaging &c.).

21-268



The above list is the complete PAL programme structure, not all Controller pro-
grammes will have all these steps (it depends on the application in question). However,
where a step is used, it must follow the execution order shown in the above list.

For example, if a programme did not require interlocks or safety, but had instruments
and continuous logic, then the continuous logic would follow the read instruments (inter-
locks and safety would not be present); continuous logic must not precede read instru-
ments in the order of execution.

Each of the points in the above list will have generally an application block and, usually,
at least one standard module associated with it; (there are some points, command exe-
cution being one, that do not have any associated standard modules).

2.2.2 The standard modules

The full list of standard modules is given in Section 8. These cover the following as-
pects of the control system:

o System (internal) signal generation

o Instrumentation

o Safety and interlock systems

o Calculations

J Sequence operation

o Device handling (control loops, valves, drives &c.)
° Messages

o Communications

o General purpose subroutines

o Debug functions

The standard modules will form part of the Controller software structure (§ 2.2.1).

22-268



In the context of this Project standard modules are software modules that will carry out
a particular function; an example would be a module that controls the operation of a
valve, such a module would typically do the following:

. Open and close the valve when commanded to do so

° Determine if the valve is in a fault condition (i.e. the valve did not
open when required to do so)

. Provide status information about the valve allowing other sys-
tems (SCADA, HMI &c.) to display the condition of the valve
(i.e. opened, opening, closed, closing, fault, interlocked &c.)

The module would be configurable to accommodate different types of valves and sig-
nalling arrangements:

. Different arrangements of position feedback (none, open only,
closed only or both open and closed)

o Different opening and closing times
. Handle external fault signals (typical for motorised valves)
. Accommodate different energising states (i.e. energise to open or

energise to close)
. Manage different interlock arrangements and signals

The module would also determine how the operator could interface with the valve:

. Provide manual control (operator can take direct control of the
valve)
. Restrict specific manual control function (this ranges from full

control using simulation to override faults, to no control whatso-
ever, even restricting the display of faceplate interfaces)

. Allow or restrict the operator from changing operating parame-
ters associated with the valve

23-268



Similarly, an instrument read module would do the following:

) Read an analogue instrument signal received via an analogue in-
put card and scale it to the correct engineering units

) generate alarms and warnings whenever the signal is beyond a
specific target value (either above or below);

o Alarm or warning may be time filtered (the condition must be
present for a preset time before the alarm or warning is activated)
and each will automatically reset when the signal is back within
the acceptable range by a hysteresis amount.

) Generate out-of-range fault signals if the instrument is outside its
normal calibrated range by more than a specified amount

This document contains a full list of all the standard modules that will be developed
under this Project (listed in Section 8).

2.2.3 User interface

Although supervisory systems such as SCADA and HMI systems are outside the scope
of this Project, the interface between these systems and the PAL software modules is
not; and this must be clearly defined in order to provide the necessary signals to display
and interact with the any supervisory system.

The interface between a supervisory system and the PAL software modules will be
detailed in this document and will include example graphics that may be adopted by
any supervisory such supervisory system.

The interface will be different for different types of equipment (the interface to an in-
strument will for example be completely different to that of a valve); however, a com-
monality of approach (and where possible, signals) will be adopted to give consistency
to this interface.

24-268



2.24 Templates and documentation

A series of template and documentation modules will be provided to give worked ex-
amples of how the PAL software modules should be used in a control system project.

The template modules explain how to use and deploy the various standard and applica-
tion modules and also the various organisation blocks (OBs) that may be required in
various circumstances. The template modules provide detailed example usage for the
standard modules and demonstrate different operating modes and configurations.

The template modules will be fully commented and will apply all the correct formatting
and styling required by the PAL.

A full list of the template modules is given in § 11.1.

Documentation modules

The documentation modules contain summaries of the various styles and comment for-
mats that can be copied and used within software modules. These are essentially quick
reference (proforma) guides that can be used as the outline for application modules &c.

2.2.5 Hardware test environment

A reconfigurable test environment (fest rig) will be provided with the necessary equip-
ment needed to test the software developed under this Project.

The test rig will also be suitable as a test environment for subsequent projects developed
using the PAL.

25-268



2.3 Background to the Project

The Practical Series of Publications has, for some time, had a partially developed set
of standard library modules that have been used on various projects in the past.

Over recent years, there has been an increasing amount of such projects and it has been
decided that these partially developed modules should be expanded to include a full
range of standard modules and that modules should be formally structured into a soft-
ware module library: the Practical Series Automation Library (or PAL).

There has been an increasing amount of pharmaceutical work in recent years and the
necessity to reduce testing time and costs within these projects has been recognised; to
this end the Practical Series Automation Library software module will be fully tested
and validated, removing the need for the extensive design and documentation stages
and the formal testing stages This will already have been done (and written) as part of
this Project and will be issued in verifiable form by this Project.

2.4 Regulations and standards

The environments within which the PAL software can be used include pharmaceutical
applications; as such the software must be written to the standards necessary for Good
Manufacturing Practice (GMP), generally referred to as GxP2.

The Validation Plan (VP), /Ref. 002] provides a justification and determination of val-
idation requirements of this Project. The result of this determination is that this Project
is a category 5 “bespoke” system and will comply with, and be written to, the standards
necessary for GxP. These are the most rigorous standards used for control systems
software and hardware development and use.

2 GxP is a general term for good ... practice, where the x stands for various things, manufac-
turing, distribution, laboratory, clinical, engineering, &c.

26-268



The GxP requirements are encapsulated in the International Society for Pharmaceuti-
cal Engineering (ISPE) guidelines, referred to as Good Automation Manufacturing
Practice (GAMP), currently at revision 5 (GAMP 5), [Ref 011]. Systems that are writ-

ten to the standards in GAMP 5 are said to be compliant systems that can be validated.

Validation is the process of making sure a computerised system (such as a PL.C and its
software) does precisely what it was designed to do; specifically, it is the exercise of
correctly and traceably documenting every requirement of the system and making sure
that that requirement is formally and exhaustively tested.

This Project, the Practical Series Automation Library, will be written to the standards
specified in GAMP 5, it will be a validated and fully compliant GMP Project. The
precise details of the validation process are specified in the Validation Plan (VP) doc-
ument, /Ref. 002].

2.4.1 Regulations, legislation and standards

Section 12 list the various regulatory, legislative and required standards that are to be
applied to the hardware and software.

2.5 Assumptions and limitations

The Practical Series Automation Library of software modules will be developed as part
of this Project. The scope of this development will be limited in this Project to just the
Controller software, it will not include a library of supervisory control and data acqui-
sition system (SCADA) or human machine interface (HMI) graphical objects.

The software will be written to interface with such system in a common manner, but
the SCADA and HMI system will not be developed as part of this Project (though it is
envisaged that this development will take place in a future project).

The PAL software will be validated to the GxP requirements that are applicable to the
United Kingdom at the time of writing.

27-268



2.6 Nonconformity

There are no nonconformities between this document and the User Requirements
Specification (URS) /Ref. 003].

The URS specifies that the sequence control logic will be IEC 61131-3 /Ref. 012] com-
pliant (see the section Sequential logic control, § 4.2.2 of the URS, [Ref. 003]); and in-
deed, the associated standard modules are compliant, satisfying the requirements of the
URS.

There is however, a school of thought that the IEC implementation of sequence control
logic has certain impracticalities; this is associated with the ferminating phase of one
step overlapping the initialising phase of the next step (both occur in the same PLC
cycle, Section #9.39.3 contains a full description of this point). Engineering applica-
tion often prefer that the sequence steps do not overlap in any way (the steps are com-
pletely independent); to satisfy this common engineering practice, a second, non-IEC
compliant, version of the sequence logic modules is included, these maintain the seg-
regation between steps.

The use of these modules is entirely optional.

2.7 Addressing the URS requirements

Where a particular point in the FS addresses a formal requirement raised in the URS,
the point in the FS is given a paragraph number, this allows each point to be uniquely
identified by section number and paragraph number. These specifications will be rec-
orded in the Requirement Traceability Matrix (RTM), /Ref- 004].

Paragraphs that are not numbered are not formally addressing a requirement; these
may be introductions to a section, explanatory texts, notes or clarifying statements.

28-268



0]

@

3

Hardware

The Project hardware consists of a development platform that can be used to both de-
velop and test the software modules produced as the primary purpose of this project.

The development platform is in the form of a “test rig” that is configurable, and recon-
figurable, to provide access to different interfaces, devices and instruments for the pur-
poses of testing and demonstrating the functions of the developed software.

The purpose of the test rig is to provide a set of (typical) devices and instruments that
are common to most industrial applications, as such the test rig is equipped with:

. Two fail closed isolating valves® with position feedback

. Two fail open isolating valves with position feedback

o A single modulating valve* with position feedback

o A single direct online (on/off) motor with rotation sensor

o A single variable speed motor with encoder rotation detection

. A single type K thermocouple probe

. A single resistance thermometer (PT100 type)

3 An isolating valve is a valve that is either opened of closed, it cannot hold an intermediate
position. Normally, an isolation valve moves to a particular state if energised (either opened
or closed, depending on the type of valve) and will return to the opposite state if power is
removed. A normally closed valve is powered to open and returns to the closed state if de-
energised, A normally open valve is powered closed and returns to the open state if de-
energised.

4 A modulating valve can be driven to any position (generally from fully closed to fully open
and any position in between), modulating valves may also give an analogue signal to indicate
the current position

29-268



) The valve limit switch signals, the rotation detection devices and temperature probes
will all be wired to field terminals or to plugs and sockets to allow the system to be
reconfigured to accommodate different device arrangements (for example, valves with
two, one or no limit switch configurations)

) The test rig will also be equipped with various signal generators to simulate common
instrument interfaces:

) 16 illuminated switches for the simulation of digital signals
) Two 0-10 VDC signal generators
o Two 4-20 mA signal generators

) A single function generator (sine, square, pulse, ramp, noise and
arbitrary waveform generation) with £10 VDC signal amplitude

® Monitoring functions will also be available with the following equipment:
o A dual channel oscilloscope
o Two configurable volt meters to display Controller analogue out-

put signals

) The test rig is equipped with two Siemens Simatic Controllers and a touch panel hu-
man machine interface (HMI) as follows:

. Controller 1 — S7-1500 CPU 1515-2PN with IO cards
. Controller 2 — S7-1500 CPU 1511-1PN with IO cards

. HMI® — Simatic TP1200 touch panel

5 The software and configuration of the HMI does not form part of this project, however, it
is anticipated that further projects will develop this aspect of the PAL software and as such
a suitable HMI has been incorporated into the hardware design of the test rig (it being easier
to incorporate it at this stage then modifying the panel under a later project)

30-268



®

®)

(10)

(n

0]

@

O}

)

Two Ethernet networks are provided, the first (a standard Ethernet network) connect-
ing the two Controllers and the HMI together, the second (an industrial Profinet net-
work) connecting Controller 1 to a remote IO rack and the encoder rotation detector.

The two Controllers and network arrangements are required to develop controller to
controller communication software and the Profinet arrangement is the standard form
for remote IO connections and this must also be testable.

This section specifies the functions and facilities provided by the system hardware.

The Hardware Design Specification /Ref. 006/, expands upon the functions and facili-
ties listed here, identifying individual components and providing additional configura-
tion information for the devices listed.

3.1 Hardware functions

3.1.1 General arrangements

The test rig is modular and portable, a preliminary model is shown in Figure 3.1.
The test rig has two primary components:

(#®  An electrical panel holding the Controller equipment, switch
gear, signal monitoring and generation equipment, and various
other electrical components

G A test bed that holds the physical components, the motors, valves,
field devices and various reconfigurable terminals and field wiring
arrangements

The electrical panel (Figure 3.2) is detachable from the test bed (Figure 3.3) for ease of
portability and storage.

All connections between the electrical panel and the test bed are via industrial connect-
ors rated to at least IP65

31-268



Figure 3.1 Test rig general arrangement

Doc:  PS2001-5-2101-001 Rev: R02.00




eL |

o

|
|
|
OEJ

&' 00l

0o 00

=:00000 0D
(]

a5 oo.
o o

1o 0~
i O;OOO:O-O'

=0 ©®

=1 1 1

Figure 3.2 Test rig electrical panel

33-268




34-268

WOz

wwgzot

0

0

[

[

Figure 3.3  Test rig test bed

LgogT




0]

@

3.1.2 The test bed

The test bed is constructed of 20mm thick medium density fibreboard (MDF) with
dimensions of approximately 1020mm X 1600mm X 420mm (H X W X D).

The test bed is equipped with the following devices:

A single-phase direct online (DOL) motor (M001)
A three-phase variable speed drive (VSD) motor (M002)

The DOL motor will have an inductive proximity switch (PD001)
positioned to detect rotation of the drive shaft

The VSD motor will be directly coupled to a 13-bit encoder
(ENCO001) equipped with a Profinet interface

Two normally closed motorised isolating valves (V001, V002)
equipped with fully open and fully closed limit switches

Two normally opened motorised isolating valves (V003, V004)
equipped with fully open and fully closed limit switches

A single 3-way modulating valve (CV001) with 4-20mA position
control and 4-20mA position feedback. The valve will also be
equipped with fully open and fully closed limit switches

A Profinet remote IO rack equipped as follows:
o 8 channel 24 VDC digital input module
o 8 channel 24 VDC digital output module
o 2 channel 4-20mA analogue input module
o 2 channel 4-20mA analogue output module

All remote I0 will be wired to individual terminals on the test bed

35-268



3

)

4

(6

) A series of test terminals that can be configured to match individ-
ual development requirements

) A series of 24 VDC and 0 VDC terminals to supply power to any
additional test equipment

) Easily accessed fused terminals that supply each 24 VDC pow-
ered device

All moving components (motor drive shafts, encoder coupling and internal compo-
nents of the valves) are guarded to IP20 (finger safe), see Figure 3.4. The guards are
fixed and permanent (i.e. they do not open, and are permanently fixed in position with
bolts)

(LT,

Figure 3.4  Guarding for drive shafts

To prevent access to the internal workings of the valves, blanking caps are fitted to all
valve pipework orifices.

All valves are 24 VDC devices (extra low voltage) in terms of both motor operation
and limit switch signals. The valve motors are entirely enclosed and cannot be accessed
without disassembly.

The single-phase motor has a supply voltage of 230 VAC and the three-phase motor
has a phase-to-phase supply voltage rated at 400 VAC. The single and three-phase ter-
minals and wire penetration are entirely enclosed and cannot be accessed without dis-
assembly.

36-268



@

®

©

(10)

(I

(12)

U}

@

(O]

)

The accessible test terminals available on the test bed all operate at 24 VDC only.
24 VDC is the only user accessible voltage available on the test bed.

Various IO signals from the electrical panel (see § 3.1.4) are wired to the test terminals
on the test bed. These provide connections for the various valve signals (limit switch,
open/close demand signals, position feedback &c.), the proximity switch and provide
wired connection points for any additional signals or instruments that maybe under
test.

All plugs and sockets are configured in an inherently safe state, the “live” conductors
will always be connected to a socket that in the disconnected state protects the user
from contact with the conductors.

All electrical connections from the test bed to the electrical panel are via enclosed,
industrial plugs and sockets. These are rated to at least IP65. If disconnected, there is
no physical access to any powered pin within any connector (i.e. in the disconnected
state, all sockets are rated to IP20).

The test bed does not have its own power supply, all power is connected via the elec-
trical panel (and this in turn has have a single mains power connection, see below).

3.1.3 The electrical panel

The electrical panel holds the Controller equipment, switch gear, signal monitoring
and generation equipment, and various other electrical components

General arrangements

The electrical panel is of sheet steel construction, finished in powder coated textured
paint. The paint colour being RAL 7035 (light grey).

The panel has a protection category of IP65 (the panel itself will be IP66, but this will
be degraded to IP65 with the addition of door mounted equipment).

The internal mounting plate is zinc plated.

The panel is 1000mm X 600mm X 400mm (H X W X D) and has two mechanical lock-
ing points each requiring a profiled tool to open the panel.

37-268



4

(O]

Y]

®

®)

(10)

(I

(12)

The panel door will be the full height and width of the panel and will have various cut
outs to hold the signal generation and monitoring equipment.

Power supply and safety systems

The electrical panel has a single mains connection point, requiring a single-phase
230 VAC electrical supply (50-60 Hz).

The electrical supply is connected via a standard EN60309 16 A industrial 3-pole
socket located on the right-hand side of the panel.

The electrical panel has a single 3-pole isolator mounted on the front door of the panel;
this disconnects power to all equipment within the electrical panel

There is a single emergency stop button located on the front door of the panel. The
button is latching (press to activate, twist to reset), EN60947-5-5.

Pressing the emergency stop button removes all electrical energy from the two electri-
cal motors (M001 and M002); power is also be removed from the four isolating valves
(V001-V004), these will return to their failsafe states and the modulating valve
(CV001), this will remain in its last position.

The electrical panel provides a fused 24 VDC supply to terminals on the test bed (via
a plug and socket arrangement) allowing additional instruments and devices to be pow-
ered as necessary.

Mains voltages (single-phase and three-phase) are not directly available on the test bed,
such supplies are connected directly to the two motors installed on the test bed and all
terminations are secured behind fixed, permanent enclosures and entry to those enclo-
sures is via cable glands. These supplies are connected to the electrical panel by
uniquely keyed plugs and sockets (to prevent cross or incorrect connections).

38-268



Panel equipment

Figure 3.5 and Figure 3.6 show the internal and external (respectively) general arrange-
ments for the electrical panel:

01
02
03

05

or)
08

10
11
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Doc:

KEY

FUSED TERMINALS

CIRCUIT BREAKERS/MCBs
EMERGENCY STOP RELAY
POWER SUPPLY
CONTACTORS/OVERLOAD
INVERTER

ETHERNET SWITCH
PROFINET SWITCH
CONTROLLER 01
CONTROLLER 02

TERMINALS (FIELD WIRING}
ETHERNET CONNECTIONS
PROFIBUS CONNECTIONS
CONTROLLER 1 DIGITAL IN
CONTROLLER 1 DIGITAL OUT
CONTROLLER 1 ANALOG IN
CONTROLLER 1 ANALOG QUT
CONTROLLER 2 DIGITAL IN
CONTROLLER 2 DIGITAL QUT
CONTROLLER 2 ANALOG IN
CONTROLLER 2 ANALOG OUT
DOL FEED

VSD FEED

24 VDC FEED

MAINS CONNECTOR

PS2001-5-2101-001

=]

22

@)

1
(oo

<“ 4]
| :
|
i

.

Figure 3.5

Rev: R02.00

Electrical panel — internal arrangement

®

39-268



ETHERNET

000

J

@

DIGITAL IN

(29)

PROFINET
PNL PN2 PN3 PN4 -
e 6 ¢ o
|
CONTROLLER 01
~— ~
DIGITAL IN DIGITAL OUT
C01-03 €01-04
oy o
@ (26) l
25) (26)
ANALOGUE IN ANALOGUE OUT
CONTROLLER 02
C02-01 0202

DIGITALOUT

DOL
1PHASE

3 PHASE

00000006 5000000060

21
22
23
24
25

27
28
29
30

40-268

ETHERNET CONNECTIONS
PROFIBUS CONNECTIONS
CONTROLLER 1 DIGITAL IN
CONTROLLER 1 DIGITALOUT
CONTROLLER 1 ANALOG IN
CONTROLLER 1 ANALOG OUT
CONTROLLER 2 DIGITAL IN
CONTROLLER 2 DIGITAL QUT
CONTROLLER 2 ANALOG IN
CONTROLLER 2 ANALOG OUT

Figure 3.6

31
32
33
34

KEY

DOL FEED

VSD FEED

24 VDC FEED
MAINS CONNECTOR

a1
42
43
44
45
46
47
a8
49
50

MAINS ISOLATOR
EMERGENCY STOP BUTTON
OSCILLOSCOPE

FUNCTION GENERATOR
LAMPS & PUSH BUTTONS
0-10 VDC GENERATOR 01

4-20 mA CURRENT SOURCE 01
VOLT METERS
THERMOCOUPLE & RTD PORT
HMI TP1200 COMFORT

Electrical panel — external arrangement



(4 Internally, the panel is equipped with the following primary components:
o S7-1500 Controller 1 — CPU1515-2PN
o S7-1500 Controller 2 — CPU1511-1PN

. Each controller will have the following IO cards

32 channel 24 VDC digital input module

32 channel 24 VDC digital output module

8 channel UI/RTD/TC analogue input module

8 channel UI analogue output module
. Switch gear is provided for the two motors:

) MO001 — direct online (DOL) equipped with contac-
tor and overload

. MO002 — variable speed drive (VSD) equipped with a
single-phase to three-phase inverter

. An Ethernet switch (linking controller 1, controller 2, the HMI
and providing four external 10/100Mbs Ethernet ports)

. A Profinet managed switch (linking controller 1 to the remote IO
and encoder located on the test bed)

41-268



(s Externally, the panel door is equipped with

16 latching (push on, push off) illuminated switches, the switches
being wired to individual Controller 2 digital inputs, the illumi-
nations being wired to individual Controller 2 digital outputs

Two 4-20 mA signal generators wired to individual Controller 1
analogue inputs

Two 0-10 VDC signal generators wired to individual Controller 1
analogue inputs

Two separate volt meters wired to individual Controller 1 ana-
logue outputs

A single thermocouple (type K) probe port, wired to a Controller
2 analogue input (the thermocouple probe will be provided)

A single resistance temperature device (PT100 type) probe port,
wired to a Controller 2 analogue input (the RTD probe will be
provided)

A dual channel oscilloscope

A dual channel arbitrary waveform function generator (variable
amplitude to a maximum of +10 V)

A single touch panel human machine interface (HMI), see § 3.1.6

Panel isolator and latching emergency stop push button

(9 The left side of the panel (Figure 3.6) is equipped with the various electrical connec-
tions (plugs and sockets) to link the electrical panel with the test bed.

(7 The right side of the panel holds the industrial mains socket.

42-268



0]

3.14 10 signals and access

The test rig is preconfigured and wired with the equipped devices being connected to
specific fixed 1O points as follows:

0

o

4

S

o RAck/ CARD
SYmMBOL ” ADDRESS SLOT  TYPE SIGNAL RANGE DESCRIPTION
ESTOP_HEALTHY 0l 10.0 1-2 32xDlI  24VDC 1/0 Emergency stop healthy/pressed
M00I_RUNNING ol 10.1 1-2 32xDI  24VvDC 1/0 MO001 is running/stopped
M001_TRIPPED ol 10.2 1-2 32xDI  24vDC 1/0 MO001 is heathy/tripped
M002_RUNNING ol 10.3 1-2 32xDI  24VDC 1/0 MO002 is running/stopped
M002_FAULT ol 10.4 1-2 32xDI  24VDC 1/0 MO002 is heathy/inverter fault
MO00I_ROTATION ol 10.5 1-2 32xDI  24VDC 1/0 MO0I rotation sensor (proximity PD00I)
CV00I_OPENED_LIM 0l 10.6 1-2 32xDI 24VDC 1/0 CV00I opened limit switch active/inactive
CV00I_CLOSED_LIM ol 10.7 1-2 32xDl  24VvDC 1/0 CVO00! closed limit switch active/inactive
V00I_OPENED_LIM ol 11.0 1-2 32xDl  24VvDC 1/0 V00! opened limit switch active/inactive
V00!|_CLOSED_LIM ol 1.1 1-2 32xDl  24vDC 1/0 V00! closed limit switch active/inactive
V002_OPENED_LIM ol 1.2 1-2 32xDl  24vDC 1/0 V002 opened limit switch active/inactive
V002_CLOSED_LIM ol 1.3 1-2 32xDl  24VDC 1/0 V002 closed limit switch active/inactive
V003_OPENED_LIM ol 11.4 1-2 32xDl  24vDC 1/0 V003 opened limit switch active/inactive
V003_CLOSED_LIM ol 1.5 1-2 32xDlI  24vDC 1/0 V003 closed limit switch active/inactive
V004_OPENED_LIM ol 1.6 1-2 32xDI  24vDC 1/0 V004 opened limit switch active/inactive
V004_CLOSED_LIM ol 1.7 1-2 32xDl  24VDC 1/0 V004 closed limit switch active/inactive
MO00I_START_CMD ol Q0.0 -3 32xDQ 24VvDC 1/0 MO0| start command
M002_ENABLE_CMD ol QO.1 -3 32xDQ 24VDC 1/0 MO002 enable command
CV00I_ENABLE_CMD ol Q0.2 -3 32xDQ 24VDC 1/0 CVO00! enable command
V00|_OPERATE_CMD ol Q0.3 -3 32xDQ 24VDC 1/0 V00! operate command (energise)
V002_OPERATE_CMD ol Q0.4 -3 32xDQ 24VDC 1/0 V00! operate command (energise)
V003_OPERATE_CMD ol Q0.5 -3 32xDQ 24VDC 1/0 V00! operate command (energise)
V004_OPERATE_CMD 0l Q0.6 -3 32xDQ 24VDC 1/0 V00! operate command (energise)
VGENI ol IW256 I-4 8xAl  +10VDC 0-10VDC  Voltage signal generator |
VGEN2 ol IW258 I-4 8xAl  +10VDC 0-10VDC  Voltage signal generator 2
CGENI 0l IW264 1-4 8xAl 4-20mA 4-20mA  Current signal generator |
CGEN2 ol IW266 I-4 8xAl 4-20mA 4-20mA  Current signal generator 2
M002_SPEED_ACT ol IW268 I-4 8xAl 4-20mA 0-100%  MO002 actual speed
CV00I_POS_ACT ol IW270 I-4 8xAl 4-20mA 0-100%  CVO00I actual position
VMETI ol QW256 I-5 8xAQ 0-10vDC 0-10VDC  Voltage meter | signal
VMET2 ol Qw258 I-5 8xAQ 0-10vDC 0-10VDC  Voltage meter 2 signal
M002_SPEED_DEM ol QW264 1-5 8xAQ  4-20mA 0-100%  MO002 demanded speed
CV00I_POS_DEM ol QW266 1-5 8xAQ  4-20mA 0-100%  CVO00I demanded position

Table 3.1 Controller 01 fixed input and output signals

43-268



RAck/ CARD

YITTOYLINOD

SYMBOL ADDRESS SLOT  TYPE SIGNAL RANGE DESCRIPTION
PBOI 02 10.0 2-2 32xDlI  24VDC 1/0 Push button 01 pressed/not pressed
PBO02 02 10.1 2-2 32xDlI  24VDC 1/0 Push button 02 pressed/not pressed
PBO3 02 10.2 2-2 32xDlI  24VDC 1/0 Push button 03 pressed/not pressed
PB04 02 10.3 2-2 32xDlI  24VDC 1/0 Push button 04 pressed/not pressed
PBO5 02 10.4 2-2 32xDlI  24VDC 1/0 Push button 05 pressed/not pressed
PB06 02 10.5 2-2 32xDlI  24VDC 1/0 Push button 06 pressed/not pressed
PBO7 02 10.6 2-2 32xDlI  24VDC 1/0 Push button 07 pressed/not pressed
PBO8 02 10.7 2-2 32xDlI  24VDC 1/0 Push button 08 pressed/not pressed
PB09 02 1.0 2-2 32xDlI  24VDC 1/0 Push button 09 pressed/not pressed
PB10 02 1.1 2-2 32xDlI  24VDC 1/0 Push button 10 pressed/not pressed
PBI1 02 11.2 2-2 32xDI  24VDC 1/0 Push button | | pressed/not pressed
PBI12 02 1.3 2-2 32xDl  24VDC 1/0 Push button 12 pressed/not pressed
PBI3 02 11.4 2-2 32xDI  24VDC 1/0 Push button |3 pressed/not pressed
PB14 02 1.5 2-2 32xDI  24VDC 1/0 Push button 14 pressed/not pressed
PBI5 02 1.6 2-2 32xDI  24VDC 1/0 Push button |5 pressed/not pressed
PBl6 02 1.7 2-2 32xDI  24VDC 1/0 Push button 16 pressed/not pressed
LEDOI 02 Q0.0 2-3  32xDQ 24VDC 1/0 LED 01 illuminated/off
LEDO02 02 Qo.1 2-3  32xDQ 24VDC 1/0 LED 02 illuminated/off
LEDO3 02 Q0.2 2-3  32xDQ 24VDC 1/0 LED 03 illuminated/off
LEDO04 02 Q0.3 2-3  32xDQ  24VDC 1/0 LED 04 illuminated/off
LEDOS 02 Q0.4 2-3  32xDQ  24VDC 1/0 LED 05 illuminated/off
LEDO6 02 Q0.5 2-3  32xDQ  24VDC 1/0 LED 06 illuminated/off
LEDO7 02 Q0.6 2-3  32xDQ  24VDC 1/0 LED 07 illuminated/off
LEDO8 02 Q0.7 2-3  32xDQ  24VDC 1/0 LED 08 illuminated/off
LEDO9 02 Ql.0 2-3  32xDQ  24VDC 1/0 LED 09 illuminated/off
LEDI0 02 Ql.l 2-3  32xDQ  24VDC 1/0 LED 10 illuminated/off
LEDII 02 Ql.2 2-3  32xDQ  24VDC 1/0 LED I I illuminated/off
LEDI12 02 Ql.3 2-3  32xDQ 24VDC 1/0 LED 12 illuminated/off
LEDI13 02 Ql4 2-3  32xDQ  24VDC 1/0 LED 13 illuminated/off
LED 14 02 QIS5 2-3  32xDQ 24VDC 1/0 LED 14 illuminated/off
LEDI5 02 Ql.6 2-3  32xDQ  24VDC 1/0 LED 15 illuminated/off
LEDI6 02 QL7 2-3  32xDQ 24VDC 1/0 LED 16 illuminated/off
RTDOOI 02 IW256 1-4 8xAl PTI00  -50 to 250°C Resistance thermometer
TCO00I 02 IW264 1-4 8xAl Type K -200 to 300°C Type K thermocouple

Table 3.2 Controller 02 fixed input and output signals

All other (spare) IO points are wired to screw terminals on the test bed to allow other
instruments and devices to be connected as required.

All IO points on the remote IO rack are wired to screw terminals on the test bed to
allow other instruments and devices to be connected as required.

44-268



0]

3.1.5

Network arrangements

The system has two Ethernet based networks; these are shown in schematic form in
Figure 3.7:

Doc:

( ELECTRICAL PANEL

HMI
TP1200
ETHERNET IP: 192.168.1.110

ETHERNET SWITCH
UNMANAGED

S1¥Od 1INYIHLT
O, 0O,;0), 3

CONTROLLER | CONTROLLER 2

CPU 1515-2PN CPU 151 1-1PN
ETHERNET IP: 192.168.1.100 ETHERNET IP: 192.168.1.101
PROFINET IP: 192.168.0.100

PROFINET SWITCH
MANAGED
PROFINET IP: 192.168.0.120

e ETHERNET

e PROFINET REMOT 10

IM155-6 PROFINET
PROFINET IP: 192.168.0.130

MO002 ENCODER ¢

PROFINET §
PROFINET IP: 192.168.0.140

Figure 3.7  Network arrangements

PS2001-5-2101-001 Rev: R02.00

45-268



@

3

)

5

(6

™

The first network is a standard Ethernet network connecting Controller 1, Controller
2 and the HMI together. This network extends to four additional RJ45 type ports on
the side of the panel; allowing other devices (an engineering station or SCADA super-
visory system for example) to be connected to the network.

This standard Ethernet network uses the TCP/IP protocols and has the fixed IP ad-
dresses shown as Ethernet IPin Figure 3.7. An eight-channel unmanaged switch is used
to link all the Ethernet devices and panel ports.

The second network is a Profinet network, this being an industrial Ethernet based net-
work suitable for the transmission of data between a Controller and field devices. The
Profinet network connects Controller 1 (via its second communication port) to an
eight-channel managed Profinet switch within the electrical panel.

The Profinet switch is connected to four Profinet ports on the side of the electrical
panel. One of these ports is used to connect the Profinet network to the remote IO rack
on the test bed and from there to the Profinet encoder connected to M002 (the variable
speed drive).

The Profinet network again uses TCP/IP addressing for each device on the network,
again these are the fixed IP addresses shown as Profinet IP in Figure 3.7

The Ethernet network and the Profinet network are assigned to different subnets, the
Ethernet network using subnet 192.168.1.nnn and the Profinet network using subnet
192.168.0.nnn. This division of subnets is a necessary requirement of the Profinet
standards employed within the Simatic Controllers.

46-268



0]

@

3

0]

@

O}

)

3.1.6 The HMI

The electrical panel is equipped with a Siemens Simatic Touch Panel HMI, this is
mounted on the door of the electrical panel.

The HMI is touch operated (no keys, buttons or mouse) and will have a screen resolu-
tion of 1280 x 800 pixels.

Only the HMI hardware is provided, the unit will not be programmed or configured
as part of this Project.

Note: Although the HMI does not form part of this Project, it is anticipated that further
projects will develop this aspect of the PAL software and as such a suitable HMI
has been incorporated into the hardware design of the test rig (it being easier to
incorporate it at this stage then modifying the panel under a later project)

3.1.7 The Controller hardware

The test rig is equipped with two Siemens Simatic Controllers, the first is based on a
mid-range processor, the CPU 1515-2PN, this has two communications port, the first
port (X1) is connected to the standard Ethernet network. The second port (X2) is used
as a Profinet interface and will connect to the remote 1O rack and the Profinet encoder
associated with M002.

The second processor is based on a low range CPU 1511-1PN processor. This has a
single communication port (X1) that is connected to the standard Ethernet network.

The purpose in having two processors is to allow the development and testing of com-
munication modules capable of transferring data between processors.

Both controllers are equipped with identical sets of ET200MP IO cards:

SLOT CARD TYPE PART NO. DESCRIPTION
2 Dl 32 x 24VDC 6ES7521-1BL00-0ABO 32 channel digital input card

3 DQ 32 x 24VDC 6ES7522-1BLOI-0ABO 32 channel digital output card
4 Al 8 x UI/RTD/TC  6ES7531-7KF00-0ABO 8 channel analogue input card
5 AQ 8 x Ul 6ES7532-5HF00-0ABO 8 channel analogue output card

Table 3.3 Controller 0l and 02 1O cards

47-268



®)

(6

Controller 1 is designated rack 1 and has the following arrangement:

CONTROLLER I — RACK |

SIEMENS SIMATIC
$7-1500

DI 32x24vpc
6ES7515- 6ES7521-
2AM02-0ABO 1BLO0-0ABO

Figure 3.8

DQ 32x24vpc

—

6ES7522-
IBLOI-0ABO 7KF00-0ABO 5HF00-0ABO

Al 8xU/I/RT
—

6ES7531- 6ES7532-

Controller 1/Rack 1 arrangements

Controller 2 is designated rack 2 and has the following arrangement:

48-268

CONTROLLER 2 — RACK 2

SIMATIC
57-1500

A

<« >

L

L =

CPU I511-1 PN

—

6ES7511-
|AK02-0ABO |BLO0-0ABO

—

Figure 3.9

DI 32x24vdc

—

6ES7521- 6ES7522-
IBLOI-0ABO 7KF00-0ABO 5HF00-0ABO

DQ 32x24vpc

Al 8xUN/RIT
—

6ES7531-

—

6ES7532-

Controller 2/Rack 2 arrangements

Doc:

PS2001-5-2101-001

Rev: R02.00



@) The remote 1O rack interfaces directly with Controller 1 via the Profinet network. The
interface module is an IM 155-6 standard ET200SP interface.

® The remote 1O rack is equipped with the following IO modules:

SLOT CARD TYPE PART NO. DESCRIPTION
| DI 8 x 24VDC 6ES7131-6BFO1-0BA 8 channel digital input card

2 DQ 8 x 24VDC 6ES7132-6BFO1-0BAO 8 channel digital output card

3 Al 2 x UI/RTD/TC  6ES7134-6HB00-0CAI 2 channel analogue input card
4 AQ 2 x Ul 6ES7135-6HB00-0CAI 2 channel analogue output card

Table 3.4 Controller 0l and 02 1O cards

©) The remote 10 is designated rack 3 and has the following arrangement:

REMOTE IO — RACK 3

DI=x8 DQx8 Alx2 AQx2

IM 155-6

6ES7155-
6AUOI-0BNO

0vdo-10499-1€1£539
0vd0-10499-¢€1£539
1VD0-009H9-+€ 12539
1V20-009H9-S€ 1539

Figure 3.10 Remote IO/Rack 3 arrangements

Doc: PS2001-5-2101-001 Rev: R02.00 49-268



BLANK PAGE

50-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

3

Q]

®)

®)

The controller software and
structure

The PAL software is intended to run within the S7-1500 and S7-1200 ranges of Sie-
mens Simatic Controllers, as such the PAL software must be compatible with the in-
ternal structures present within these Controllers.

The S7-1500 and S7-1200 ranges of Controllers both operate in the same manner and
(largely) support the same software modules, software commands and have the iden-
tical operating structures within them.

The S7-1200 is restricted in terms of capacity (it supports fewer blocks in total and is
restricted in terms of the amount of IO modules that can be connected to it), and is
also restricted in terms of the programming languages supported, the S7-1200 does not
support the statement list STL® programming language; however, STL will not be used
by the PAL software, All PAL software is written using ladder logic’.

Other restrictions apply to the S7-1200, the amount of data that can be transmitted
over communications networks is limited (for example) and this has some impact on
certain software modules, where such restrictions exist, this is explained in the relevant
Software Module Design Specification (SMDS) /Ref 006].

The following sections explains the pertinent points of the Controller software, its un-
derlying structures and how these structures are adapted to the PAL software modules.

All the software developed as part of the PAL is developed using the Siemens Simatic
programming environment: TIA Portal Professional, Version 16.

6 STL or statement list is a text-based programming language similar to assembler language
7 Ladder logic is a graphical programming language widely used to programme Controllers
and PLCs

51-268



0]

@

3

)

4.1 Internal structure of the Controllers

4.1.1 Programmable blocks

The Simatic controllers are programmed using blocks of different types, there are three
programmable (blocks that contain software instructions) block types:

@ Organisation block (OB) Interrupt driven block called in re-
sponse to a specific event detected
by the Controller operating system

@  Function (FC) A subroutine (with or without pa-
rameters) used to structure the soft-
ware or handle recurring or com-
plex functions

® Function block (FB) Similar to an FC but with an allo-
cated retentive data area

All these blocks are user blocks; i.e. they are blocks that the user can programme, con-
figure and edit. These blocks are used to subdivide the controller programme into
smaller, self-contained modules that perform specific aspects of the programme (e.g.
controlling emergency stops, handling communications, operating a valve &c.).

Organisation Blocks (OBs)

Organisation blocks (OBs) serve as the interface between the Controller operating sys-
tem and the user programme; OB 1, for example, the main organisation block is called
at the start of every Controller cycle and is the only user block that the Controller will
execute automatically (all other user blocks must be called by elements within the user
programme).

Other OBs are called in response to certain events: hardware interrupts, timed inter-
rupts, Controller faults &c. and are given specific numbers, these are discussed in detail
in § #5.4.35.4.3.

52-268



Functions (FCs)

©) Functions (FCs) are used to subdivide a programme into meaningful sections or are
used to handle frequently recurring or complex functions; a typical example would be
to have a FC that control a specific device (a valve for example) and then repeatedly
call this FC for each such device in the system.

® Using FCs to divide a programme into meaningful sections is common practice and
makes for better structuring of the software; allowing the software to be more easily
navigated and faults to be readily identified.

@ This subdivision of the Controller programme will be widely applied within the PAL
and will have the prescribed structure detailed in Section 5.

® FCs will form the vast majority of blocks within the PAL.

Function Blocks (FBs)

©) Function blocks are a special version of functions that are automatically assigned a
data block within which they can store function block specific data.

a9 In practice, FBs are not used in the PAL. However, where third-party software is re-
quired (to interface to specific equipment) these are often provided as FBs and their
use is permitted.

an  The PAL does not restrict the use of FBs in any way, it simply does not require any
itself for the library modules within it.

4.1.2 Data storage blocks

M The Simatic controllers use data blocks (DBs) to store data for the user programme.

@ Data blocks support all the standard data types available to the controller: Booleans,
integers, bytes, floating point numbers, strings &c. In addition, DBs can be configured
using user created data structures, these data structures are referred to as User Data
Types (UDTs).

® Both DBs and UDTs are discussed in the following sections:

53-268



Q]

4

(C)]

@

®

Data blocks (DBs)

DBs are configurable by the user, but do not contain programming instructions (unlike
the programmable blocks of the previous section), they hold data specified by the users
(variables, constants, working values &c). The data stored in a DB can be anything
and of any supported type (Booleans, integers, byte, floating point numbers, strings
&c.). The structure and configuration of a DB is entirely at the discretion of the user;
DBs are a very flexible and convenient mechanism for storing user information.

Instance data blocks (iDBs)

Instance data blocks are a used by function blocks (FBs) as retentive data storage areas.
These preserve data between successive calls of the block and are a requirement when
using function blocks. Each call of a function block requires its own iDB.

User Data Types (UDTs)

The PAL will rely heavily on the use of data structures to pass information between
modules. UDTs are used to define the internal structure of DBs and can be passed as
parameters into functions (FCs) and function blocks (FBs). Within the Siemens Con-
troller these data structures are variously called User Defined Data Types or User Data
Types or PLC Data Types).

These terms are interchangeable, all meaning a data structure (a collection of named
variables made up of standard data types, grouped together in a named structure). The
original name (predating TIA Portal) was User Defined Data Type (UDT), with the
advent of TTA Portal this became either a User Data Type (again UDT) or PLC Data
Type (PDT). They all mean the same thing (a data structure).

For clarity, the term UDT (User Data Type) is used to specify a user defined data
structure (or any of the other names it uses).

54-268



0]

@

3

Q]

4.1.3 Built in system blocks

The Simatic Controllers and the TIA Portal programming environment have built in
system blocks that perform specific functions (for example, a PID control loop,), these
blocks will always be used in preference to developing a new block with similar func-
tionality.

These built in system blocks are pre-configured functions (FCs) and function blocks
(FBs) written and issued by Siemens, they are given numbers in the range 1-999 (this
is a reserved numbering range, reserved for third-party software, and is not occupied
by any of the PAL modules, see § #5.15.1).

Where system function blocks are used, these, like all FBs, require an instance DB (see
§ 4.3.3); these function blocks will generally be contained (called from) within a stand-
ard module, and this standard module will always be a function FC, this standard
module can be considered a wrapper for the system function block. To accommodate
the need for an instance DB required by the contained system function block, the in-
stance DB to be used will be passed as a parameter to the standard function.

Some system blocks have their own system data structures (referred to as system data
types), these are similar to UDTs but are predefined within the TIA Portal program-
ming environment, where such system data types are required, they will be installed
and issued as part of the PAL software).

55-268



0]

@

3

4.14

Block numbering, quantities and number ranges

The number of blocks that can be used in a Controller program is entirely dependent
on the processor running that programme. The pertinent values are shown here:

CPU 1511
Order No. |AKD -0A80
No. of Functions (FC) 2000
FC No. Range 1-65535
No. of Function blocks (FB) 2000
FB No. Range 1-65535
No. of Data blocks (DB) 2000
DB No. Range 1-59999
Table 4.1 S7-1500 CPU number of blocks

CPU 1211C
Order No. oﬁsg-z&;ao
No. of Functions (FC) 1024
FC No. Range 1-65535
No. of Function blocks (FB) 1024
FB No. Range 1-65535
No. of Data blocks (DB) 1024
DB No. Range 1-59999
Table 4.2 $7-1200 CPU number of blocks

1513
6ES7513-
1ALOI-0ABO

2000

1-65535

2000

1-65535

2000

1-59999

1212C
6ES7212-
| AE40-0XBO

1024

1-65535

1024

1-65535

1024

1-59999

1515
6ES7515-
2AM02-0ABO

6000

1-65535

6000

1-65535

6000

1-59999

1214C
6ES7214-
1AG40-0XBO

1024

1-65535

1024

1-65535

1024

1-59999

1516
6ES7516-
3ANOI-0ABO

6000

1-65535

6000

1-65535

6000

1-59999

1215C
6ES7215-
1AG40-0XBO

1024

1-65535

1024

1-65535

1024

1-59999

1517 1518
6ES7517- 6ES7518-
3AP00-0ABO 4AP00-0ABO
10000 10000
1-65535 1-65535
10000 10000
1-65535 1-65535
10000 10000
1-59999 1-59999
1217C
6ES7217-
1AG40-0XBO
1024
1-65535
1024
1-65535
1024
1-59999

All S7-1500 CPUs support at least two thousand blocks and this is more than sufficient

for virtually any application.

The S7-1200 CPUs all support a maximum of 1024 blocks, this is a practical amount
for the simpler type of application at which the S7-1200 CPUs are targeted.

56-268



)

®)

(C)]

™

®

©

The Practical Series Automation Library is designed to fit in the smallest of the S7-
1500 CPUs; the library itself will also fit in the S7-1200 CPUs, but number and com-
plexity of the application modules is constrained by the restrictions of the S7-1200
range.

Irrespective of the CPU (and irrespective of the range, i.e. S7-1500 or S7-1200), the
range of numbers that can be assigned to a given block are the same (i.e. any CPU can
have a function block with the number in the range 1-65535, only the total number of
blocks is limited, not the numbers that can be assigned to them).

The PAL will use this capability to assign meaningful number ranges across all CPUs
and Controller ranges:

BLOCK TYPE PERMISSIBLE NUMBER RANGE PAL NUMBER RANGE IN USE
1-60999
FB, FC 1-65535
(61000 onwards reserved for doc modules)
DB 1-59999 1-59999
OB 1-32767 (not inclusive) 1-122
Table 4.3 Block number ranges

Organisation blocks typically have predefined (default) numbers, depending on func-
tion, in the range 1-122. It is possible to re-allocate these numbers anywhere in the
range 123-32767; however, the PAL will only uses the default (automatically assigned)
numbers.

The permissible number range of FBs and FCs is wider than that for DBs. The PAL
will uses block numbers to denote particular functions; these numbers need to be ap-
plied to both programmable blocks (FBs and FCs) and data blocks (DBs). To ensure
that all block types can be allocated the same range of numbers, the PAL will only use
block numbers in the range 1-59999 for standard and application (obviously, not every
number in this range is used). Template modules extend outside this range (up to
60999), however, template modules that give examples of the application modules are
in the range 1-59999. The range 60000-60999 is used for template modules that give
examples of specific organisation block usage (see § #11.1.211.1.2)

The range 61000-65535 is used by the PAL to store the example documentation mod-
ules.

57-268



(9 These number ranges have been split further to allocate different number ranges to the
different block and data block functions within the PAL. The PAL will use the follow-
ing number ranges for the specified module classifications:

NUMBER RANGE FC/FB CLASSIFICATION ABBREVIATION DB/UDT CLASSIFICATION
00001-19999 Standard modules Std Static data storage
20001-39999 Application modules App Dynamic data storage
40000-59999 Template modules (application) Temp Instance data blocks
60000-60999 Template modules (interrupts) Temp N/A
61000-65535 Documentation modules Doc N/A
Table 4.4 Block and number allocations for the PAL

4.2 Execution of Controller software

O All Siemens Simatic Controllers (S7-1500 and S7-1200) are event driven devices, the
CPU only ever responds to certain specific events (or interrupts). The CPU responds
to a specific event by executing a particular organisation block (OB).

@ For example, if a CPU is started (either by applying power or switching the device
from STOP to RUN) it will execute the start-up organisation block (OB 100). If OB
100 were to call any functions or function blocks, these would also be executed.

4.2.1 Cyclic programme execution

(1) The principal event for running the PAL software is the main cyclic event interrupt.
The Controller triggers a cyclic event that cause the Controller to write output data to
the output cards, read input information form the input cards and then execute the
main cycle interrupt by calling organisation block 1 (OB 1), any user programme, and
any blocks (FCs and FBs) configured by the user and called from within OB1 will also
be executed. When the end of OB1 is reached, the Controller retriggers the cyclic event
and the process is repeated indefinitely (see Figure 4.1):

58-268



Write
Outputs to
cards

(P1Q)

Write
Execute OB1 Outputs to
(and all blocks within it)

Read inputs
from cards
(P)

Read inputs
from cards  Execute OB1

Cycle 1 Cycle 2
Figure 4.1 Cyclic event interrupt (OB 1)

@ The PAL software runs predominantly from within OB 1 (the main cyclic event or-
ganisation block), there will however, be support for additional interrupt events, these
can be timed interrupts (occurring at a specified interval of microseconds, or at a par-
ticular time of day &c.), hardware interrupts (occurring when a particular signal is de-
tected), fault interrupts (for card failure, loss of signal, programming error &c.).

® These additional interrupt events all have a higher priority than OB 1 and will interrupt
the execution of OB 1, causing the programme execution to jump to the associated
interrupt OB and execute any programme that is contained within it. Once the inter-
rupt OB has been executed, OB 1 will be resumed from its last point:

4 Priority

Read partial Execute interrupt Write partial
Inputs 0B outputs
(PIPI) (PIPQ)

Write

Read input: . ,
Outputs to ff:m':a':z: 0B1 OB1 Execution interrupted

cards

(PI1) (PIQ)

v

Figure 4.2  Interrupting OB 1 execution

4 If an additional interrupt occurs whilst the first interrupt is active, and the additional
interrupt has a higher priority than the first interrupt, this interrupt, will in turn be
interrupted:

59-268



A Priority

SECOND INTERRUPT

FIRST INTERRUPT

Write Write

Outputs t Outputs t N
uc::'d: ° uc::d: ° OB1 Execution interrupted

(PiQ) (PIQ)

Figure 4.3  Multiple interrupts with increasing priorities

©) If the second interrupt has the same, or a lower priority than the first interrupt, the
second interrupt would be executed immediately after the first was completed:

FIRST INTERRUPT | SECOND INTERRUPT
4 Priority

[:?‘tai‘:l First CEAiD) biad Second

partial partial .
Interrupt interrupt
Inputs OB outputs | Inputs OB

(PIPI) (PIPQ) | (PIPI)

Write Write
Outputs to Outputs to
cards cards

(P1Q) (P1Q)

OB1 Execution interrupted

Figure 4.4  Multiple interrupts with the same or lower priority

® OB 1 has the lowest interrupt priority and any other interrupt will take precedence over
it.

@ The PAL will include preconfigured interrupt OBs that record the exact time and date
the interrupt was called.

60-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

3

)

4.2.2 The process image

The process image is a mechanism internal to the Controller (and executed automati-
cally by the Controller operating system); essentially, it is the reading and writing of
all the input and output card data and copying it either to (in the case of inputs) or
from (in the case of outputs) an internal storage area within the Controller (referred to
as system memory). This storage area is called the process image (PI), the process image
has two components: the process image of inputs (PII) and the process image of outputs

(PIQ).

The process image is essentially a snap-shot of the state of all IO signals taken at the
start of the Controller cycle and stored in the system memory of the controller.

The concept of a process image is common to all PLCs, not just the Siemens Simatic
Controllers. It generally provides the following benefits:

. The signal state of an input is the same throughout the Controller
cycle (it gives signal consistency to all software elements within a
programme cycle)

. Access to the process image is considerably faster than accessing
the IO cards directly

. The state of outputs can be read by the user programme (outputs
to cards are write only and the data cannot be read-back). The
reading of output states in the process image is possible because
the data is stored in system memory which has read/write access

. Multiple state changes of an output during the Controller cycle
will have no direct effect on the output from the card, the final
state of the output will not be written to the card until the end of
the cycle (effectively at the start of the next cycle)

The PAL is fully compliant with the process image concept and will expect all 1O sig-
nals to use the process image.

61-268



0]

@

3

)

®)

(6

4.2.3 Process images partitions

Process image partitions (PIP) are only available to the S7-1500 range of Controllers
the S7-1200 range simply has the cyclically driven process image (§ 4.2.2).

Process image partitions are optional and can be applied to any interrupt driven event
that triggers the execution of a particular organisation block.

IO can be assigned specifically to a process image partition, and this data will then be
updated whenever the associated OB is triggered.

Note: When using process image partitions, the whole 10 module must be assigned to
a particular PIP, it is not possible to add certain signal within a module to one
PIP and other signals to a different PIP.

The process image partition is designed to be used where it is necessary to update the
process image mid-cycle; for example if a timed interrupt were set to interrupt every
2 ms and the OB 1 cycle time were 30 ms, then the interrupt would occur approxi-
mately 15 times within a particular cycle, if the interrupt did not use a process image
partition, any IO signals that were being used by it would have the same state each
time (the process image would only update at the start of the OB 1 cycle), the PIP
forces the IO states associated with the interrupt OB to be updated each time it is called.

Process image partitions again have two components: process image partition of inputs
(PIPI) and process image partition of outputs (PIPQ). Up to 31 separate process image
partitions can be supported by the S7-1500 range of Controllers.

The use of process image partitions is not common practice (the facility is used under
very specific conditions); the PAL however, is compliant with the process image par-
titioning concept and it may be used wherever it is required by the user.

62-268



0]

@

(©)]

4.2.4 Common CPU properties

The PAL is not associated with a particular CPU; it will work on any S7-1500/1200
CPU. It does however require that certain property settings associated with the selected
CPU are activated (and some deactivated).

Generally, the PAL uses the default settings for CPU properties (minimising the
changes from the default arrangements); however, there are some CPU settings
changes that are required:

. System and clock memory allocations
. Communication settings

Specifically, the following setting must be adopted within the CPU properties (ac-
cessed via TIA Portal):

SYSTEM AND CLOCK MEMORY

AREA OPTION SETTING

Enable the use of system

This is unticked by default must not be enabled
memory byte

System memory bits

Enable th f clock
Clock memory bits nale the use of cloc This must be enabled; the box must be ticked

memory byte

Address of the clock memory

Set to the value 10
byte (MBXx)

Clock memory bits

PROTECTION AND SECURITY

AREA OPTION SETTING

Permit access with PUT/GET

Connection
communications from remote  This must be enabled; the box must be ticked

mechanisms
partner

Table 4.5 Default CPU setting adjustments for the PAL

63-268



0]

@

3

)

5

U]

4.3 The passing of data between modules

The Siemens Controller functions (FCs) listed in § 4.1.1, will form the basis of all soft-
ware modules within the PAL, each module being assigned to a particular function or
function block.

Each PAL standard software module is stored in a function (FC) and each module will
require information to be passed to that module, this could be simple information such
as the state of a valve limit switch (a simple on or off digital input) or may be a more
complicated data structure determining the full range of options and configuration for
the module.

All this information is passed in the form of parameters to the blocks. The blocks that
hold standard modules will not directly access any data within the Controller (i.e. di-
rectly access an 1O point using a hard-coded reference), all data is passed to the block
indirectly through the use of block parameters.

All data passed to a block will either be Input/Output signals (assigned to the IO cards
attached to the Controller) or data stored in data blocks, this data will always be spec-
ified in the form of UDTs.

Memory bits will only be used to implement the Controller clock memory functions
(see §#6.16.1) and to store specific Controller timing and logic state signals (see
§ #5.5.35.5.3). Memory bits will not be used to store programming data, this will al-
ways be done in data blocks, generally with the use of UDT data structures.

4.3.1 Block parameters

Both FCs and FBs accept parameters as a form of passing data to and from the block,
there are four types of formal parameters that can be used by an FC ore FB:

M  INPUT
@ OuTtpuT
3 INOuT
@  RETURN

64-268



@

3

Q]

)

(O]

The fourth group (RETURN) will not generally be used within the PAL (this is common
practice within wider PLC programming circles). It is included to make the blocks
compatible with the IEC requirements for programming languages. By default, the
RETURN parameter is given the same symbolic name as the block and is declared as a
VOID data type (VOID types are essentially “empty” data types that have no value and
cannot hold a value). If the RETURN parameter is declared as a void, it will not be
visible when the block is called, again this is standard procedure within the PAL.

The remaining parameter types (INPUT, OUTPUT and INOUT) are widely used
throughout the PAL (particularly by the standard blocks).

These three types of parameters have the following definitions and will have the fol-
lowing uses within the PAL:

PARAMETER DEFINITION PAL USAGE
For passing digital and analogue input signals
Read only data — can be read by a to the block
INPUT .
block but not modified For passing read only UDT (static) data to a
block

Write only data — can be written to
OuTPUT by a block but not read (attempting to
read the data will return an error)

Used by the block to write to digital and
analogue output signals

Data can be both read and written to For reading and writing UDT (dynamic) data

INOUT by the block by the block

Table 4.6 Common block parameter types and their usage

Blocks within the PAL use individual block parameters to pass input and output (I0)
signals to the block, these are real 10 signals assigned to IO cards (not internal memory
bits within the Controller). These are assigned on a signal-by-signal basis, and each
signal has its own parameter.

For example, a standard PAL module to monitor and control an isolating valve would
have INPUT parameters to pass the state of the valve open and closed limit switches to
the module and an OUTPUT parameter to either energise or de-energise the valve (i.e.
make it open or close).

65-268



0]

@

3

)

)

(6

4.3.2 Data storage and passing of data to blocks

In addition to IO signals, each module will generally require a considerable amount of
additional data to be stored, this data will reflect the configuration of the block (e.g.
for a valve device driver this will hold valve operation times, determine the number
and type of limit switches available to the valve, whether the valve is energise to open
or energised to close &c.) and the current state of the block (e.g. is the valve currently
opened or closed, is the valve in a fault condition, is it in the process of changing state
&ec.).

Depending on the nature of the module, there may be a considerable amount of such
data and all this data will be stored in data blocks. Within the PAL, this data will fall
into two categories:

(M) Static data
@  Dynamic data

Static data specifies constant (preset) values that have some meaning for the block in
question (e.g. the opening time of a valve, the hysteresis of an alarm setpoint, limit
switch arrangements for a valve &c.). Static data does not change (the data is usually
configured during the commissioning of the plant and then remains fixed and unchang-
ing for the lifetime of the plant).

Dynamic data is live, operating data (e.g. if a valve is in the process of opening, the
elapsed time of the operation will be stored in a dynamic data area).

To expand on this example, if a valve is designed to change from closed to open within
a maximum of 10 seconds, then the static data would have some variable that would
be fixed at a value of 10.0 (seconds). The dynamic data would have a variable that
counted down from the 10.0s value specified by the static data to zero when the valve
was instructed to open.

This data, whether static or dynamic must be passed to the block as parameters. To do
this, the data will be configured as data structures within the data blocks. These data
structures will be configured as user data types (UDTs). Each block will generally have
two such structures, one for static data and one for dynamic data; these structures will
be unique to the block in question.

66-268



@

®

©

(I

(12)

(13)

(14)

Static data will be passed to a block via an INPUT parameter (i.e. read only), this is data
that is required by the block, but will not be modified by it. This static data will be
stored in a data block using a UDT data structure, the INPUT parameter to which this
data is linked, will use the same UDT as its data type.

Note: Other data may also be passed in this way, specifically, this will be information
that will not be modified by the block, system information for example.

Dynamic data will be passed to the block via an INOUT parameter (i.e. read/write
data), this is data that is required by the block, and that will be modified by it. This
dynamic data will be stored in a data block using a UDT data structure, the INOUT
parameter to which this data is linked, will use the same UDT as its data type.

Static and dynamic data will always be stored in separate data blocks, designated as
static and dynamic and these will have their own numbering ranges:

DB NUMBER RANGE TYPE OF DATA
00000-19999 Static data
20000-39999 Dynamic data
Table 4.7 PAL static and dynamic data block numbering ranges

The purpose of this separation of static and dynamic data is that the static data is con-
stant and can be verified against a known “offline” version of the software to establish
that the data is correct, the dynamic data is “live data” and is constantly changing and
such verification would be meaningless.

By separating static data from the dynamic data, it provides and additional means of
verifying the software installed in a Controller is the correct version of the software.

Where a standard module has a static data assignment or a dynamic data assignment
or both (this is most cases), then UDTs will be defined to hold the static data and the
dynamic data. The static UDT will be given the same number as the standard block
with which it is associated, the dynamic data will have the same number plus 20000.

For example, if FC10001 is used, the static UDT will have number 10001 and the
dynamic UDT will have number 30001.

67-268



(15)

(16)

U]

@

3

5

Similarly, the data blocks that hold the static and dynamic data will have the same
numbers as the UDT.

Extending the previous example, FC10001 would have static UDT10001 and Dy-
namic UDT30001, these would be stored in DB10001 (static data) and DB30001 (dy-
namic data).

4.3.3 Instance data blocks

Where a function block (FB) is used, this will have an associated instance data block
(iDB), this is a requirement of the Simatic Controller software itself.

Generally, only third-party software will use FBs, all standard and application modules
will be stored in functions (FCs) that do not require instance data blocks.

The instance data block assigned to a particular function block will be in the numbering
range:

DB NUMBER RANGE TYPE OF DATA
40000-59999 Instance data blocks
Table 4.8 PAL instance data block numbering range

The actual number can be freely allocated within this range; i.e. the instance DB num-
ber does not have to match the FB number, the numbering should however reflect
logical grouping of the instance DBs.

68-268



4.4

Identification of modules and their type

() There will be five types of software modules included with the PAL:

@

Standard modules

Application modules

Template modules

Document modules

Interrupt modules

Library modules that carry out a
particular function, for example reading
and scaling an instrument connected to
the Controller.

Project specific modules that coordinate
the use of the standard modules and
apply appropriate logic and signal
conditioning relevant to the project in
question

Example modules that show how
application modules should be
constructed and how standard modules
should be used

Modules containing information
explaining how to document project
specific modules and examples of such
documentation

These are specifically the organisation
blocks used to process different types of
interrupt operations and fault detection

@ Within the PAL these individual types of modules are assigned to functions (FCs). The
interrupt modules are exclusively assigned to organisation blocks (OBs).

69-268



@ The following types of data structures and data blocks are supported by the PAL:

@ Static user data type Data structures specific to each stand-
ard module that hold fixed, unchang-
ing, configuration data for the module

@ Dynamic user data type Data structures specific to each stand-
ard module that hold live, variable, op-
erational data for the module

® Static data block A data block that holds the multiple in-
stances of the static UDT associated
with the standard module (one instance
per call of the module)

@ Dynamic data block A data block that holds the multiple in-
stances of the dynamic UDT associated
with the standard module (one instance
per call of the module)

G Instance data block A data block that holds function block
data for a standard module that is allo-
cated to a function block (FB) rather
than a function (FC), there is one in-
stance data block allocated to each in-
stance in which the FB is used

) To ensure that the PAL software is compatible with the Siemens Simatic Controller
internal structures, the blocks are allocated numbers ranges within the permissible
range of block numbers given in § 4.1.4.

70-268



) The type of module is identified by block number allocated to it. This is summarised
in the following table:

BLOCK TYPE ~ NUMBER RANGE  CLASS DESCRIPTION
OB 00001-00122 Int Interrupt handling modules
FC/FB 00001-19999 Std Standard modules
FC/FB 20001-39999 App Application modules
FC 40000-60999 Tmt Template modules
FC 61000-65535 Doc Document modules
ubDT 00001-19999 St_ Static data structure
ubT 20001-39999 Dy_ Dynamic data structure
DB 00001-19999 St_ Static storage data block
DB 20001-39999 Dy_ Dynamic storage data block
iDB 40000-59999 iDB Instance data blocks (associated with FBs)

Table 4.9 Full range and type of module numbering for the PAL

® Each of these number ranges is broken down further in relations to the subdivisions
within the PAL software structure (see § #5.15.1).

71-268



U]

@

0]

@

4.5 Software Control Mechanism

The Validation Plan /Ref. 002] Appendix A requires that a robust mechanism be put in
place to manage the revision control for the software modules developed as part of this
Project. This mechanism is encapsulated in a separate Software Control Mechanism
(SCM) document /Ref. 019].

There are two principal requirements for the PAL Software Control Mechanism:

()  Establish a mechanism for numbering and storing the various
software module versions throughout the development, test and
qualification phases of the Project

(@  Establish a mechanism for the storage and tracking of software
module revisions within a formal Version Control System (VCS)

Expanding on these subjects:

4.5.1 Module revision numbering mechanism

The Validation Plan (VP) [Ref. 002], established that software version control was a
necessary requirement for the project and that all software modules within the Project
must have individual revision and status information that covers all phases of the soft-
ware development:

o Software development (system build)

o Testing (at both a modular and integrated level)
o Qualification

. Release for use

The revision system must also be applicable to the TTA Projects as a whole (rather than
just the individual modules within the projects); to clarify, the software modules do
not exist within their own right, each software module is stored in TIA Portal project
that expands as each new software module is developed.

72-268



0]

@

3

)

®)

()

™

®

4.5.2 A version control system

A version control system (VCS) is a mechanism for recording changes made to any
files within a software project. It records all the changes, what files were affected by
each change and a reason explaining why those changes were made. It also records
who made the change and the time and date of the change.

The VCS keeps a record of every change made within the project and allows any file
that has been modified to be reverted back to a previous state. It means that if a soft-
ware module is changed, the original module can always be recovered by the VCS.

Version control systems generally have other facilities too, they are able to show the
differences between two different versions of the software (even down to lines within
a file), they allow multiple people to work on the project at the same time—even to
work on the same file at the same time, and they provide mechanisms for resolving
conflicts (where two different people have modified the same section of a file).

Version control systems can be applied to any kind of project; it can be a website, a
documentation project, a software application, engineering control system—anything
at all, as long as it’s a collection of files that can be stored on computer.

The version control system does not itself edit or modify any of the files within the
project; it simply records the changes and, where it recognises a file type, is able to
display those changes that have occurred to it.

The version control system does not care what software application is used to modify
files within the project, it can be anything: text editor, word processor, file manager,
graphics editor, specialist programming application &c. It cares only, that a file under
its control has been modified and why the modification was made.

Version control systems simply record any change made within a collection of files
(the project), who made it, when it was made and the reason why. That is all.

With the advent of TIA Portal V16, Siemens introduced the concept of Workspaces,
these are environments (essentially, just Windows folders) into which the

73-268



©)

(10)

(n

(12)

(13)

programmable aspects of a TIA Project (blocks, data types and tags) can be exported
(or imported) as XML?files.

This is a new concept, previous versions of TIA Portal did not offer the facility of ex-
porting software modules in a widely accessible (text based) format, the software could
only be read by the proprietary TIA Portal package itself.

The benefit of this new Workspace facility is that the exported files are stored as XML
files, and XML files are an ideal format for version control systems (VCSs), version
control systems can read every aspect of an XML file and identify any changes that
have been made, and, just as importantly, keep track of all these changes. Additionally,
each block, data type and tag table is exported as its own XML file and as such allows
the tracking of each individual element within the software library. It would for exam-
ple, be possible to identify all the changes made to a particular Function (e.g. FC01001)
and determine at which point in the revision history each change was made.

This was the purpose of Siemens adding this Workspace facility to TIA Portal, it al-
lows proper version control of the software being developed in a TIA Portal project. It
also does not require a proprietary Siemens VCS, any and all VCS systems can track
text-based files (it is fundamentally, what they were designed for).

To make things easier, Siemens also allow third-party “add-ins” to be created that can
interface with these new Workspaces. One such add-in (created by Siemens) provides
an interface to the version control system Git and its online partner GitHub.

The Git add-in allows TIA Portal to interface with a Git controlled Workspace, Git
also supports various graphical user interfaces, in particular, Git can be controlled and
managed from within the Visual Studio Code (VSC) text editor, VSC is widely used
within the Practical Series of Publications and will be the preferred solution for provid-
ing a VCS interface for the PAL software.

8 XML or eXtensible Mark-up Language files are text files that are both machine and human
readable; very similar to HTML (HyperText mark-up Language) and widely used to store
documents in a manageable and readable format; it contains both content and structure.

74-268


https://git-scm.com/
https://github.com/

0]

@

(©)]

)

®)

The PAL software structure

All non-documentation’ software modules within the PAL (be they standard modules,
application modules, or template modules) are grouped into subcategories or functional
groups that identify more closely the purpose of each module.

These functional groups also determine the execution order of the PAL software. The
PAL has a predetermined order of programme execution; this is shown in Figure 5.1.
This shows the complete PAL programme structure.

The structure of Figure 5.1 is the complete structure of the PAL software and is appli-
cable to any software developed using the PAL. Not all Controller programmes will
require all these groups (it depends on the application in question). However, where a
group is used, it must follow the execution order shown in Figure 5.1.

For example, if a programme did not require INTERLOCKS AND PROTECTION or
SAFETY SYSTEMS, but had READ INSTRUMENTS and CONTINUOUS LOGIC, then the
CONTINUOUS LOGIC would follow the READ INSTRUMENTS (the INTERLOCKS and
SAFETY would not be present); CONTINUOUS LOGIC must not precede READ
INSTRUMENTS in the order of execution.

Each of the steps in Figure 5.1 (referred to as functional groups) usually has both an
application block and at least one standard module associated with it; (there are some
steps, COMMAND EXECUTION being one, that do not have any associated standard
modules).

9 Documentation modules contain examples of how the Controller software is commented,
and are applicable to all modules irrespective of the function of the module.

75-268



76-268

(global) system signals and timing pulses.
n and real time clock information.
any module and system faults.

digital instruments.

re scaled and converted to real engineering units; high and low
generated.

als are filtered and stored.

are overriding conditions that prevent something from happening (or
mething does happen) when a particular condition (or set of conditions) is

Safety systems are used for both machine and personnel protection (emergency stop
systems &c.).

Safety systems

\

Calculations

Perform any discreate calculations required by the process, this may be mathematical
calculations, timing calculations or even logical calculations

control is the constant monitoring and evaluation of plant devices and
les. The continuous control logic asses the condition of the plant and
ions to maintain the required process conditions.

s in a series of successive steps, each step carrying out an
nsition conditions before moving to another step.

triggered by the continuous logic

al control logic generate actions, these actions require
to open, a drive to start &c.). The command execution
trigger the appropriate response (issues a command).

ontrol the various different types of control loops,

Device Drivers .
n application

driver, that driver determines if the devices is in a
s any interlock conditions that are associated with the
e in response to any command generated at the

s: alarms, warnings, events and prompts that require
Messages s promp 9

communications (Controller to Controller) and any
n required by the system (point-to-point serial
essaging &c.).

Communications

Figure 5.1 Programme structure

Doc: PS2001-5-2101-001 Rev: R02.00



Functional group module numbering

5.1

The PAL functional groups are allocated numbers within the block types of Table 4.9:

0]

d3AY3SIY
d3AY3S3Y

[eoidhy swwon

[eo1dAy swre)y

(GEVN-EREL]
(GEVN-ERER]
(@EVN-EREL]
[ea1dA3 seALIq

[eo1dAy seAjep

[e21dAy dooj jou3uoD)

d3AY3S3IY

[eo1dAy spurwiwoD)

[e21dAy Aaages

NOILDONNA

uuugg
uuugg
uuuy/g
uuugg
uuugg
uuupg

uuugg

uuuzg
uuu|g
uuupg
uuugy

uuugy

SSV10

(Do3) 8ngep 924> jo pug
d3AY3S3Y

Suipuey uonedIUNWWOD)
Sulpuey wue)y
(@EN-EREL|

(@ENN-EREL|

d3AY3SIY

Supuey sjnpow aALIq
Suipuey sjnpow aAjeA
Buipuey dooj jo.auo)
d3AY3SIY

|PUBY pueBWwWO?)

Suijpuey suonenoe)

ssunnouqgns 3ngqaqg
saunno.Jqng
S9|NPOW UOHEDIUNWIWOY)

sa|npow SuluJem/wIe)y

(@3Ay¥3sTY) “9Ap 20118
(@3AY3sTY) “9Ap 2o118Q
(@3Ay3sTY) 49np 3o1M8Q
(saALIp) J9ALIp @d1A9Q
(seAJeA) JaALIp B21AR(

(sdooj |0.13u0d) JsALIp 82iASQ
(@ENN-EREL|

Q3AY3SIY

SS|NPOW [0.13UOD SNONUIIUOD)

SONEWSYIEW @ SUONE|ND[ED)

IDONVY

Bulpuey weasAs L1sjeg

NOILDONNA

SSVID 3IDNVH

sa|npow A19jeg

Sa|npow >pojJau|

|

NOILDONNA

Functional group number ranges

Table 5.1

SSVIO 3IONVH

77-268

Rev: R02.00

PS2001-5-2101-001

Doc:



Where: Range

Class

5.1.1

FUNCTION GROUP

MODULE NUMBER

Specifies the functional group number range in the format GGnnn or GGppp
where GG is a two-digit number that represents the function group

nnn indicates any number in the range 0 to 999; thus, 37nnn is any number in
the range 37000-37999

ppp indicates any number in the range | to 999; thus, 02ppp is any number in
the range 02001-02999

Specifies the type of module, Std is a standard module, App is an application
module and Tmt is a template module

Functional group summary

STANDARD APPLICATION

MODULE NUMBER

TEMPLATE
MODULE NUBER

N/A

Safety systems

Calculations & mathematics

Command handling
Reserved
Device drivers

Message handling

Communication handling

(subroutines)

Debug (end of cycle)
Table 5.2

78-268

Functional group summary

FC 24nnn
FC 25nnn

FC 04ppp FC 44nnn

N/A

N/A FC 28nnn FC 48nnn
N/A N/A N/A
FC 10ppp-15ppp FC 30nnn-35nnn FC 50nnn-55nnn
FC lé6ppp FC 36nnn FC 56nnn
FC 17ppp FC 37nnn FC 57nnn
FFC 18ppp N/A N/A
FC 19ppp FC 39nnn FC 59nnn

Doc: PS2001-5-2101-001 Rev: R02.00



0]

@

(©]

0]

5.2 Module naming conventions

All software modules within the PAL are assigned to specific programming blocks
(OBs, FCs) and the data for these modules is stored using predefined user data types
(UDTs) and stored in data blocks (DBs). All such blocks and UDTs are identified by
a specific number (see Table 4.9 and Table 5.1).

In addition to the number, all blocks and UDTs are also given a name. The combina-
tion of number and name form a unique symbolic address for the block

The block name has the following structure:
ClassFunctionDescription

Class, Function and Description are explained below

5.2.1 Block class

The Class is a three-letter abbreviation that specifies the category that the block be-
longs to. The abbreviation is in lower case with a leading capital letter:

ABB. CLASS MEANING

Std Standard Standard block —These are blocks that carry out a particular function;
for example, a valve device driver block.

App Application Application block — These are project specific blocks, written for a
particular project and configured to match the requirements of that
project.

Int Interrupt Interrupt block — Executed when specific interrupt conditions are

detected, this includes the main program execution interrupt (OB 1)

Tmt Template Template block — This is an example block that explains how functions
should be configured and executed

Doc Documentation Documentation block — Contains documentation examples for different
components of a project

Dy_ Dynamic DB/UDT only (contains live, dynamic, data)
St_ Static DB/UDT only (contains fixed, static data)
Re_ Recipe (semi-static) DB only (data is loaded from a recipe)

Table 5.3PAL block naming — class

79-268



5.2.2 Block function

The Function is a five letter (max) abbreviation that identifies the functional area
within the programme structure (Figure 5.1) that the block is associated with. The ab-
breviation is in lower case with a leading capital letter:

ABB. FUNCTION MEANING

Sys System System blocks
Common system functions: common (global) signals,
diagnostic functions, system timing, clock synchronisation,
&c.

Inst Instrumentation Instrument block
Analogue and digital instrument functions (read, scale, filter,
threshold detection, &c.)

ILock  Interlocks Interlock, permissive and trip logic
Identifies and maps the various interlock conditions

Safe Safety Safety systems
Handles emergency stop and safety rated devices.
Manages redundant and high availability systems

Calc Calculations Calculation and mathematics
Calculation, mathematical functions and algorithms (generally
of a complex nature i.e. not simple arithmetic)

Cont Continuous Continuous control logic
Constant monitoring, evaluation and operation of plant
devices and process variables.

Seq Sequences Sequential control logic
Sequential (step-transition) based operations

Dev Device drivers Device drivers
Monitor and control individual devices connected to the
controller (valves, drives, PID loops &c.)

Msg Messages Alarm, warning, event and prompt handling
Marshals the various alarms, organising them for SCADA and
HMI applications

Comms  Communications Communication handling
Executes system to system communications (Controller to
Controller, point-to-point, ProfiBus FMS &c.)

80-268



ABB. FUNCTION

Sub Subroutines

INrm Normal
Interrupts

IErr Error
Interrupts

Debug  Debug

Gen General

MEANING

Subroutine functions

Various subroutines (called by other blocks) to execute
particular functions (subroutines are organised into similar
function areas)

Normal (non-error) interrupt functions
Usually associated with specific OBs, interrupts generated by
standard system events (time of day, cyclic, hardware &c.)

Error interrupt functions
Usually associated with specific OBs, interrupts generated in
response to a system fault (IO failure, card fault &c.)

Debug functions
Generally, start of cycle and end of cycle debug operations
and process simulation

General scope
Applies to the whole project (such as explanatory
information and instructions)

Table 5.4 PAL block naming — function

5.2.3 Block description

M The block description does not have a prescribed list of naming options; it is simply a
short form description of what the block does. Examples are:

ABB.

AnalogRead
ScaleAI
ValveMod

DriveVSD

MEANING

Analogue read
Scale analogue input
Modulating valve

Variable speed drive

Table 5.5 PAL block naming — description

@ Block descriptions are always written without spaces using camel case’’.

10 Camel case is the practice of joining words together and capitalising the start of each word,

it is more formal known as medial capitals).

81-268



0]

5.2.4

Block naming restrictions

The basic restrictions on naming blocks within the PAL are:

82-268

Q)

@

The Class abbreviation is three characters long and starts with a
capital letter

The Function abbreviation is no more than five characters long
and must start with a capital letter

The Description does not have a restriction on the number of
characters but should generally be kept short

Each separate word in the description is capitalised with all other
letters in lowercase (this includes the first word)

The overall length of the name (including class, function and
description) must be 20 characters or less

Only the characters [a-z], [A-Z], the numbers [0-9], the dash/hy-
phen [-] and the underscore [ _] are permitted



()

@

3

)

5.3 Module symbolic names

Within the PAL, symbolic names are simply the block number (e.g. FC11001) fol-
lowed by an underscore character (_) and then the block name (see § 5.2). For example,
if FC11001 had the block name StdDevValveIsol, the full symbolic name for
FC11001 would be:

FC11001_StdDevValveIsol

The two letters at the start (FC) in the above example are the standard abbreviations
for the blocks within the PAL as follows:

ABB. MEANING

FB Function block

FC Function

0B Organisation block
DB Data block

1D Instance data block
ut User data type

Table 5.6 PAL block naming — block type prefixes

Data blocks and user data types have the exactly the same name as the function or
function block with which they are associated. Only the class changes; this will be
either St_ (static) if the block holds configuration and constant values or Dy_ (dy-
namic) if it holds live (changing) data.

A third option Rc_ is also possible if recipes are being used, see § #6.3.26.3.2.

83-268



) Thus, extending the previous example, a full set of blocks and data types for the isolat-
ing valve within a project would be:

ADDRESS FULL SYMBOLIC NAME DESCRIPTION

FCllee1l FC11001_StdDevValveIsol Isolating valve device driver block

FC31001 FC31001_AppDevValveIsol Isolating valve application block

DB11001 DB11001_St DevValvelIsol Static data block for isolating valves

DB31001 DB31001 Dy DevValvelIsol Dynamic data block for isolating valves
UT11001 UT11001_St_DevValveIsol Static data type structure for isolating valves
UT31001 UT31001_Dy_DevValveIsol Dynamic data type structure for isolating valves
Table 5.7 Block numbering, naming and symbols (an example)

84-268



5.4 The PAL structure within a Controller

5.4.1 Application modules

O The PAL structure with in a Controller is primarily determined by the use of applica-
tion modules called from within OB 1.The complete OB 1 PAL structure is shown in
Figure 5.2. This shows application block calls to the thirteen functional groups (this
includes the 11 functional groups listed in Figure 5.1, plus two debug groups: a start of
cycle debug and end of cycle debug — debug functional groups are discussed in

§ #8.138.13).

OB 1
Main program cycle

FC24000_AppSafe
Coordinating application block

FC25000_AppCalc
Coordinating application block

FC26000_AppCont
Coordinating application block

| i i

J

Figure 5.2  Complete OB 1 PAL structure

FC28000_AppCmd
Coordinating application block

FC30000_AppDev
‘Coordinating application block

FC36000_AppMsg
‘Coordinating application block

FC37000_AppComms
‘Coordinating application block

FC39000_AppDebugEoC
Coordinating application block

@ All of these functional groups with the exception of the system functions
(FC21000_AppSys) are optional (the requirements for these applications depends

Doc: PS2001-5-2101-001 Rev: R02.00

85-268



3

Q]

®)

entirely on the purpose of the Controller); most Controllers will have a subset of these
functional groups.

Application modules are specific to the software project in question and are pro-
grammed specifically for that project, they are not fixed modules like the standard
modules.

There are three categories of application modules:

@ Coordinating Coordinating application blocks exist for each func-
tion group and are used to organise all the block
calls within that particular function group.

@  Marshalling Marshalling modules subdivide the coordinating
application modules into logical groupings within
the functional group.

(3®  Programmed Programmed modules contain extensive program-
ming statements, rather than the configuration ex-
ercises used with coordinating and marshalling
modules.

These concepts are explained in section 7.

86-268



0]

@

(O]

5.4.2 Standard modules within the PAL structure

Standard modules are the library modules issued with the PAL software.

There are standard modules associated with most of the functional groups listed in
Table 5.2. These are summarised below:

STANDARD
FUNCTION GROUP MODULE NUMBER QUALIFICATIONS

N/A

Safety systems FC 04ppp
Calculations & mathematics FC 05ppp

Command handling Application level software only
Reserved Reserved for future expansion
Device drivers (Control loops)

Device drivers (Valves)

Device drivers (Drives)

Device drivers (Reserved) Reserved for future expansion

Device drivers (Reserved) Reserved for future expansion

Device drivers (Reserved) Reserved for future expansion

Message handling
Communication handling

(subroutines) Standard subroutine functions

Debug (end of cycle) Contains debug subroutines

Table 5.8 Standard module groups PPp indicates any number in the range | to 999; thus, 02ppp is
any number in the range 02001-02999

The last three digits of a standard module number (e.g. FC GGppp) are never 900; stand-
ard module numbering starts at GGOO1 and can range up to GG999 where GG repre-
sents the functional group to which the standard module belongs (this itself will be in
the range 01 to 19).

Doc:  PS2001-5-2101-001 Rev: R02.00 87-268



) Those groups that do not have standard modules associated with them: debug (start of
cycle), continuous control and command handling, do so because these groups are
entirely dependent on the purpose of the project software in question and are addressed
wholly with the use of programmed application modules (see § #7.37.3).

©®) The PAL software contains a large number of standard modules (see Section 8 for a
full list). Standard modules are programmed using functions (FCs) — the PAL does
not use FBs (the mechanisms for data storage using UDTs see Section 6, makes the

use of FBs largely unnecessary).

® All standard modules are parameterised and, generally, have the following appear-

ance:

“FC11001_StdDevValvelsol"

EN

SYSTEM SIGNALS ijGlobaIData'.SysS!gnals SYS_SIGNALS

%I11.0
|_OPENED_LIM" — FBK_OPENED

%I11.1
INPUT CARD SIGNALS |_CLOSED. LIM" — FBK_CLOSED

%I2.0
*VO01_FAULT" — EXT_FAULT

_ILockAreaA®".v0O01.interlocked — INTERLOCK
DISCRETE SIGNALS i
INTERLOCK &
SAFETY

%MO0.0
“_False" — PERMISSIVE

%MO0.0
"_False" — TRIP

|_St_DevValvelsol".v001

STATIC_DATA
STORED DATA

_Dy_DewValvelsol".v001 DYNAMIC_DATA

ENO

CMD_OPERATE —{ %%813_05.5- OUTPUT CARD SIGNALS

Figure 5.3  Typical arrangement for a standard module

) The block in Figure 5.3, shows a typical arrangement for the calling of a standard mod-
ule, in this case the isolating valve, device driver, standard module. This module was
chosen as an example because it has a full set of the parameters types typically associ-

ated with a standard module.

88-268



® All standard modules have parameters that conform with those shown in Figure 5.3:

PARAMETER
CATEGORY

TYPE OPTIONAL

DESCRIPTION

Passes the full set of Controller logic and timing

System signals In No signals to the module — needed for the internal
operation of the standard module (see § 5.4.4)
All input signals (such as valve limit switches) needed
Input card . .
i In Yes by the block are passed as discrete parameters into
signals
the block
Output card All output signals (such as valve energis'e outputs)
i | Out Yes generated by the block are passed as discrete
signals
8 parameters from the block
The discrete signals are direct digital signals (usually
Bl e In Yes inf:er.lock and safety signals) generated. eIseYvhere
within the software, but that have a direct impact on
the operation of the standard module in question
Most standard modules are configurable in some
way. The stored data contained in the
Stored data: - v STATIC_DATA parameter determines this
es
STATIC_DATA configuration. STATIC_DATA is not modified by
the module. STATIC_DATA is always stored in a
data block in the form of a UDT
Most standard modules require a read/write data
area that stores operational information (elapsed
Stored data: Inout Y time, status information &c.), all this information is
es
DYNAMIC_DATA passed to the block in the DYNAMIC_DATA
parameter. DYNAMIC_DATA is always stored in a
data block in the form of a UDT
Table 5.9 Parameter categories for standard modules
©) Standard modules are true library modules and conform to the standards required of

such modules, in terms of the Siemens Simatic programming standards this is:

Library modules must not use global data access (of memory bits,
10 signals, timers, counters &c.)

Library modules must not directly access data blocks or instance

data blocks

89-268



(10)

(I

(12)

It is for this reason that the common system logic and timing signals (see § 5.4.4) are
passed parametrically to the block in the SYS_SIGNALS parameter; all standard modules
have this parameter and it is always the first parameter of the block.

The SYS_SIGNALS parameter is always an In parameter'' (read only); the standard
modules require the signals in the SYS_SIGNALS parameter, but may not modify the
signals within it.

Standard modules are used repeatedly within the PAL software, for example if the
Controller software had two isolating valves, then the isolating valve standard module
of Figure 5.3 (FC11601 StdDevValveIsol) would be called twice, from a marshal-
ling or coordinating application module (in this case a marshalling application mod-
ule) once for each valve, each such call of the module is referred to as an instance of
the block. In diametric form, it would have the following structure:

Key

‘COORDINATING
APPLICATION MODULE

0B 1
Main program cycle

APPLICATION MODULE

| MARSHALLING

FC30000_AppDev
Coordinating application block

PROGRAMMED
APPLICATION MODULE

FC31001_AppDevValveSOV

Marshalling application block | STANDARD MODULE

FC11001 — First instance FC11001_StdDevVavleSOV
For valve VOO1 Device driver V001

FC11001 — Second instance FC11001_StdDevVavleSOV
For valve V002 Device driver V002

Figure 5.4  Multiple instances of a standard module

1" The exception being the standard module FCO1001_StdSysGlLobalData, this is the
standard module that generates the logic and timing signal and is the only compulsory stand-
ard module that must be present in the Controller software (see § 8.1); here, the
SYS_SIGNALS parameter is an InOut type.

90-268



(13)

(14)

(15)

In parametric terms, the two calls to FC11001 StdDevValveIsol would be:

>

>

Network 3: V001 Device Driver

%FC11001
"FC11001_StdDevValvelsol"

EN ENO

%Q0.3
"DB21001_StdGlobalData".SysSignals SYS_SIGNALS CMD_OPERATE — "V001_OPERATE_CMD"
%11.0
"VOO1_OPENED_LIM" — FBK_OPENED
%I1.1
"V001_CLOSED_LIM" — FBK_CLOSED
%I12.0
"V0O1_FAULT" — EXT_FAULT
"“DB23001_Dy_ILockAreaA".v0O1.interlocked — INTERLOCK

%MO0.0
“_False" — PERMISSIVE

%MO0.0
“_False" — TRIP.
"DB11001_St_DevValveelsol".v001 STATIC_DATA

“DB31001_Dy_DevValveelsol".v001 DYNAMIC_DATA

Network 4: V002 Device Driver

%FC11001
"FC11001_StdDevValvelsol"

EN ENO

%Q0.4
"DB21001_StdGlobalData".SysSignals SYS_SIGNALS CMD_OPERATE — "V002_OPERATE_CMD"
%I1.2
"V002_OPENED_LIM" — FBK_OPENED
%l1.3
“V002_CLOSED_LIM" — FBK_CLOSED
%I2.0
"V002_FAULT" — EXT_FAULT
“DB23001_Dy_lLockAreaA".V002.interlocked — INTERLOCK

%MO0.0
"_False" — PERMISSIVE

%MO.!
*_False" — TRIP
"DB11001_St_DevValvelsol".V002 — STATIC_DATA

"DB31001_Dy_DevValvelsol".v002 DYNAMIC_DATA

Figure 5.5  Parametric difference for multiple instances of a standard module

In the first instance (Network 3), all references are to V001, in the second instance

(Network 4) all references are to V002. The differences are highlighted in red.

This is the mechanism by which all standard modules work. The blocks can be called
multiple times, each time the block is called, it receives different parameters that are
applicable to that instance of the call and no other; in Figure 5.5, the first call (Network

3) passes all the V001 data to the block and that énstance of the block is entirely associ-
ation with VOO1. In the second instance (Network 4), all the parameters are for V002
and that énstance of the block is entirely association with V002.

91-268



M

@

©)

)

5.4.3 Interrupt modules within the PAL structure

The only interrupt module that is required by the PAL is OBI, this is the block that is
automatically executed by the Controller operating system at the start of each cycle.

OBI1 is the master programming block within the PAL software and is used to call the
subsequent marshalling application modules, this can be seen in the programming ex-
amples shown in Figure 7.1 to Figure 7.4.

OB1 however, is not the only interrupt module, there are various organisation blocks,
each one supporting a different type of interrupt. The most commonly used is a cyclic
timed interrupt, this interrupts the main Controller cycle at regular intervals (ranging
from 100us to 60 s). The following is a full list of standard interrupt organisation blocks
available within a Controller:

OB NUMBER PAL MODULE NAME DESCRIPTION
. Controller main program cycle
o8l ©B0000I_InclNrmHMainProgram Called at the start of each Controller cycle
. Time of day Interrupt
OBI0 OB00010_IntINrmTimeOfDay Called by time and day of week
OB20 ©OB00020_IntINrmTimeDelay Time delay Incerrupt

Called after a specified delay has expired

Table 5.10 Standard interrupt modules and organisation blocks

Interrupt modules are also used to detect certain fault conditions:

OB NUMBER PAL MODULE NAME DESCRIPTION

Error Interrupt

OB80 OB00080_IntlErrCycleTimeErr ) )
Maximum cycle time exceeded

Error Interrupt

OB82 OB00082_IntlErrModuleDi
—ntierrioduleDiag Module diagnostics signal received (module fault)

Error Interrupt
Module changed, removed or installed

OB83 OB00083_IntlErrModuleChange

Table 5.11 Fault interrupt modules and organisation blocks

92268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

(©)]

Q]

5.4.4 Third-party modules

Third-party equipment manufacturers often provide their own software to interface
with their equipment, this is usually in the form of functions (FCs) and function blocks
(FBs) that can be installed within the project software.

The PAL accepts that this is the case and such third-party modules can be installed
and used within the PAL. Such modules should be re-numbered to fall in the range 1-
999.

It is also the case, that the project in question may have some equipment that is not
covered by the standard modules in the PAL. Where this is true, a new project specific
module may be required, these can be added to the PAL, preferably in the third-party
module area (1-999 numbering range); or alternatively, for devices, in one of the re-
served areas (13000-15999). This latter option should only be used if it is logical to do
so, this would be where there are a substantial number of modules required or where
such modules make a practical contribution to the PAL and may at some future point
be incorporated into it.

Any project specific standard modules are new modules and not by default part of the
PAL (they have been written for the particular project in question). As such, those
modules must be thoroughly tested to the level required by the particular project.

93-268



0]

@

O}

)

)

5.5 Common signals within the PAL

There are several common logic and timing signals that are needed by all the PAL
software modules; these are referred to collectively as system global data signals (or in
short form as just system signals). These are the signals passed to the standard modules
with the sYS_SIGNALS parameter discussed in the previous section.

These system signals are generated by the only compulsory standard module required
within the PAL: FC01001 StdSysGlobalData. This standard module is called at the
start of OB 1 (highlighted below):

0B 1
Main program cycle

Key

COORDINATING
APPLICATION MODULE

MARSHALLING
APPLICATION MODULE

PROGRAMMED
APPLICATION MODULE

STANDARD MODULE

Figure 5.6  Standard module for system signals

The system signals standard module is called from the associated coordinating appli-
cation module (FC21000_AppSys); the only block that may precede this is the start of
cycle debug block (see § 8.13), this is a temporary block used during the testing phase
of software production and it will not be present in any final software developed using
the PAL.

The PAL system signals are stored in two formats, first as a UDT data structure
(UT21001_Dy SysSignals) in the system global data block (DB21661 Dy Sys-
GlobalData) in the variable SysSignals. This form of the system signals is designed
to be passed as a parameter to all the standard modules using the SYS_SIGNALS param-
eter.

Secondly, the same data is stored in bit memories, these can be accessed globally in all
application (project specific) blocks. The bit memories used to store the system signals

94-268 Doc: PS2001-5-2101-001 Rev: R02.00



(C)]

0]

@

3

are MBO and MB1; the individual signals within the bytes being given symbolic tags in
the tag table PAL_SystemTags.

Both forms of the data are discussed further in the following sections:

Note: There is absolutely no difference between the two form of the signals, it is simply
a question of which to use under what circumstances: parametric for standard
modules, direct for application modules

5.5.1 System signals: parametric access and direct access

The guidelines for library modules state that standard blocks must not use global data
access to gather information from within the Controller (7.e. must not directly access
data), to do so, means that the block cannot be a true library module that can be used
on any system, it requires that system to have an underlying set of variables that existed
outside the block.

Consequently, all standard (library) blocks have to receive all the data they require to
operate, via parameters passed to the block (parametric access). Hence the use here of
UDT data that can be passed as a single parameter into every standard block.

The application blocks are by their nature, specific to the project being developed, they
are not library modules. As such the application modules can use direct access to read
the system signals. Hence the two versions:

. Parametric access — UDT parameter for standard modules

. Direct access — memory bits for application modules

95-268



0]

@

5.5.2 UDT system signals for parametric access

The system signals for parametric access are stored in DB21001_ Dy SysGlobalData
in the variable SysSignals; this variable is a UDT of type
UT21001_Dy SysSignals, it contains the 16 logic and timing signals of Table 5.12:

DATA STRUCTURE UT21000_Dy_SysSignal

SIGNAL TYPE FuNncTIiON

_False Bool System Logic Bit — Always FALSE

_True Bool System Logic Bit — Always TRUE

_5ems Bool System Timing — 50 ms Pulse Scan synchronised

_1leems Bool System Timing — 100 ms Pulse Scan synchronised

_200ms Bool System Timing — 200 ms Pulse Scan synchronised

_500ms Bool System Timing — 500 ms Pulse Scan synchronised

_1s Bool System Timing — | s Pulse Scan synchronised

_2s Bool System Timing — 2 s Pulse Scan synchronised

_CycleTick Bool System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)
_CycleTock Bool System Timing — Cycle tock (active even cycles, alternates with _CycleTick)
_CycleFirst Bool System Timing — First cycle detected

_1eemsSqw Bool System Timing — 100 ms square wave Scan synchronised

_200msSqgW Bool System Timing — 200 ms square wave Scan synchronised

_500msSqW Bool System Timing — 500 ms square wave Scan synchronised

_1sSqw Bool System Timing — | s square wave Scan synchronised

_2sSgW Bool System Timing — 2 s square wave Scan synchronised

Table 5.12 Data structure: UT21001_Dy_SysSignals

This data is passed as a parameter to all standard modules; the parameter is named
SYS_SIGNALS on all standard modules, and is always the first IN parameter:

Y%F Cxxxxx
"FCxxxxx_StdBlock"

EN ENO

"DB21001_Dy_StdGlobalData".SysSignals SYS_SIGNALS

Figure 5.7  Example usage of the SYS_SIGNALS parameter

96-268



0]

@

3

)

®)

(O]

5.5.3 Bit memory direct access and the PAL system tag table

The direct access version of the system signals are stored in two consecutive memory
bytes: MB0 and MB1, see Table 5.13. These are given symbolic names (tags) that are
then used throughout the remaining PAL application modules.

The tags for these bytes (MB0 and MB1) are specified in the PLC TAGS entry in the
project tree, and are stored in the tag table:

PAL_ SystemTags

This tag table is provided as standard as part of the PAL. The system signals within its
contents are listed in Table 5.13

The PAL_SystemTags tag table is a fixed tag table and is a fundamental part of the
PAL. It must not be modified.

The bit memories contained in the bytes PAL_SystemTags tag table are similarly re-
served by the PAL and must these not be reallocated, renamed or used in any other
tag table.

All PAL system tags contained within the PAL_SystemTags tag table are identified by
a leading underscore character ().

97-268



The memory bit system signals are given identical names to those in the
UT21001_Dy SysSignals data type (those used for parametric access, see § 5.5.2); as
follows (Table 5.13):

NAME TYPE ADDRESS DESCRIPTION
_SysSignals Int 7MWO System signals (logic and timing signals for direct access)
_SysSignalse1l Byte 7%MBO System memory byte 01 — Logic and scan synchronised pulses
_False Bool 7%M0O . 0 System Logic Bit — Always FALSE
_True Bool MO . 1 System Logic Bit — Always TRUE
_5ems Bool 7%M0 . 2 System Timing — 50 ms Pulse Scan synchronised
_1eems Bool 7%M0 . 3 System Timing — 100 ms Pulse Scan synchronised
_200ms Bool MO . &4 System Timing — 200 ms Pulse Scan synchronised
_5e0ms Bool 7ZM0 . 5 System Timing — 500 ms Pulse Scan synchronised
_1s Bool 7%M0 . 6 System Timing — | s Pulse Scan synchronised
_2s Bool ZM0O . 7 System Timing — 2 s Pulse Scan synchronised
_SysSignalse2 Byte %MB1 System memory byte 02 — Scan signals and common square waves
_CycleTick Bool ZM1.0 System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)
_CycleTock Bool ZM1.1 System Timing — Cycle tock (active even cycles, alternates with _CycleTick)
_CycleFirst Bool ZM1.2 System Timing — First cycle detected
_100msSqwW Bool ZM1.3 System Timing — 100 ms square wave Scan synchronised
_200msSqwW Bool ZM1.4 System Timing — 200 ms square wave Scan synchronised
_500msSqwW Bool ZM1.5 System Timing — 500 ms square wave Scan synchronised
_1sSqwW Bool ZM1.6 System Timing — | s square wave Scan synchronised
_2sSqW Bool AM1.7 System Timing — 2 s square wave Scan synchronised

Table 5.13 PAL direct access system signals

98-268



0]

@

U}

@

5.54 System signal naming conventions

The PAL direct access system signal tags and parametric access variables with in the
UT21001_Dy SysSignals data structure are named according to the following con-
ventions:

Each tag is prefixed with the underscore [_] character
The remaining tag name is written in camel case

The name (including prefix) must be no more than 24 characters

® ©® O 6

It is permissible to separate parts of the name with an underscore
[_] character (e.g. _ClockMem_100msSqW)

@

Units (such as milliseconds, ms) are not capitalised

Q)

The dash/hyphen [-] is not to be used (use the underscore instead)

@ Only use the characters [a-z], [A-Z], the numbers [0-9], and the
underscore [_]

All PAL system tags have a brief explanation of what the tag does stored in the com-
ment field of the tag.

5.5.5 Global logic signals

The system signals have two fixed logic signals, these are allocated as follows:

NAME TYPE DESCRIPTION
_False Bool System Logic Bit — Always FALSE
_True Bool System Logic Bit — Always TRUE

The two signals _False and _True are logically testable signals, the _False signal
being always set to @ and the _True signal being always set to 1.

99-268



0]

@

3

)

4

5.5.6 Global timing signals

There are two types of timing signals within the system signals: isochronous'? pulses
that are active for a single controller cycle (scan) and isochronous, even mark/space
ratio square waves. All timing signals are derived from the CPU clock memory func-
tions (see § 6.1).

Isochronous timing pulses

The system signals include six individual timing pulses, these occur at intervals of
50 ms, 100 ms, 200 ms, 500 ms, 1 s and 2 s:

NAME TYPE DESCRIPTION

_5ems Bool System Timing — 50 ms pulse
_leems Bool System Timing — 100 ms pulse
_20eems Bool System Timing — 200 ms pulse
_5eems Bool System Timing — 500 ms pulse

_1s Bool System Timing — | s pulse (1000 ms)
_2s Bool System Timing — 2 s pulse (2000 ms)

Each pulse is active for a single CPU cycle, and is activated at the start of the cycle
following the termination of the specified time interval.

These timing pulses form the basis for all timed actions within the PAL software.
Timed events are measured by counting a number of occurrences of a timing pulse
signal (for example the duration of an hour would be 3600 occurrences of the _1s
pulse, a 10 s duration would be 100 pulses of the _100ms pulse).

Timed events should generally use the shortest interval pulse compatible with the Con-
troller cycle time and the duration of the event being measured.

12 Isochronous signals (sometimes scan synchronised signals) are signals that are synchronised
with the Controller cycle, such signals only change state at the end of one scan and before
the start of the next, presenting the same state to all the software modules in a given Con-
troller cycle.

100-268



(C)]

Y]

0]

@

(O]

)

Isochronous timing square waves

The system signals include five individual timing square wave signals, these have fre-
quencies of 10 Hz (100 ms period), 5 Hz (200 ms period), 2 Hz (500 ms period), 1 Hz
(1 s period) and 0.5 Hz (2 s period):

NAME TYPE DEsScRrRIPTION

_leemsSqwW Bool System Timing — 100 ms square wave (10 Hz)
_200msSqW Bool System Timing — 200 ms square wave (5 Hz)
_500msSqW Bool System Timing — 500 ms square wave (2 Hz)
_1sSqgwW Bool System Timing — | s square wave (I Hz)
_2s5qW Bool System Timing — 2 s square wave (0.5 Hz)

In a similar manner to the timing pulses, the rising and falling edges of the timing
square wave occur at the start of a Controller cycle.

5.5.7 Cyclically dependent signals

The system signals include three cycle dependent signals:

NAME TYPE DESCRIPTION

_CycleTick Bool System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)
_CycleTock Bool System Timing — Cycle tock (active even cycles, alternates with _CycleTick)
_CycleFirst Bool System Timing — First cycle detected

The first two of these signals (_CycleTick and _CycleTock) are alternating signals
that change state at the start of each cycle, the CycleTick being active on every odd
cycle since the CPU started (cycles 1, 3,5, 7 ...). _CycleTock activates on each even
numbered cycle since the CPU started (cycles 2, 4, 6, 8 ...).

The CycleTick and _CycleTock signals are often used as “dead-man” signals that
show the CPU is running.

The _CycleFirst signal is active on the first cycle of the CPU after a STOP - RUN
transition. The CycleFirst signal is an important signal and is generally used to set
the Controller to a given start-up condition. It should be interpreted as telling the soft-
ware that the processor has just started and all modules should be initialised and set to
the correct start-up conditions.

101-268



BLANK PAGE

102-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

U}

@

O]

Data handling within the PAL

There are three forms of data commonly used with the PAL:

. Memory bits (reserved for the common system signals, see
§5.4.4)
. 10 signals read from, and written to 1O cards
. Data block data in the form of UDTs and symbolic variables
Note: The Simatic Controllers support additional data forms: timers and counters.

The number of timers and counters available within Siemens Controllers is re-
stricted, typically being 2048 of each. The PAL generally replaces the timers with
edge triggered pulse counters of which there can be any number and they can be
stored in data blocks. Counters are replaced with specific standard modules that
again store the derived counts in data blocks and again any number of which are
supported.

All data within the PAL will be symbolically addressed (in the case of IO and memory
bits, with the use of tag tables).

6.1 Data in the form of memory bits

The PAL does not generally use the memory bits available to a Controller, instead
storing data within the more flexible data blocks.

There are two exceptions to this, the first is the use of the CPU clock memory (see
§ 4.2.4 for full details), this stores various CPU generated timing signals within a des-
ignated area of the memory bits (in this case MB 10), these signals are required in the
generation of the isochronous system timing signals (see § 5.5.6).

Secondly, the direct access system signals are store in a two-byte area of the memory
bits (MB0O and MB1), these are listed in § 5.5.3.

103-268



)

4

(O]

@

®

®)

(10)

The remaining areas of the memory bits are unused (the S7-1500 has 131,072 such bits,
arranged in 16,384 bytes — the S7-1200 has either 32,768 or 65,536 such bits depend-
ing on the CPU in question, again arranged in bytes).

Where memory bits are used, they must be addressed symbolically, each bit, byte,
word or double word must be given a unique symbol, referred to as a fag, these tags
are stored in a specific tag table.

The tags for the CPU clock memory (MB10) and the direct access system signals (MB0
and MB 1) are stored in the predefined tag table:

PAL SystemTags

This tag table is provided as standard as part of the PAL. A full list of its contents is
provided in Table 5.13.

The PAL_SystemTags tag table is a fixed tag table and is a fundamental part of the
PAL. It must not be modified.

The bit memories contained in the bytes MB0, MB1 and MB 10 are similarly reserved by
the PAL and must these not be reallocated, renamed or used in any other tag table.

The PAL makes very limited use of the memory bit allocations within the Controller,
essentially just for system signals; the further use of memory bits, while not encouraged,
in not prohibited by the PAL. The user is free to allocate memory bits as required,;
however, the following restrictions apply:

. Memory bits cannot be passed to the PAL standard modules'?,
these expect data to be passed in the form of UDTs

o Any additional memory bits must use a separate tag table, they
must not be added to the predefined PAL_SystemTags tag table

13 It would only be possible to pass memory bits to standard modules as discrete signals (see
§5.5.1.

104-268



NAME TYPE AD- DESCRIPTION
DRESS

_SysSignals Int 7MW0 System signals (logic and timing signals for direct access)
_SysSignalse1l Byte 7%MB0 System memory byte 0| — Logic and scan synchronised pulses
_False Bool %M0O . 0 System Logic Bit — Always FALSE
_True Bool MO . 1 System Logic Bit — Always TRUE
_5ems Bool %M . 2 System Timing — 50 ms Pulse Scan synchronised
_1e0ms Bool %M0 . 3 System Timing — 100 ms Pulse Scan synchronised
_20eems Bool %MO . 4 System Timing — 200 ms Pulse Scan synchronised
_500ms Bool %MO . 5 System Timing — 500 ms Pulse Scan synchronised
_1s Bool M0 . 6 System Timing — | s Pulse Scan synchronised
_2s Bool 7MO .7 System Timing — 2 s Pulse Scan synchronised
_SysSignalse2 Byte 7MB 1 System memory byte 02 — Scan signals and common square waves
_CycleTick Bool ZM1.0 System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)
_CycleTock Bool ZM1.1 System Timing — Cycle tock (active even cycles, alternates with _CycleTick)
_CycleFirst Bool ZM1.2 System Timing — First cycle detected
_100msSqwW Bool ZM1.3 System Timing — 100 ms Square wave Scan synchronised
_200msSqwW Bool ZM1.4 System Timing — 200 ms Square wave Scan synchronised
_50e0msSqwW Bool ZM1.5 System Timing — 500 ms Square wave Scan synchronised
_1sSqwW Bool ZM1.6 System Timing — | s Square wave Scan synchronised
_2sSqgW Bool ZM1.7 System Timing — 2 s Square wave Scan synchronised
_ClockMem Byte ZMB10 Clock Memory (populated by the CPU)
_ClockMem_10@msSqW Bool %M10.0 Clock Memory — 10.0 Hz square wave 0.1 s Period
_ClockMem_200msSqW Bool ZM10.1 Clock Memory — 5.00 Hz square wave 0.2 s Period
_ClockMem_400msSqW Bool ZM10.2 Clock Memory — 2.50 Hz square wave 0.4 s Period
_ClockMem_500msSqW Bool 7ZM10.3 Clock Memory — 2.00 Hz square wave 0.5 s Period
_ClockMem_80@msSqW Bool ZM10 .4 Clock Memory — 1.25 Hz square wave 0.8 s Period
_ClockMem_1000msSqw Bool ZM10.5 Clock Memory — 1.00 Hz square wave 1.0 s Period
_ClockMem_1600msSgW Bool 7ZM10.6 Clock Memory — 0.62 Hz square wave 1.6 s Period
_ClockMem_2000msSgW Bool ZM10.7 Clock Memory — 0.50 Hz square wave 2.0 s Period

Table 6.1 PAL system bit memory usage (PAL_SystemTags table)

an  All PAL system tags contained within the PAL_SystemTags tag table are identified by

a leading underscore character ().

105-268



0]

@

3

6.2 I0 Data

The inputs and outputs associated with a project are unique to that project (they de-
pend on the plant being controlled). The PAL does not prescribe in anyway what 10
can be used. It does however, define certain rules for how that IO should be named
and where the tags should be stored.

10 tags within the PAL are stored in their own tag table:
PAL_TIOTags

The following is an example of an IO tag table (this is part of the IO listed in Table 3.1
for the test rig):

SYMBOL TYPE ADDRESS DESCRIPTION
ESTOP_HEALTHY Bool %10.0 Emergency stop healthy/pressed
M@@1_RUNNING Bool %10.1 MO0 is running/stopped
Mee1_TRIPPED Bool %10.2 MOO01 is heathy/tripped
M@@2_RUNNING Bool %10.3 MO002 is running/stopped
Mee2_FAULT Bool %10.4 MO002 is heathy/inverter fault
Moo@1_ROTATION Bool %10.5 MOO! rotation sensor (proximity PD00I)
CVOO1_OPENED_LIM Bool %10.6 CVO00! opened limit switch active/inactive
CVo01_CLOSED_LIM Bool %10.7 CV00! closed limit switch active/inactive
VOo1_OPENED_LIM Bool %I1.0 V00! opened limit switch active/inactive
VOo1_CLOSED_LIM Bool %I1.1 V00! closed limit switch active/inactive
VO02_OPENED_LIM Bool %I1.2 V002 opened limit switch active/inactive
V002_CLOSED_LIM Bool %I1.3 V002 closed limit switch active/inactive
VOO3_OPENED_LIM Bool %I1.4 V003 opened limit switch active/inactive
VOO3_CLOSED_LIM Bool %I1.5 V003 closed limit switch active/inactive
Voo4_OPENED_LIM Bool %I1.6 V004 opened limit switch active/inactive
Voo4_CLOSED_LIM Bool %I1.7 V004 closed limit switch active/inactive
Mo®1_START_CMD Bool %Q0 .0 MO00! start command
M@©2_ENABLE_CMD Bool %Q0. 1 M002 enable command
CVOO1_ENABLE_CMD Bool %Q0. 2 CV00!| enable command
VOo1_OPERATE_CMD Bool %Q0.3 V00| operate command (energise)
VO02_OPERATE_CMD Bool %Q0.4 V00| operate command (energise)
VO03_OPERATE_CMD Bool %Q0.5 V00| operate command (energise)
Voo4_OPERATE_CMD Bool %Q0. 6 V00| operate command (energise)
M@©2_SPEED_ACT Int %IN268 M002 actual speed
CVeo1_POS_ACT Int %IW270 CVO00I actual position
M@02_SPEED_DEM Int %QW264 M002 demanded speed
CVeo1_POS_DEM Int %QW266 CV00! demanded position

Table 6.2 PAL IO tag table (example)

106-268



0]

@

(©)]

Q]

®)

6.2.1 10 Tag naming conventions

There are some general rules for naming IO tags:
@ The IO tag name is in uppercase
@ The IO tag name must be no more than 24 characters

® Only use the characters [A-Z], the numbers [0-9] and the under-
score character [_]

® The underscore character should be used in place of a space to
separate words

The structure of an IO tag is also defined (to some extent) within the PAL. This spec-
ifies the nomenclature used for various common signals.

Al TO tags are associated with some form of device or instrument (valves, drives, flow
meters, level transducers &c.). All of these devices will be allocated a particular equip-
ment number (also confusingly referred to as “tag numbers”).

Equipment numbers usually have the form:

FFFnnn

Where FFF indicates the function of the equipment (e.g. FIC for FLOW INDICATION
CONTROL or LT for LEVEL TRANSMITTER); and nnn indicates a loop number.

The requirement and format for equipment tags is dictated by the design of the plant
in question and the PAL will accommodate any format of equipment number. The
only restriction being that each device and instrument must have a unique equipment
number (that is the combination of the equipment function and its loop number must
be unique within the plant).

Note The requirement for unique equipment numbers is usually easy to accomplish;
instruments and devices are generally uniquely identified on the piping and in-
strumentation diagrams (P&ID) for the plant.

107-268



(O]

@

®

©

(10)

(I

While a particular device or instrument is uniquely identified by its equipment number.
In terms of the 1O associated with that equipment, there are usually several signals that
have to be named within the tag table. For example, an isolating valve may have an
open limit signal (the valve has achieved the fully opened state), a closed limit signal
(the valve has reached the fully closed state) and an operate signal (energised to open
the valve and de-energised to close the valve).

All three signals would have the same equipment number; consequently the PAL 10
tag table requires further information to uniquely identify the individual signals asso-
ciated with a device linked to the controller.

PAL IO tags generally have the following naming format:
FFFnnn_SIGNAL_QUALIFIER

Where FFFnnn is the equipment number. SIGNAL indicates the primary function of
the signal (e.g. LIMIT for a valve limit switch); QUALIFIER is some qualifying param-
eter that further explains the function of the signal (e.g. LIMIT_CLOSED to identify the
closed limit switch of a valve).

Both the SIGNAL and QUALIFIER components of the tag are optional; some digital
instruments have only one signal and the equipment number is sufficient to fully spec-
ify the function of the instrument (e.g. LSL001 identifies the instrument as a low level
switch, it would not be necessary to further qualify the tag: LSLOO1 LOW or
LSLO@1 LEVEL_LOW would not provide any more information than that given in the
equipment number).

There are various predefined values for the STGNAL and QUALIFIER components of an
IO tag. These are listed in the following tables and should be used where they are ap-
plicable.

108-268



SIGNAL
AUTO

CLOSE
DISABLE
DISABLED
ENABLE
ENABLED
ESTOP
FAULT
FBK
FORWARD
HEALTHY
ILOCK
LIMIT
MAN
OPEN
OPERATE
POSN
RAW
REVERSE
RUNNING
SPEED
START
STOP

TRIP

Table 6.3

APPLIES
TO

Input
Output
Output
Input
Output
Input
Input
Input
Input
Output
Input
Input
Input
Input
Output
Output
Both
Both
Output
Input
Both
Output
Output

Input

MEANING

Equipment is switched to automatic control

Signal to close a bistable valve, damper, louver &c.

Signal to disable the operation of a device
Device is disabled

Signal to enable the operation of a device
Device is enabled

Emergency stop

Device is in fault

Feedback signal

Signal to start a drive in the forwards direction
Device is healthy

Interlock

Limit switch condition

Equipment is switched to manual control

Signal to open a bistable valve, damper, louver &c.

Signal to operate a (monostable) device
Position (of something e.g. a modulating valve)
Raw (unscaled or unfiltered) signal

Signal to start a drive in the reverse direction
Device is running

Speed (of something e.g. a variable speed drive)
Signal to start a bistable device.

Signal to stop a bistable device.

Device is tripped

PAL 10 tag SIGNAL values

STATES

| = Auto, 0 = Man (or not used)

I = Close signal is energised

| = Disable, 0 = Enable

| = Disabled, 0 = Enabled

| = Enabled, 0 = Disabled

| = Enabled, 0 = Disabled
Requires qualifier

| = Fault, 0 = OK

Requires qualifier

| = Run Forwards signal is energised
| = Healthy, 0 = not healthy
Requires qualifier

I = limit switch active, 0 = inactive
| = Man, 0 = Auto (or not used)

| = Open signal is energised

| = Device operate signal is energised
Requires qualifier

Requires qualifier

I = Run Reverse signal is energised
| = running, 0 = not running
Requires qualifier

| = Start signal is energised

| = Stop signal is energised

| = Tripped, 0 = OK

(12 The above SIGNAL list for PAL IO is not exhaustive (there willl always be some special
device that is not accomodated by the entries above), but it does cover a wide range of
common signals and should be used in preference to other non-standard values.

109-268



(13)

(14

(15)

(16)

(17)

APPLIES

QUALIFIER TO MEANING EXAMPLE
CLOSED Input The SIGNAL (e.g. LIMIT) represents a closed state LIMIT_CLOSED
CMD Output The SIGNAL is a command to a device (usually digital) OPERATE_CMD
DMD Output The SIGNAL is a demand to a device (usually analogue) SPEED_DMD
FBK Input Marks a SIGNAL as a feedback signal SPEED_FBK
OPENED Input The SIGNAL (e.g. LIMIT) represents an opened state LIMIT_OPENED
RAW Both Raw (unscaled or unfiltered) signal SPEED_RAW

Table 6.4 PAL 10 tag QUALIFIER values

Again, the above QUALIFIER list for PAL IO is not exhaustive, but it does cover a
wide range of common signals and should be used in preference to other non-standard
values.

A note on monostable and bistable output signals
In the SIGNAL list (Table 6.3) there are four output signals that are specified as bistable:
° OPEN
° CLOSE
° START, FORWARDS, REVERSE
° STOP
There is also one monostable output:
° OPERATE

Bistable signals should be used where a device has two signals to make it change state;
consider a valve that has both an OPEN output signal and a CLOSE output signal.

To open the valve the OPEN signal must be energised and the CLOSE signal de-ener-
gised. When the valve reaches the OPENED position, both signals can be de-energised
and the valve will remain in the OPENED state (it is stable in this condition and does
not require any signal to maintain it in this state, if there were a power failure the valve
would remain opened).

110-268



(18)

(19)

(20)

@n

(22)

(23)

24

(25)

To close the valve the CLOSE signal must be energised and the OPEN signal de-ener-
gised. When the valve reaches the CLOSED position, both signals can again be de-ener-
gised and the valve will remain in the CLOSED state (again the valve is stable in this
condition and does not require any signal to maintain it in this state, if there were a
power failure the valve would remain closed).

This is said to be a bistable device because once it is in a particular state, it does not
require any signal to be energised to maintain that state.

The START and STOP signals operate in exactly the same way for drives and devices
that can broadly be described as running or stopped (it might for example be a more
complicated standalone piece of machinery such as a labelling device).

Bistable devices are not very common; they tend to be used with very large motorised
valves and specialist machinery.

Monostable devices are what would be consider the standard type of device. These are
usually things like a normally closed valve and direct online drives. Monostable de-
vices usually have just one signal that operates the device.

Take for example a normally closed valve. This will have a single OPERATE signal. If
the OPERATE signal is energised, the valve will (either electrically or electro-pneumati-
cally) open. If the OPERATE signal is de-energised, the valve will return (mechanically,
usually via a spring) to the closed position. To keep the valve open, the OPERATE signal
must remain energised.

Direct online drives work in much the same way. The OPERATE signal activates a relay
or contactor that applies electrical power to the drive, if the OPERATE signal is de-ener-
gised, the relay or contactor is mechanically opened (usually a spring mechanism that
opens the electrical contacts) and power is removed from the drive.

Again, the OPERATE signal must remain active for the drive to run.

Most valves and drives are monostable and use the OPERATE command rather than the
OPEN/CLOSE or START/STOP signals.

111-268



0]

@

3

)

)

©)

6.3 Data block data storage

Data blocks are the primary mechanism for storing data within any PAL based project.
Data stored within data blocks is the main method for standard modules to communi-
cate with the rest of the project software, it is how application modules pass infor-
mation to and from the standard modules.

Most standard modules received data block data in two forms: static (read only) data
and dynamic (read and write) data'*. This data is passed to the block via the parameters
STATIC_DATA and DYNAMIC_DATA (see §4.3.1). This data is always passed to the
standard module in the form of a user data type (UDT) that is specific to both the
module and to the static/dynamic data in question (the static data will use a different
UDT to that of the dynamic data).

Standard modules will only have one STATIC_DATA parameter and one
DYNAMIC_DATA parameter each; all the stored data needed by the module must be
passed to the module by these parameters. Consequently, the UDTs that hold this data
can be extensive and relatively complex in nature.

To simplify these UDTs, common naming practices are adopted for similar types of
signal; for example, data that reflects the status of the device or instrument being oper-
ated by a standard module is prefixed with the label status, similarly where operating
modes can be selected, the data is prefixed with the label mode. Configuration data is
prefixed CONFIG and alarms, messages and warning with the prefix msg &c.

In this context, static data specifies constant (preset) values that have some meaning
for the block in question (e.g. the opening time of a valve, the hysteresis of an alarm
setpoint, limit switch arrangements for a valve &c.). Static data does not change (the
data is usually configured during the commissioning of the plant and then remains
fixed and unchanging for the lifetime of the plant).

Dynamic data is live, operating data (e.g. if a valve is in the process of opening, the
elapsed time of the operation will be stored in the dynamic data area).

14 While most standard modules have both static and dynamic data, some have only dynamic
data and some (certain simple subroutines) require neither.

112-268



@) Static and dynamic data is always stored in a data block, the data block in question is
dependent on the number allocated to the standard module.

® This process is best explained with the use of an example, consider the standard mod-
ule associated with the reading, scaling and monitoring of an analogue instrument con-
nected to a Controller via an analogue input card.

) This standard module is designated (FC62001_StdInstAnalogRead) and is allocated
to the function FC 02001 within a Controller. This module would be called from a
marshalling application block (FC22001 AppInstAnalogRead):

Key

‘COORDINATING
APPLICATION MODULE

Main program cycle

OB 1 |

MARSHALLING
APPLICATION MODULE

APPLICATION MODULE

| PROGRAMMED

STANDARD MODULE

Figure 6.1  Analogue instrument read example calling structure

(19 In this example, the first instance of FC02001_StdInstAnalogRead is reading the
value of a flow transmitting instrument (FT001), the second instance is reading the
value of a level transmitting instrument (LT001).

Doc: PS2001-5-2101-001 Rev: R02.00 113-268



(I

(12)

(13)

In practical terms, the called blocks would be programmed as follows (within the mar-
shalling block):

> Network 3: FT001 flow meter (0-1000 I/s)

%FC02001
"FC2001_StdInstAnalogRead"

EN ENO

“DB21001_StdGlobalData".SysSignals — SYS_SIGNALS
%IW256
“FT001_RAW" RAW_ANALOG
%I2.0
“FTO01_FAULT" — EXT_FAULT
“DB02001_St_InstAnalogRead".FT001 STATIC_DATA

“DB22001_Dy_InstAnalogRead".FT001 DYNAMIC_DATA

> Network 4: LT001 Level transmitter (0-5 m)

%FC0200
"FC2001_StdInstAnalogRead"

EN ENO

"DB21001_StdGlobalData".SysSignals SYS_SIGNALS
%IW258
"LTOO1_RAW" RAW_ANALOG
%I2.1
"LTO01_FAULT" — EXT_FAULT
"DB02001_St_InstAnalogRead".LTO01 STATIC_DATA

"DB22001_Dy_InstAnalogRead".LT001 DYNAMIC_DATA

Figure 6.2  Analogue instrument read example programmed blocks

The standard module is assigned to the function FC 02001, the static data is assigned
to the data block with exactly the same number, in this case DB 02001 (specifically:
DB02001 St InstAnalog Read). The dynamic data is assigned to the data block with the same num-
ber as the standard Dblock + 20000, i.e. DB22001 (specifically
DB22001_Dy InstAnalog Read).

The rules for the two data blocks are as follows:
™ The static DB has the same number as the standard module

@ The dynamic DB has the same number as the standard mod-
ule + 20000

©) The static DB has the same name as the standard module with
Std replaced by St__ (static)

® The dynamic DB has the same name as the standard module with
Std replaced by Dy_ (dynamic)

114-268



(14)

(15)

(16)

(17)

In the example of Figure 6.2, both calls to the standard module (FC62001_StdIn-
stAnalogRead) use the same data block for the static data (peo20oi_se_instanalog Read), they
also use the same data block for the dynamic data (DB22601_Dy_InstAnalog Read).

Le. all instruments that are read using FC 02001 use the same data block to store the
static data: DB 02001. The same is true for the dynamic data, all analogue instrument
reads use DB 22001. This can be seen by examining the two data blocks:

DB02001_5t_InstAnalogRead
MName Data type Startvalue Comment

1 <@ ~ Static

2 4= » _DB_Header Array]0..79] of Bool STAMDARD AMALOGUE INSTRUMENT READ

3 4aw 0000_0 Bool false

4 @= 0000_1 Beol false — ALOGUE INSTRUMENTS

5 <= » FIOO1 *UT02001_St_InstAnalogRead” FT001 Flow Transmitter (0-1000 I/s)

6 ﬂ[l » LTOO1 *UT02001_5t_InstAnalogRead” LT001 Level Transmitter (0-5 m) J

Figure 6.3  Analogue instrument read static data block

DB22001_Dy_InstAnalogRead
Mame Data type Startvalue Comment

1 |40 ~ Static

2 4= » _DB_Header Array[0.79] of Bool STANDARD ANALOGUE INSTRUMENT READ

3 = 0000_0 Bool false

4 4= 0000_1 Boal false — ALOGUE INSTRUMENTS

5 |amf= » FIOO1 *UT22001_Dy InstAnalogRead” FT001 Flow Transmitter (0-1000 lis)

6 ﬁ[- » LTDO1 "UT22001_Dy_InstAnalogRead” LT001 Level Transmitter (0-5 m) J

Figure 6.4  Analogue instrument read dynamic data block

The two instruments FT001 and LTO01 are each present in the two data block. In the
static data block, each instrument has a data type of the UT02001_St_InstAnalogRead, this is
the static UDT associated with the data, this again has the same number as the stand-
ard module UT02001 and has the same name as the static data block.

Similarly, in the dynamic data block, each instrument has a data type of the
UT22001_St_InstAnalogRead, this is the dynamic UDT associated with the data,
like the dynamic DB, this has the same number as the standard module + 20000 and
has the same name as the dynamic data block.

115-268



(1 By expanding the instrument variables within the two DBs, the internal structure of
the UDTs can be seen (here the FT001 instrument is expanded):

DB02001_5t_InstAnalogRead

Name Data type Startvalue Comment
1 4~ static
2 <= » _DB Header Array[0..79] of Bool STANDARD ANALOGUE INSTRUMENT READ
3 @nw 0000_0 Bool false
4 anm 0000_1 Bool false W ANALOGUE INSTRUMENTS
5 |@= ~ Fo01 *UTD2001_5t_InstAnalogRead” FT001 Flow Transmitter (0-1000 lis)
6 <@ n [ 0000_0 Int 0 — NSTRUMENT CONFIGURATION
7 | L CONFIG_ALM H_ENABLE Bool true CONFIG — High alarm is enabled (1 = enabled, 0 = no alarm)
8 |« L] CONFIG_ALM L_ENABLE Bool true CONFIG— Low alarm is enabled (1 = enabled, 0 = no alarm}
2 | L] CONFIG_WRN_H_EMABLE Bool true CONFIG — High warning is enabled (1 = enabled, 0 = no warning)
10 @ L] CONFIG_WRN_L_ENABLE Bool true CONFIG — L ning is enabled (1 = enabled, 0 = no warning)
11 @ L] CONFIG_FP_DISABLE Bool false CONFIG — Faceplate is disabled (1 = no Faceplate, 0 = normal)
12 4@ L] CONFIG_SIM_DISABLE Bool false CONFIG — Simulatien is disabled (1 = no Simulation, 0 = normal}
13 @ = CONFIG_RL_ENAELE Bool false CONFIG — Remoteilocal mede enabled (1 = remotellocal permitted, 0 = remoteflocal NIA)
14 @ L] 0010_0 Int 0
15 @ L] 0010_1 Int 0 EE— |NSTRUMENT RANGE & SCALING DATA
16 <@ L RANGE_RAW_MIN Int 0 RANGE — Minimum value of the raw analogue signal (at the card)
17 @ L RANGE_RAW_MAX Int 27648 RANGE — Maximurn value of the raw analogue signal (at the card)
@ = RANGE_SCALE_MIN Real 0.0 RANGE — Minimum value of the scaled analogue signal [engineering units]
9@ = RANGE_SCALE_MAX Real 1000.0 RANGE — Ma:ximum value of the scaled analogue signal [engineering units]
20 @ L} RANGE_OOR_PERCENT Real 25 RANGE —Out of range percentage (of raw range}, beyond which the instrument is out of range
21 <@ L] 0020_0 Int 0
22 @ L] 0020_1 Int 0 — NSTRUMENT INFORMATION (TAG & UNITS)
23 a = INFO_TAG String[20] ‘FT001" INFORMATION — Instrument ID tag
24 @ = INFO_UNITS String[10] ‘IIs* INFORMATION — Engineering units of the instrument (unit of measure)
25 @ L] 0030_0 Int 0
26 @ L] 0030_2 Int 0 S |NSTRUMENT ALARMIWARNING & HYSTERESIS SETPOINTS
27 @0 = SP_ALM_H_VAL Real 750.0 SETPOINT— High alarm threshold value [engineering units]
28 @) = SP_ALM_L_VAL Real 250.0 SETPOINT— Low alarm threshold value [engineering units]
9@ = SP_VRN_H_VAL Real 6250 SETPOINT— High warning threshold value [engineering units]
0@ = SP_WRN_L_VAL Real 3750 SETPOINT— Low warning t old value [engineering uni
31 @ = SP_ALM_H_HYST_VAL Real 62.5 SETPOINT— High alarm hy sis value [engineering un
32 @ = SP_ALM_L_HYST_VAL Real 62.5 SETPOINT— Low alarm value [engineering units]
33 @ = SP_WRN_H_HYST_VAL Real 62.5 SETPOINT— Higl teresis value [engineering units]
34 @ = SP_WRN_L_HYST_VAL Real 625 SETPOINT- eresis value [engineering units]
35 4@ L] 0040_0 Int 0
36 @ L] 0040 2 Int 0 E— |NSTRUMENT TIME R DEFAULT VALUES
7@ = TIME_ALM H_ON_DEL  Real 10.0 TIMER — High alarm on delay ti tivat
3Blan = TIME_ALM L_ON_DEL Real 100 valarm on delay
39 @) = TIME_WRN_H_ON_DEL Real 100 naming on dela
40 @ = TIME_VRN_L_OM_DEL Real 100 varning on delay
41 |lqm = TIME_ALM H_OFF_DEL  Real 150 TIMER— High alarm off dela
42 @ L] TIME_ALM_L_OFF_DEL Real 150 TIMER — L« larm off del
43 @@ = TIME_WRN_H_OFF_DEL  Real 150 TIMER— High warning off dela
44 qq = TIME_WRN_L_OFF_DEL Real 15.0 TIMER— Low warning off delay time (deactivation dela
45 .gn = » LTOOT *UTD2001_51_InstAnalogRead” LT001 Level Transmitter (0-5 rm)

Figure 6.5  FTO001 static data block UDT structure

(19 In Figure 6.6, the configuration information for FT001 is visible, it can be seen,
amongst other things, that the scaled range of the instrument is set to be from 0.0
(RANGE_SCALE_MIN) to 1000 . 0 (RANGE_SCALE_MAX), it can also be seen that all four alarms
and warnings are enabled (CONFIG_ALM_H_ENABLE, CONFIG_ALM_L_
ENABLE, CONFIG_WRN_H_ENABLE and CONFIG_WRN_L_ENABLE are all set to true).

@) Comparing this with the same information for LT001:

116-268 Doc: PS2001-5-2101-001 Rev: R02.00



@n

(22)

oM e R W =

dapppbhbdebbbbdhbbbbbddbbbbdebbbbbbbbbbbdtband

1
12
13
14
15
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41
42
43
44
45

DB02001_St_InstAnalogRead

MName

Data type Startvalue Comment

Static
» _DB_Header Array{0.79] of Bool STAMDARD ANALOGUE INSTRUMENT READ

0000_0 Bool false

0000_1 Bool fals W ANALOGUE INSTRUMENTS
» FTDO1 "UTD2001_5t_InstAnalogRead” FT001 Flow Transmitter (0-1000 Iz )
¥ LT0O1 "UT02001_5t_InstAnalogRead LT001 Lewvel Trans mitter (0-5 m)
= 0000_0 Int 0 S |NSTRUMENT CONFIGURATION
= CONFIG_ALM_H_ENABLE Bool false CONFIG —High alarm is enabled (1 = enabled, 0 = no alarm}
L CONFIG_ALM_L_ENABLE Bool true CONFIG — Low alarm is enabled (1 = enabled, 0= no alarm)
L] CONFIG_WRN_H_EMABLE Bool false CONFIG — High rning is enabled (1 = enabled, 0 = no warning)
= CONFIG_WRN_L_EMABLE Bool true CONFIG — Lot amning is enabled (1 = enabled, 0 = no warning}
= CONFIG_FP_DISABLE Bool false CONFIG — Faceplate is disabled (1 = no Faceplate, 0 = normal)
L CONFIG_SIM_DISABLE Bool false CONFIG — Simulaticn is disabled (1 = no Simulation, 0 = normal)
L CONFIG_RL_ENABLE Bool false CONFIG — Remotellocal mode enabled (1 = remotellocal permitted, 0 = remoteilocal NIA)
= 0010_0 Int 0
= 0010_1 Int 0 EE— |NSTRUMENT RANGE & SCALING DATA
= RANGE_RAW_MIN Int 0 RANGE — Minimum value of the raw analogue signal (at the card)
L] RANGE_RAW_MAX Int 27648 RANGE — Maximum value of the raw analogue signal (at the card)
L] RANGE_SCALE_MIN Real 00 RANGE — Minimum value of scaled analogue signal [engineering units]
= RANGE_SCALE_MAX Real 5.0 RANGE — Maximum value ofthe scaled analogue signal [engineering units]
= RANGE_OOR_PERCENT Real 25 RANGE — Out of range percentage (of raw range), beyond which the instrument is out of range|
L] 0020_0 Int 0
L 00z20_1 Int 0 — |NSTRUMENT INFORMATION (TAG & UNITS)
= INFO_TAG String[20] ‘LToot1” INFORI ON—Instrument ID tag
= INFO_UNITS String[10] ‘m' INFORMATION — Engineering units of the instrument (unit of measure)
= 0030 0 Int 0
L] 0030_2 Int 0 — | NSTRUMENT ALARMIVUARNING & HYSTERESIS SETPOINTS,
L] SP_ALM_H_VAL Real 00 SETPOINT— High alarm threshald value [engineering units]
(] SP_ALM_L_VAL Real 05 SETPOINT— Low alarm threshold value [engineering units]
= SP_WRN_H_VAL Real 0.0 SETPOINT— High warning threshold value [engineering units]
= SP_WRN_L VAL Real 075 SETPOINT— Low warning threshold value [engineering units]
[ SP_ALM_H_HYST_VAL Real 0o SETPOINT— High alarm value [engineering uni
L] SP_ALM_L_HYST_VAL Real 01 SETPOINT— Low value [engineering units]
= SP_WRN_H_HYST_VAL Real 0.0 SETPOINT— High warning value [engineering units]
= SP_WRN_L_HYST WAL Real 0.1 SETPOINT — Low warning eresis value [engineering units]
] 0040_0 Int 0
L] 0040_2 Int 0 — |NSTRUMENT TIMER DEFAULT VALUES
(] TIME_ALM_H_OM_DEL Real 100 TIMER— High alarm on delay time (acti
. TIME_ALM_L_ON_DEL Real 10.0 TIMER— Low alarm on delay
= TIME_WRN_H_ON_DEL  Real 100 TIMER — High warning cn dela
[ TIME_WIRN_L_ON_DEL Real 100 TIMER — L arning on del econds]
L] TIME_ALM_H_OFF_DEL Real 15.0 TIMER—High alarm off de econds]
(] TIME_ALM_L_OFF_DEL Real 15.0 TIMER— Low alarm off delay time (deactivation delay), [zeconds]
= TIME_WRN_H_OFF_DEL Real 15.0 TIMER — High warning off del ime (deactn econds]
= TIME_WRN_L_OFF_DEL  Real 15.0 TIMER — Low wa rning off delay time (deactivation delay), [seconds]

Figure 6.6

LTO001 static data block UDT structure

It can be seen that the data is different; in this case it is applicable to LT001, the scaled
range of the instrument is set to be from ©.0 (RANGE SCALE MIN) to 5.0

(RANGE_SCALE_MAX), it can also be seen that only the low alarm and low warnings are
enabled (only CONFIG_ALM_L_ENABLE and CONFIG_WRN_L_ENABLE are set to true).

This is the mechanism by which data is stored and passed to the standard modules,
each instance of the standard modules is given static (or dynamic) data in the same
data block, but from a different variable within that data block, here the first instance
uses the variable FT001 and the second instance LT001.

117-268




@) This can be seen with the dynamic data too:

DB22001_Dy_InstAnalogRead

\ Namne | Data type Startvalue |Comment
1 < v Static
2 <4 = » _DB_Header Array[0.79] of Boal STANDARD ANALOGUE INSTRUMENT READ
3 |am = 0000_0 Bool false
4 |lagw 0000_1 Bool false — 0 OGUE INSTRUMENTS
5 |la= ~ FoO1 *UT22001_Dy InstAnalogRead” FT001 Flow Transmitter (0-1000 I/s)
6 <@ nf 0000_0 Int 0 STATUS (FOR BLOCK ICOM AND SYMBOL) A
7 < L} status_Alm_H Bool false STATUS —High alarm is active (1 =alarm active, 0 = no alarm}
g @ = status_Alm_L Bool false STATUS — Low alarm is active (1 =alarm active, 0 =no alarm)
2 @ = status_Wrn_H Bool false STATUS — High warning is active (1 = warning active, 0= no warning}
ol = status_Wim_L Baoal false STATUS — Low warning is active {1 =warning active, 0 = no warming)
11 |0 = status_Alm_H_Mask Bool false STATUS —High alarm is masked (1 =alarm masked, 0= normal}
12 <@ = status_Alm_L_Mask Bool false STATUS — Low alarm is masked (1 =alarm masked, 0 = normal}
13 <@ = status_Wrn_H_Mask Bool false STATUS — High warning is masked (1 =warning masked, 0 = normal}
14lqq = status_Wn_L_Mask Baoal false STATUS — Low warning is masked (1 ming masked, 0 = normal}
15 |4 = status_Alm_H_Dis Bool false STATUS —High alarm is disabled (1 =alarm disabled, 0 = normal)
16 <@ = status_Alm_L_Dis Bool false STATUS — Low alarm is disabled (1 =alarm disabled, 0 = normal)
17 < = status_Wrn_H_Dis Bool false STATUS — High warning is disabled (1 = warning disabled, 0 = normal}
18 |1 L} status_Wm_L_Dis Boal false STATUS — Low warning is disabled (1 = warning disabled, 0 = normal}
19 <@ = status_Fault Bool false STATUS — Instrument is in fault (1 = fault present, 0 = healthy)
20 <@ = status_SimOn Bool false STATUS — Instrument is in simulation mode (1 = simulation mode on, 0 = normal)
21 | = status_RemoteOn Boal false STATUS — Instrument is in remate mode {1 = remote mode, 0 = remote mode off}
23 | = status_LocalOn Boal false STATUS — Instrument is in local mode (1 = local mode, 0 = local made off}
23 |4 = status_RLOfF Bool false STATUS — Remoteilocal mode disabled {1 = ALL mode on, 0 = RL mode selected)
24 |« L] 00100 Int 0
25 |4 L 00101 Int 0 Wm— OPERATING MODE SELECTION (FROM FACEPLATE OR PAMEL)
26 lan = mode_Alm_H_MaskOn  Boal false MODE — Mask Alm_H (1 = mask alarm, 0 = normal)
27 | = mode_Alm_L_MaskOn  Bool false MODE — Mask Alm_L (1 = mask alarm, 0 = normal)
28 @ = mode_Wrn_H_MaskOn Bool false MODE —Mask Wrn_H (1 = mask warning, 0= normal}
290G = mode_Wrn_L_MaskOn  Baal false MODE — Mask Wm_H (1 = mask warning, 0 = normal}
30 @ L] maode_SimOn Bool false MODE — Simulation mede (1 = simulation mode active, 0 = normal)
3la = mode_SimValue Real 0.0 MODE — Simulation value [engineering units]
32 @ = mode_LocalOn Bool false MODE — Local HMI control enabled (1 = control active, O = control disabled or N/A)
33 @ L} mode_RemoteOn Boal false MODE — Remaote SCADA control enabled (1 = control active, 0 = control disabled or MiA)
34 @ L _____oozo0 Int o}
35 41 L] 0020_1 Int 0 E— ESSAGES (ALARMS, WARNINGS. FAULTS AND EVENTS)
36 @ L] msg_Alm_H Bool false MESSAGE — Alarm - high alarm is active
37 <@ L msg_Alm_L Boal false MESSAGE — Alarm - low alarm is active
Bla = msg_Wrn_H Bool false MESSAGE — Waming - high warning is active
39 |40 = msg_Wirn_L Bool false MESSAGE —Warning - low warning is active
40 |« = msg_Flt_External Bool false MESSAGE — Fault-external fault signal is active
4l = msg_Flt_OverRange Bool false MESSAGE — Fault -instrument is over-range
42l = msg_Flt_UnderRange Bool false MESSAGE — Fault -instrument is underrange
43 = msg_Flt_OutOfRange Bool false MESSAGE — Fault-instrument is cut-ofrange
44 |q0 L 0030_0 Int 0
45 |q1 L 0030_1 Int 0 — BATCH AND BOOKING DATA
46 @ = batch_ID Int 0 BATCH — Boeking ID (optional for batch operations)
47 |an L] 00400 Int 0
48 |- L 0040_1 Int 0 WS LIVE DATA (SCALED READING & TIMER VALUES)
49 <@ L] actual_Value Real 0o ACTUAL — SCALED INSTRUMENT VALUE [engineering units]
50 |0 - actual_Alm_H_Timer Real 0.0 ACTUAL — Timer value — alarm high cperation timer [seconds]
51 <@ = actual_Alm_L_Timer Real 0.0 ACTUAL — Timer value —alarm low operation timer [seconds]
52 < = actual_Wrn_H_Timer Real 0.0 ACTUAL — Timer value — warning high operation timer [seconds]
s3lq = actual_Wm_L_Timer Real 00 ACTUAL — Timer value —waming low operation timer [secands]
54 |41 L 0090 Int 0
55 4@ L] 0090_1 Int 0 [m— BLOCK INTERMAL WORKING AND STORAGE AREA
6@ = Spret_AlmHEn Bool false INTERMAL — Edge retention (+ve) alarm high enable
5ila@ = SPret_AlmLEn Baoal false INTERNAL — Edge retention (+ve} alarm low enable
s8l@ = Spret_WimHEn Bool false INTERNAL — Edge retention (+ve)} warning high enable
59 @ = | Spret_WrnLEn Bool false INTERMAL — Edge retention (+ve) warning low enable J
60 | = » LTOO1 *UT22001_Dy InstAnalogRead” LT001 Level Transmitter (0-5 m})

Figure 6.7  FT001 dynamic data block UDT structure

118-268 Doc: PS2001-5-2101-001 Rev: R02.00



@  Compared with LT001:

DB22001_Dy_InstAnalogRead

| Name ‘ Data type Startvalue  Comment
1 |40 - Static
2 <@ = » _DB_Header Array[0..79] of Bool STANDARD AMALOGUE INSTRUMENT READ
3 4w 0000_0 Bool false
4 @ 0000_1 Ecol false — L ALOGUE INSTRUMENTS
5 |4 = » FTOO1 "UT22001_Dy InstAnalogRead” FTO01 Flow Transmitter (0-1000 lis)
6 @@= ~ LT001 *UT22001_Dy InstAnalogRead LT001 Level Transmitter (0-5 m)
7 la f 0000_0 Int ) R S TATUS (FOR BLOCK ICON AND SYMBOL) h
8 | = status_Alm_H Bool false STATUS —High alarm is active (1 = alarm active, 0 =no alarm)
-0 | = status_Alm_L Bool false STATUS —Low alarm is active {1 = alarm active, 0 = no alarm}
10 |40 = status_Wrn_H Bool false STATUS —High warning is active (1 =warning active, 0= no warning)}
11 < = status_Wrn_L Bool false STATUS — Low warning is active (1 =warning active, 0 = no warning)
12 |40 = status_Alm_H_Mask Bool false STATUS —High alarm is masked (1 = alarm masked, 0 = normal)
13/q = status_Alm_L_Mask Eool false STATUS — Lowalarm is masked (1 =alarm masked, 0 = normal)
14lqm = status_Wrn_H_Mask Bool false STATUS — High waming is masked (1 = warning masked, 0 = normal)
5@ = status_Wn_L_Mask Eool false STATUS — Low warning is masked (1 =warning masked, 0 = normal)
16 €1 = status_Alm_H_Dis Bool false STATUS —High alarm is disabled (1 = alarm disabled, 0 = normal)
17 < = status_Alm_L_Dis Bool false STATUS —Low alarm is disabled (1 = alarm disabled, 0= normal}
18 < = status_Wrn_H_Dis Bool false STATUS —High warning is disabled (1 = waming disabled, 0= normal)
19 a1 = status_Wrn_L_Dis Bool false STATUS — Low warning is disabled (1 = wamning disabled, 0 = normal}
20 |4a = status_Fault Bool false STATUS — Instrument s in fault (1 = fault present, 0 = healthy}
21 | = status_SimOn Bool false STATUS — Instrument is in simulation mede (1 =simulation mode on, 0 = normal)
22 | = status_RemoteOn Bool false STATUS — Instrument is in remote mode (1 = remote mode, 0 = remote mode off)
25 < L} status_LocalOn Bool false STATUS — Instrument is in local mode (1 = local mode, 0 = local mode off)
24 <@ L status_RLOF Bool false STATUS — Remoteflocal mode disabled (1 = ALL mode on, 0 = RL mode selected)
25 < L oo1o_0 Int ]
26 @ L] 0010_1 Int o = OPERATING MODE SELECTION (FROM FACEPLATE OR PANEL}
27 <@ = mode_Alm_H_Maskon Bool false MODE — Mask Alm_H (1 =mask alarm, 0 = normal)
28 |4 = mode_Alm_L_MaskOn Bool false MODE — Mask Alm_L (1 = mask alarm, 0 = normal)
20lq = mode_Wirn_H_MaskOn  Bool false MODE — Mask Win_H (1 = mask warning, 0= normal)
30|lam = mode_n_L_MaskOn  Bool false MODE — Mask Wrn_H (1 = mask warning, 0=normal}
31 <@ L] mode_SimOn Bool false MODE — Simulation mode (1 = simulation mode active, 0 = normal)
2@ = mode_SimValue Real 0.0 MODE — Simulation value [engineering units]
33 | = mode_Localon Bool false MODE — Local HMI control enabled (1 = control active, 0 = contral disabled or N/A)
34 < = mode_RemoteOn Bool false MODE — Remnote SCADA control enabled (1 = control active, 0 = control disabled or N/A)
35 @ L] 0020_0 Int o
36 4l = 0020_1 Int o E— MESSAGES (ALARMS, WARNINGS, FAULTS AND EVENTS)
37 |4 L msg_Alm_H Bool false MESSAGE — Alarm - high alarm is active
38 @ L msg_Alm_L Bool false MESSAGE — Alarm -low alarm is active
9@ = msg_Wrn_H Bool false MESSAGE — Warning - high warmning is active
40 4qn = msg_Wrn_L Bool false MESSAGE — Warning - low warning is active
41 | = msg_Flt_External Bool false MESSAGE — Fault - external fault signal is active
42 | = msg_Flt_OverRange Bool false MESSAGE — Fault - instrument is over-range
43 < = msg_Flt_UnderRange Bool false MESSAGE — Fault -instrument is underrtange
44 |4 = msg_Flt_OutOfRange Bool false MESSAGE — Fault - instrument is out-ofrange
45 |40 L 0020_0 Int o
46 <0 L 0030_1 Int 0 EEmm— BATCH AND BOOKING DATA
@ = batch_ID Int a BATCH — Booking ID (optional for batch operations)
48 |40 ® 0040_0 Int 0
49 |41 L 0040_1 Int o W— | VE DATA (SCALED READING & TIMER VALUES)
50 <@ L actual_Value Real 0.0 ACTUAL — SCALED INSTRUMENT VALUE [engineering units]
51 < = actual_Alm_H_Timer Real 0.0 ACTUAL — Timer value —alarm high operation timer [seconds]
52 <1 = actual Alm_L_Timer Real 0.0 ACTUAL — Timer value —alarm low operation timer [seconds]
53 <@ L] actual Wrn_H_Timer Real 0.0 ACTUAL — Timer value —warning high operation timer [seconds]
54lqq = actual_Wn_L_Timer Real 0.0 ACTUAL — Timer value — warning low operation timer [seconds]
55 <1 L 0090_0 Int o
56 <1 L 0090_1 Int o E— B|OCK INTERNAL WORKING AND STORAGE AREA
57 = Spret_AlmHEn Bool false INTERNAL — Edge retention (+ve) alarm high enable
58 41 = $Pret_AlmLEn Bool false INTERNAL — Edge retention (+ve) alarm low enable
59 |0 = $pret_WrmHEn Bool false INTERNAL — Edge retention (+ve) warning high enable
60 |41 = | Jpret WmLEn Bool false INTERNAL — Edge retention (+ve) warning low enable J

Figure 6.8  LT001 dynamic data block UDT structure

Doc: PS2001-5-2101-001 Rev: R02.00 119-268



U]

@

6.3.1

Data block and UDT naming conventions

The following rules apply to naming variables within static data blocks and static

UDTs:

Q)
@

The name must be written in uppercase
The name must be no more than 21 characters

Only use the characters [A-Z], the numbers [0-9] and the under-
score character [_]

The underscore character should be used in place of a space to
separate words

All elements must have a comment in the block interface to ex-
plain the function and usage of the element.

The following rules apply to naming variables within dynamic data blocks and static

UDTs:

120-268

Q)

®

The name must be written in camel case (unless it is an equipment
tag, in which case it will be in the case dictated by the tag)

The name must be no more than 25 characters

Only use the characters [a-z], [A-Z], the numbers [0-9] and the
underscore character [_]

All elements must have a comment in the block interface to ex-
plain the function and usage of the element.



0]

@

3

)

6.3.2 DBs holding recipe data

Under certain (very limited) circumstances, the data in a static DB can be overwritten.
These circumstances arise when some form of recipe handling is being performed.

Recipes consist of preconfigured data sets that are selected by the operator and then
loaded into the Controller (via some external device such as a SCADA or HMI). Such
recipe data sets are permitted to overwrite (overload) a static DB (essentially the static
DB is being selected for a particular set of production requirements).

Once a recipe has overloaded a static DB, the data in that DB is then fixed (and will
not be overwritten) until the operator selects a different recipe.

Data blocks that hold recipe data, and are under the control of a recipe, are given the
class Rc_ (rather than St_), the individual elements within the DB will retain the prop-
erties specified for static DBs in § 6.3.1 (i.e. all uppercase &c.).

121-268



BLANK PAGE

122-268 Doc:  P$2001-5-2101-001 Rev: R02.00



0]

@

O}

Application modules

The complete OB 1 PAL structure is shown in Figure 7.1. This shows application
block calls to the thirteen functional groups (this includes the 11 functional groups
listed in Figure 5.1, plus two debug groups: a start of cycle debug and end of cycle
debug — debug functional groups are discussed in § 8.13).

All of these functional groups with the exception of the system functions
(FC21000_AppSys) are optional (the requirements for these applications depends en-
tirely on the purpose of the Controller); most Controllers will have a subset of these
functional groups.

Application modules are always installed in functions (FC) within the Controller and
do not, under any circumstances, use parametric assignments (unlike standard mod-
ules, application blocks have no parameters associated with them).

OB 1
Main program cycle

FC28000_AppCmd
Coordinating application block

Coordinating application block

FC30000_AppDev ‘

FC24000_AppSafe

Coordinating application block

FC36000_AppMsg
Coordinating application block

FC25000_AppCale
Coordinating application block

FC37000_AppComms
Coordinating application block

FC26000_AppCont
Coordinating application block

Coordinating application block

FC39000_AppDebugEoC ‘

| e i

v
Figure 7.1 Complete OB 1 PAL structure

Doc: PS2001-5-2101-001 Rev: R02.00 123-268



U]

@

3

)

7.1 Coordinating application modules

The application blocks shown in Figure 7.1 are categorised as coordinating application
blocks, and these are used to coordinate all the block calls within that particular func-
tion group.

Coordinating blocks are always functions (FCs) and the last three digits of the block
number are always zero; i.e. FCgg000 where gg reflects the functional group listed in
Table 5.1.Each coordinating application block can directly call the standard modules
that are associated with that functional group, or can call marshalling application mod-
ules that further subdivide the functional groups into logical areas, this can be seen in.
Figure 7.2

Figure 7.2 shows a coordinating application module (FC216060_AppSys) calling two
standard modules: FCO1001_StdSysGlLobalData (used to generates the global timing
and logic signals) and FCO1101_StdSysTimeSync (used to synchronise the Control-
ler’s internal real time clock).

Key

0B 1
Main program cycle
COORDINATING
APPLICATION MODULE

MARSHALLING
APPLICATION MODULE

PROGRAMMED
APPLICATION MODULE

STANDARD MODULE

Figure 7.2 Coordinating applications calling standard modules

Coordinating modules may contain simple signal conditioning programming instruc-
tions that are directly associated with the standard modules being called from within
the module.

124-268 Doc:  P$2001-5-2101-001 Rev: R02.00



0]

@

3

Q]

®)

()

7.2 Marshalling application modules

Figure 7.3 shows a coordinating application module calling two marshalling modules
that subdivide the coordinating application modules into logical groupings within the
functional group.

In Figure 7.3 the coordinating application module (FC22600 AppInst) calls two mar-
shalling application modules in turn, firstly: FC226001_AppInstAnalogRead and sec-
ondly FC22501_AppInstDigitalRead.

Each of these marshalling blocks then call the standard modules associated with sub-
division of the functional group, in this instance, FC22001_AppInstAnalogRead re-
peatedly calls the standard module FC02001 StdInstAnalogRead (called repeat-
edly, once for each analogue instrument, to scale and monitor each instrument).

FC22501 _AppInstDigitalRead  repeatedly calls the standard module
FCo2501_StdInstDigitalRead (again, called repeatedly, once for each digital in-
strument, to filter and monitor each instrument).

Marshalling modules may contain simple signal conditioning programming instruc-
tions that are directly associated with the standard modules being called from within
the module.

As many marshalling blocks as required can be used, marshalling blocks have the fol-
lowing restrictions:

() Marshalling blocks are always functions (FCs)

(0 The last three digits of the marshalling block number must not be
000, this is reserved for coordinating application modules

125-268



0B 1
Main program cycle

COORDINATING
APPLICATION MODULE

MARSHALLING
APPLICATION MODULE

PROGRAMMED
APPLICATION MODULE

STANDARD MODULE

Figure 7.3 Coordinating applications, marshalling applications and standard modules

126-268 Doc: PS2001-5-2101-001 Rev: R02.00



7.3 Programmed application modules

M There is a third type of application module: the programmed application module, these
are shown in Figure 7.4:

0B 1
Main program cycle
Key
COORDINATING
APPLICATION MODULE
MARSHALLING
APPLICATION MODULE
PROGRAMMED
APPLICATION MODULE
‘ STANDARD MODULE ‘
FC24000_AppSafe
Coordinating application block
FC24001_AppSafeAreaA
Programmed application block
FC04001_StdSafeZone
E-Stop group zoning
FC24002_AppSafeAreaB
Programmed application block
L FC04001_StdSafeZone
E-Stop group zoning
Figure 7.4  Programmed application modules
@ Programmed application modules contain extensive programming statements, rather
than the configuration exercises used when calling standard modules.
® A programmed application module contains software that is specific to the purpose of

the Controller in question, such modules will contain logical statements (rather than

Doc: PS2001-5-2101-001 Rev: R02.00 127-268



Q]

®)

(6

simply calling a standard module and providing it with parameters applicable to the
device in question).

For example, in Figure 7.4, the coordinating application module FC23006_AppIlock
calls two programmed application modules (FC23001_AppIlockAreaA and
FC23002_AppIlockAreaB), both these modules will contain project specific software
that analyses the instrument readings (see Figure 7.3) and device states to determine
what interlock conditions exist for devices in a particular plant area (Area A and Area
B). The logic contained within these programmed application modules is entirely de-
pendent on the requirements of the Controller application and it will be written entirely
for that application, there will be no pre-determined format for the software (it will
essentially be written from scratch).

It is permissible for programmed applications to use standard modules (see
FC24001_AppSafeAreaA of Figure 7.4) wherever required. The standard modules
used must be either subroutine modules (see § 8.12) or be standard modules associated
with the same functional group as the programmed application module.

As many programmed blocks as required can be used, with the following restrictions:
(O Programmed application blocks are always functions (FCs)

(@  The last three digits of the programmed block number must not
be 000, this is reserved for coordinating application modules

128-268



7.4

NAME AND SYMBOL

Coordinating Application modules

FCgg000_AppClassDesc
Coordinating application module

Marshalling Application modules

FCggnnn_AppClassDesc
Marshalling application module

Programmed Application modules

FCggnnn_AppClassDesc
Programmed application module

Table 7.1 Application module categories

BLOCK

FC

FC

FC

A summary of application module types

DESCRIPTION

Coordinating modules call either marshalling blocks
or directly call standard modules

Coordinating blocks are limited to signal conditioning
and minor logic expressions associated with the
standard modules

Marshalling modules directly call standard modules

marshalling blocks are limited to signal conditioning
and minor logic expressions associated with the
standard modules

Programmed modules contain extended
programming instructions and may call standard
modules if required

129-268



BLANK PAGE

130-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

(O]

)

Standard module library

The standard modules associated with the PAL software are broken down in to func-
tional groups (see § 5.1), these are summarised below:

STANDARD MODULE
NUMBER FUNCTION GROUP

04ppp Safety systems

05ppp Calculations & mathematics

Reserved

Device drivers (Control loops)
Device drivers (Valves)

Device drivers (Drives)
Message handling

Communication handling

(subroutines)

Debug (end of cycle)

Table 8.1 Standard module functional groups

The following sections list by function group, all the standard modules that are part of
the PAL software.

Each entry gives a brief overview of the purpose of the module and the functions avail-
able to it. The Software Design Specification [Ref. 006/ contains further information
and each standard module has its own Software module Design Specification (SMDS)
[Ref. 008] that give full details of the module and all associated data structure (UDTs)
and data blocks.

Standard blocks are self-contained units of software, they do not use subroutines, they
may however use the built-in system blocks. Certain standard modules are associated
with or work in partnership with other standard modules (certain communication
mechanisms require both a send and receive module and the sequence modules have
more than one component).

Doc: PS2001-5-2101-001 Rev: R02.00 131-268



8.1

System function modules

BLock

DESCRIPTION

BLock

DESCRIPTION

BLock

DESCRIPTION

FC 01001 FCo1001_StdSysGlobalData
Generates the internal logic and timing signals needed by all the other PAL software
modules.

The block identifies the first cycle after start-up, and determines the last, maximum and
minimum cycle times.

The block converts the Controller real time clock value to discrete integers, making the
data globally available to all systems including non-Siemens equipment.

This block is a compulsory block within the PAL and must be called at the
start of OB I.

FCOlI0I FCo1101_StdSysMonoTimeSync

Updates the Controller real time clock with a single (master) server.

Updates take place either daily or hourly (selectable) and can be set to automatically
update if a (configurable) time difference exists between the server and the CPU.

FC 01102 FCo1102_StdSysDualTimeSync

Updates the CPU time with master/slave server pair.

Updates take place either daily or hourly (selectable) and can be set to automatically
update if a (configurable) time difference exists between the master server and the
CPU.

Should the master server fail, synchronisation will automatically switch to the slave
server.

132-268

Doc:  PS2001-5-2101-001 Rev: R02.00



8.2

Instrument read modules

BLock

DESCRIPTION

BLock

DESCRIPTION

FC 02001 FCo2001_StdInstAnalogRead

This block reads and scales an analogue instrument signal received via an analogue input
card. The resultant scaled value is a real (floating point) number that matches the
calibrated range of the instrument in engineering units.

The block has the facility to generate up to two alarms and two warnings whenever the
signal is beyond a specific setpoint value (either above or below); the four signals are:

©) Alarm high
@ Warning high
® Warning low
® Alarm low
All signals can be time filtered and have associated hysteresis.

Generates out-of-range fault signals if the instruments is outside its normal calibrated
range and also generate an optional external fault signal from a hardwired fault input
from the instrument itself.

The block offers simulation facilities to allow the operator to override the signal.

FC 02011 FCo2011_StdInstRealValRead
This block reads an analogue instrument signal received as real (floating point) value
(usually from a ProfiBus or Profinet enabled instrument).

The received value can be rescaled by the block allowing the signal to be converted to
different measurement units, the resultant value is a real (floating point) number.

The block has the facility to generate up to two alarms and two warnings whenever the
signal is beyond a specific setpoint value (either above or below); the four signals are:

©) Alarm high
@ Warning high
® Woarning low
®@ Alarm low
All signals can be time filtered and have associated hysteresis.

Generates out-of-range fault signals if the instruments is outside its normal calibrated
range and also generate an optional external fault signal from a hardwired fault input
from the instrument itself.

The block offers simulation facilities to allow the operator to override the signal.

Doc:  PS2001-5-2101-001 Rev: R02.00 133-268



BLoCK FC 02101 FCo2101_StdInstReallimit

DESCRIPTION  The block has the facility to generate a limit (threshold) signal whenever the signal is
beyond a specific setpoint value (configurable to be either above or below); the signal is:
Limit active

The limit signal can be time filtered and has associated hysteresis.

BLock FC 02501 FCo2501_StdInstDigitalRead

DESCRIPTION  Reads and controls the operation of a digital instrument signal, the instrument can be
active high or low (configurable) and time filtering is provided on both the activation
edge (signal must be active for a specified time) and on the deactivation edge (signal
remains active for a specified time).

The block offers simulation facilities to allow the operator to override the signal.

BLocCk FC 02601 FCO2601_StdInstDigitalFilt

DESCRIPTION  Provides digital signal filtering for any digital signal, the signal can be active high or low
(configurable) and time filtering is provided on both the activation edge (signal must be
active for a specified time) and on the deactivation edge (signal remains active for a
specified time).

134-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

(©)]

)

)

8.3 Interlock and protection modules

Interlock handling modules provided the following types of interlock:

@

@

Interlock: a simple interlock that is active whenever a set of con-
ditions is true, it will force any associated devices to a safe state

Permissive: takes no action if a device is in a non-safe state, but
once the device is in a safe state will prevent a transition to a non-
safe state (i.e. will not force a valve to close, but once it is closed,
will prevent it from re-opening)

Trip: a latching interlock, it activates whenever a set of events are
true (like an interlock), but will not deactivate until the triggering
conditions are removed and a reset signal has been given (effec-
tively a latching interlock), it will force any associated devices to
a safe state

The modules here are effectively configurable AND or OR gate structures that can com-

bine either 2, 4 or 8 discrete signals into a single interlock, permissive or trip condition.

The modules are used in place of the standard AND or OR logic instruction available to

the Controller and provide individual indication for supervisor systems to highlight the

active path or paths through the modules.

The permissive modules also monitor the state of the affected device to determine

whether the device is currently in a permitted non-safe state &c.

The trip modules are latching modules that need a reset signal to remove the interlock
once the triggering conditions have cleared.

135-268



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

136-268

Standard interlock 2 signal interlock with status reporting
FC 03002 FCO3002_StdILocke2

This block monitors up to two discrete signals to determine if an interlock condition
exists.

The block is configurable as OR (interlock active if any signal is active) or AND (interlock
active when all signals are active). The interlock condition is automatically deactivated
when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any interlock, the block can be combined with other
blocks in this series to produce more complex interlock arrangements.

Standard interlock 4 signal interlock with status reporting
FC 03004 FCO03004 _StdILocko4

This block monitors up to four discrete signals to determine if an interlock condition
exists.

The block is configurable as OR (interlock active if any signal is active) or AND (interlock
active when all signals are active). The interlock condition is automatically deactivated
when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any interlock, the block can be combined with other
blocks in this series to produce more complex interlock arrangements.

Standard interlock 8 signal interlock with status reporting
FC 03008 FCO3008_StdILocko8

This block monitors up to eight discrete signals to determine if an interlock condition
exists.

The block is configurable as OR (interlock active if any signal is active) or AND (interlock
active when all signals are active). The interlock condition is automatically deactivated
when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any interlock, the block can be combined with other
blocks in this series to produce more complex interlock arrangements.



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

Standard interlock 2 signal permissive interlock with status reporting
FC 03102 FC03102_StdILockPermo2

This block monitors up to two discrete signals to determine if a permissive interlock
condition exists. The block also monitors the affected device to determine whether the
device is currently in a permitted non-safe state.

The block is configurable as OR (permissive active if any signal is active) or AND
(permissive active when all signals are active). The permissive condition is automatically
deactivated when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any permissive, the block can be combined with other
blocks in this series to produce more complex interlock arrangements.

Standard interlock 4 signal permissive interlock with status reporting
FC 03104 FC03104 _StdILockPermo4

This block monitors up to four discrete signals to determine if a permissive interlock
condition exists. The block also monitors the affected device to determine whether the
device is currently in a permitted non-safe state.

The block is configurable as OR (permissive active if any signal is active) or AND
(permissive active when all signals are active). The permissive condition is automatically
deactivated when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any permissive, the block can be combined with other
blocks in this series to produce more complex interlock arrangements.

Standard interlock 8 signal permissive interlock with status reporting
FC 03108 FC03108 _StdILockPermo8

This block monitors up to eight discrete signals to determine if a permissive interlock
condition exists. The block also monitors the affected device to determine whether the
device is currently in a permitted non-safe state.

The block is configurable as OR (permissive active if any signal is active) or AND
(permissive active when all signals are active). The permissive condition is automatically
deactivated when triggering conditions are no longer present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any permissive, the block can be combined with other
blocks in this series to produce more complex interlock arrangements.

137-268



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

138-268

Standard interlock 2 signal trip interlock with status reporting
FC 03202 FC03202_StdILockTripo2

This block monitors up to two discrete signals to determine if a trip interlock condition
exists.

The block is configurable as OR (trip active if any signal is active) or AND (trip active
when all signals are active). The trip condition is not automatically deactivated when
triggering conditions are no longer present, a reset signal must be supplied to actively
clear the interlock once the activation conditions are removed.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any trip, the block can be combined with other blocks
in this series to produce more complex interlock arrangements.

Standard interlock 4 signal trip interlock with status reporting

FC 03204 FC03204_StdILockTripo4

This block monitors up to four discrete signals to determine if a trip interlock condition
exists.

The block is configurable as OR (trip active if any signal is active) or AND (trip active
when all signals are active). The trip condition is not automatically deactivated when
triggering conditions are no longer present, a reset signal must be supplied to actively
clear the interlock once the activation conditions are removed.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any trip, the block can be combined with other blocks
in this series to produce more complex interlock arrangements.

Standard interlock 8 signal trip interlock with status reporting

FC 03208 FC03208_StdILockTripo8

This block monitors up to eight discrete signals to determine if a trip interlock
condition exists.

The block is configurable as OR (trip active if any signal is active) or AND (trip active
when all signals are active). The trip condition is not automatically deactivated when
triggering conditions are no longer present, a reset signal must be supplied to actively
clear the interlock once the activation conditions are removed.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any trip, the block can be combined with other blocks
in this series to produce more complex interlock arrangements.

Standard interlock message signal generation
FC 03501 FC03501_StdILockMsgGen

This block generates a specific message when linked to any of the previous interlock
modules.

The message can be configured as an alarm, a warning or an event.



0]

@

(©)]

Q]

)

®)

8.4 Safety and safety system modules

Safety modules group various emergency stop signals into zones that, if active, remove
power from specific devices.

The safety systems operate at a hardwired level (the power is physically removed from
the devices, rather than by any software within the Controller).

The purpose of the safety system modules is to ensure that the state of an affected
device will match the hardwired state of the device (for example, if the system requires
a drive to run for normal process reasons, but the safety system has physically removed
power from the drive, the safety system module detects this and stops the drive within
the software, following the true state imposed upon the drive).

The safety modules provided the following types of zone control:

() E-stop group: a simple group that is active whenever an emer-
gency stop signal is detected within the group, it will force any
associated devices to a safe state

(2  E-stop trip group: a latching group, it activates whenever an
emergency stop signal is detected within the group, but will not
deactivate until the triggering conditions are removed and a reset
signal has been given, it will force any associated devices to a safe
state

The modules here are always OR gate structures that can combine either 2, 4 or 8 dis-
crete signals into a single emergency stop group.

The modules provide individual indication for supervisor systems to highlight the ac-
tive path or paths through the e-stop groupings.

139-268



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

140-268

Standard safety 2 signal E-stop zone group with status reporting
FC 04002 FCo4002_StdSafeZoneNormo2

This block monitors up to two discrete signals to determine if an emergency stop
condition exists. Activation of either signal will cause the group emergency stop to
activate

The group is automatically deactivated when triggering conditions are no longer
present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any E-stop signal, the block can be combined with
other blocks in this series to produce more complex group arrangements.

Standard safety 4 signal E-stop zone group with status reporting
FC 04004 FCo4004_StdSafeZoneNormo4

This block monitors up to four discrete signals to determine if an emergency stop
condition exists. Activation of any signal will cause the group emergency stop to
activate

The group is automatically deactivated when triggering conditions are no longer
present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any E-stop signal, the block can be combined with
other blocks in this series to produce more complex group arrangements.

Standard safety 8 signal E-stop zone group with status reporting
FC 04008 FCo4008 StdSafeZoneNormo8

This block monitors up to eight discrete signals to determine if an emergency stop
condition exists. Activation of any signal will cause the group emergency stop to
activate

The group is automatically deactivated when triggering conditions are no longer
present.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any E-stop signal, the block can be combined with
other blocks in this series to produce more complex group arrangements.



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

Standard safety 2 signal E-stop latching zone group with status reporting
FC 04202 FCo4202_StdSafeZoneTripo2

This block monitors up to two discrete signals to determine if an emergency stop
condition exists. Activation of either signal will cause the group emergency stop to
activate

The group is not automatically deactivated when the triggering conditions are no longer
present, a reset signal must be supplied to actively reset the group once the activation
conditions are removed.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any E-stop signal, the block can be combined with
other blocks in this series to produce more complex group arrangements.

Standard safety 4 signal E-stop latching zone group with status reporting
FC 04204 FCo4202_StdSafeZoneTripo4

This block monitors up to four discrete signals to determine if an emergency stop
condition exists. Activation of any signal will cause the group emergency stop to
activate

The group is not automatically deactivated when the triggering conditions are no longer
present, a reset signal must be supplied to actively reset the group once the activation
conditions are removed.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any E-stop signal, the block can be combined with
other blocks in this series to produce more complex group arrangements.

Standard safety 8 signal E-stop latching zone group with status reporting
FC 04208 FC04208 StdSafeZoneTripo8

This block monitors up to eight discrete signals to determine if an emergency stop
condition exists. Activation of any signal will cause the group emergency stop to
activate

The group is not automatically deactivated when the triggering conditions are no longer
present, a reset signal must be supplied to actively reset the group once the activation
conditions are removed.

Common format status signals are provided to allow supervisory system to determine
and display the state and cause of any E-stop signal, the block can be combined with
other blocks in this series to produce more complex group arrangements.

Standard safety message signal generation
FC 04501 FCO4501_StdSafeMsgGen

This block generates a specific message when linked to any of the previous E-stop zone
modules.

The message can be configured as an alarm, a warning or an event.

141-268



8.5

TITLE

BLocCk

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

TITLE

BLock

DESCRIPTION

142-268

Calculations and mathematics modules

Standard calculation — simple average

FC 05001 FCo5001_StdCalcAvg

Calculates the average value of a set of # real numbers stored within a data block. The
set can be of any size up to the maximum capacity of a data block.
X1 +x+ 0+ xy

A
vg -

Standard calculation — rolling average

FC 05002 FCo5002_StdCalcAvgRolling

Calculates an unweighted rolling average of a specified number of real samples (7). The
samples will be taken at specified intervals and stored in a data block, when more than #
samples have been taken, the oldest sample will be removed from the bottom of the list
and a new sample added at the top.

The average (mean) is calculated for the current number of samples in the list

Xeurr t Xcwrr—1 + 0+ Xcurr—(n—1)
n

RollingAvg =

Standard calculation — cumulative average

FC 05003 FCo5003_StdCalcAvgCumulate

Calculates an unweighted cumulative average of a continuing stream of real values.
. x1+x2+"'+xn
CumulativAvg, = —————
n
Xn+1 + n(CumulativAvg,)
n+1

The cumulative average can be restarted by triggering a reset signal.

CumulativAvg, 1 =

Standard calculation — weighted rolling average

FC 05004 FCo5004_StdCalcAvgiWeighted

Calculates a weighted rolling average of a specified number of real samples (7). The

samples will be taken at specified intervals and stored in a data block, when more than #

samples have been taken, the oldest sample will be removed from the bottom of the list

and a new sample added at the top.

The weighted average gives more emphasis to the most recent samples in the list

nx, + (Mm—D)xp_q + -+ 2x, + x4
n+(n—-1D+--+2+1

WeightedAvg =



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

Standard calculation — exponential rolling average
FC 05005 FCo05005_StdCalcAvgExp

Calculates an exponential moving average of a specified number of real samples (7). The
samples will be taken at specified intervals and stored in a data block, when more than #
samples have been taken, the oldest sample will be removed from the bottom of the list
and a new sample added at the top.

The exponential moving average will return the same value as the rolling average until n
samples have been taken, after this point the 7 + 7 sample will give a true exponential
moving average.

The exponential rolling average is calculated as:

ExponentialAvg,+1 = (xp+1 — ExponentialAvg,,) + ExponentialAvg,

2
n+1
Where: ﬁ is the standard smoothing coefficient.

Standard calculation — rate-of-change
FC 05101 FCo5101_StdCalcDiffRoC

Calculates the rate-of-change of a value over a given time period:

Xp—Xp_q dxp
RateOfCh == —
ateOfChange, —— T

Standard calculation — average rate-of-change
FC 05102 FCo5102_StdCalcDiffRoCAvg

Calculates an unweighted rolling average of a specified number of real samples (7) of a
rate-of-change value. The samples will be taken at specified intervals and the calculated
rate-of-change between values will be stored in a data block, when more than # samples
have been taken, the oldest sample will be removed from the bottom of the list and a
new sample added at the top.

The average (mean) is calculated for the current number of rate-of-change samples in
the list (the rate of change calculation is given in the previous module):

dxy  dxpoy o 4%
a tTd T ta@
n

RateOfChange g =

143-268



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

144-268

Standard calculation — signal integration (area)
FC 05201 FC05201_StdCalcIntArea

Continuously integrates a signal x(t) relative to time:

nt

Integral, =f x(t)dt
0

The integration uses piecewise linear intervals to calculate the current integral value, if
the time between samples is ¢, the integral value after # samples is:
Xn + X1 Xp—1 + Xn_2 X1 + Xo
Integraln=t( z > z )+t( z > z >+~~~+t( > )

The cumulative integral value for the next sample is thus:

X +x
Integral, ., = (%) + Integral,
The integral value can be restarted by triggering a reset signal.

Standard calculation — convert a ranged value to a percentage
FC 05301 FCo5301_StdCalcValToPercent

Converts a real value (x) in the range X, to X;nq, to a percentage value, using the

following formulae:
X = Xy
Percentage = 100 (i)

max — Xmin
Standard calculation — convert a percentage to a ranged value
FC 05302 FC05302_StdCalcPercentToVal

Converts a percentage value (p) to a real value (x), x is in the range X;;,;;, t0 Xpqy, USINg

the following formulae:
p
X = 100 (Xmax — Xmin) + Xmin

Standard calculation — convert a percentage to a variable mark/space square wave
FC 05351 FCo5351_StdCalcPercentToPulse
Converts a percentage value (p) to a square wave pulse train with a variable mark/space

ratio, the period of the square wave is a specified value (#). The mark/space ratio is

determined by the percentage value (p), a value of 33.3% would give a mark time of§

. 2t . . .
and a space time of ey the mark/space time calculations are given by:

4

100"

mark, =

spacegiy, =t (1 - %)



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

TITLE

BLock

DESCRIPTION

Standard calculation — convert a percentage to a variable mark/space square wave
FC 05352 FCO05352_StdCalcPulseToPercent

Converts the mark/space ratio of a square wave pulse train to percentage value (p)
The period of the square wave (¢) is automatically determined by the module.
The percentage value (p), is calculated as:

marky;
P =100—22

The percentage value is calculated at on the rising edge of the square wave (i.e.
recalculated after each square wave period and is adjusted for variations in the square
wave period)

Standard calculation — convert a pulse train to an ON/OFF state

FC 05361 FC05361_StdCalcPulseToState

If a square wave pulse train with a period shorter than a specified time (¢) is present,
the block returns a TRUE.

If the pulse train period is longer than the time (#), the block returns a FALSE state; the
mark/space ratio of the signal is not relevant.
The block is typically use to detect rotation of a device and ensure it is above a

particular frequency.

Standard calculation — convert an ON/OFF state to a pulse train
FC 05362 FC05362_StdCalcStateToPulse

If the monitored signal is TRUE, a square wave pulse train with a period (f) is generated
by the module.

If the monitored signal is FALSE, the square wave is stopped (set to zero).

Standard calculation — convert a square wave pulse train to a frequency

FC 05363 FC05363_StdCalcPulseToFreq

Monitors a square wave pulse train and converts its period to a frequency value in both
Hertz and revolutions per minute

The period of the square wave () in seconds is automatically determined by the
module.

The frequency in Hz (f) is calculated as:

1
F=%
The revolutions per minute (RPM) is calculated as:
RPM = 6—t0

145-268



TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

146-268

Standard calculation — pulse generator 2 (dual) state

FC 05502 FC05502_StdCalcPulseDual

Produces two repeating pulses of variable length. Each ON state will be active for a given
time period (this can be set to zero).

The sequence of Timel/Statel, Time2/State2 will repeat continuously while the enable
signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the
pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current
state

Standard calculation — pulse generator 3 (tri) state

FC 05503 FCo5503_StdCalcPulseTri

Produces three repeating pulses of variable length. Each ON state will be active for a given
time period (this can be set to zero).

The sequence of Timel/Statel, Time2/State2, Time3/State3 will repeat continuously while
the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the
pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current
state

Standard calculation — pulse generator 4 (quad) state

FC 05504 FCo5504 StdCalcPulseQuad

Produces four repeating pulses of variable length. Each ON state will be active for a given
time period (this can be set to zero).

The sequence of Timel/Statel, Time2/State2 ... Time4/State4 will repeat continuously
while the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the
pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current
state



TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

Standard calculation — pulse generator 8 (octa) state

FC 05508 FCo05508 StdCalcPulseOcta

Produces eight repeating pulses of variable length. Each ON state will be active for a given
time period (this can be set to zero).

The sequence of Timel/Statel, Time2/State2 ... Time8/State8 will repeat continuously
while the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the
pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current
state

Standard calculation — pulse generator |6 (hexa) state

FC 05516 FCO5516_StdCalcPulseHexa

Produces |6 repeating pulses of variable length. Each ON state will be active for a given
time period (this can be set to zero).

The sequence of Timel/Statel, Time2/State2 ... Timel 6/Statel 6 will repeat continuously
while the enable signal is active, if the enable signal is reset, all pulse states are set to zero.

A pause signal will pause all timing functions and hold the signals in their last state until the
pause signal is released

An integer signal as well as discrete digital signals are provided to indicate the current
state

Standard calculation — waveform generator ramp function
FC 05601 FCo5601_StdCal cWaveRamp

Generates a single ramp waveform moving from start value to an end value over a
specified time period.

Triggering the function will cause a single ramp waveform to be produced, at the end of
which the module output will remain at the end value until reset or re-triggerd

Standard calculation — waveform generator continuous sawtooth wave function
FC 05602 FCo5602_StdCalcWaveSaw

Generates a continuous sawtooth waveform. The amplitude (a) of the waveform can be
specified, as can the period (f) and the offset (0) of the waveform:

Period (t)

Amplitude (a)

Offset (o)

147-268



TITLE

BLOCK

DESCRIPTION

TITLE

BLOCK

DESCRIPTION

TITLE

BLock

DESCRIPTION

148-268

Standard calculation — waveform generator continuous triangular wave function
FC 05603 FCO5603_StdCalcWaveTri

Generates a continuous triangle waveform. The amplitude (a) of the waveform can be
specified, as can the period (f) and the offset (0) of the waveform:

Period (t) Period (t)
> >

/\ —IAmpmude (@ IAmnlitude (@
Ioﬁse( (o)

Standard calculation — waveform generator continuous sine wave function
FC 05604 FCO5604_StdCalcWaveSin

Generates a continuous sine waveform. The amplitude (a) of the waveform can be
specified, as can the period () and the offset (0) of the waveform. The phase of the wave
(p) can also be adjusted:

Period (t) Phase (p) Period (t)

NN

Standard calculation — waveform generator continuous cosine wave function

Iﬂmplim de (a)

I-cmm (o)

FC 05605 FC05605_StdCalcWaveCos

Generates a continuous cosine waveform. The amplitude (@) of the waveform can be
specified, as can the period (f) and the offset (0) of the waveform. The phase of the wave
(p) can also be adjusted:

Phase (p) Period (t)

Period (t)
‘. > ‘J-N—b

NN Jrme
NV Y4 /

The cosine waveform is identical to the sine wave form with a phase offset of 90°.




TITLE

BLOCK

DESCRIPTION

Standard calculation — waveform generator continuous square wave function

FC 05606 FCO5605_StdCalcWaveSquare

Generates a continuous square waveform. The amplitude (@) of the waveform can be
specified, as can the period (f) and the offset (0) of the waveform. The mark (m)/space (s)
ratio can be adjusted and the onset can be delayed by a phase time (p):

Period (t)

< >
Mark (m)

-IAmplimde O]

Space (s)

Phase (p)

<

[ Mark (m)

Period (t)

Ioflset (o)

IAmplitud: (a)

Space (s)

149-268



0]

8.6

Sequential control

Sequential control has its own section (section 9) that covers in detail the modules
listed here, the following is a summary of the standard sequence modules available
within the PAL.

BLock

DESCRIPTION

BLock

DESCRIPTION

BLock

DESCRIPTION

FC 07001 FCO7001_StdSeqIEC_Control

Sequence management module, it ensures that a sequence progresses correctly through
the operating state logic applied to it (see § 9).

Each sequence has a single FC07001 module associated with it; this manages all the
commands that can be issued to the sequence, performs error checking within the
sequence and identifies the current state of the sequence

This module is IEC compliant (see § 9.3.1).

FC 07011 FCo7011_StdSeqIEC_OSL

Identifies the current operating state of a given sequence (see § 9).

The operating state is the determined by the operating state logic diagram and is identified
by the numeric range of the current sequence step (see § 9.1).

This module is IEC compliant (see § 9.3.1).

FC 07021 FCO7021_StdSeqIEC_Step
Controls the phased operation of a single step within a sequence, each step has its own
instance of this module.

The module handles the transition from one step to another (up to eight different
transitions are possible) and handles the three phases within a step:

e Initialising

e  Processing

e  Terminating
The module manages step delay timers (specifying the minimum time within a step) and
step duration timers (measures how long the step has been active)
This module is IEC compliant, in that the terminating phase of the current step overlaps
the initialising phase of the next step (see § 9.3.1).

150-268

Doc: PS2001-5-2101-001 Rev: R02.00



@

3

The following modules are non-IEC compliant version of the previous modules, the
URS /Ref. 003] requires IEC compliant modules and these are provided above.

The non-compliant versions below are provided to observe the more common practices
used widely within the PLC programming community. Section 9.3.2 explains this dis-
tinction in more detail.

BLock

DESCRIPTION

BLock

DESCRIPTION

BLock

DESCRIPTION

FC 07501 FCO7501_StdSeqNonIEC_Control
Sequence management module, it ensures that a sequence progresses correctly through
the operating state logic applied to it (see § 9.1).

Each sequence has a single FC07001 module associated with it; this manages all the
commands that can be issued to the sequence, performs error checking within the
sequence and identifies the current state of the sequence

This module is NOT IEC compliant (see § 9.3.2).

FC 0751 | FCo7511_ StdSeqNonIEC _OSL

Identifies the current operating state of a given sequence (see § 9).

The operating state is the determined by the operating state logic diagram and is identified
by the numeric range of the current sequence step (see § 9.1).

This module is NOT IEC compliant (see § 9.3.2).

FC 07521 FCO7521_ StdSeqNonIEC _Step
Controls the phased operation of a single step within a sequence, each step has its own
instance of this module.

The module handles the transition from one step to another (up to eight different
transitions are possible) and handles the three phases within a step:

e Initialising
e  Processing
e  Terminating

The module manages step delay timers (specifying the minimum time within a step) and
step duration timers (measures how long the step has been active)

This module is NOT IEC compliant, in that the terminating phase of the current step
occurs before the initialising phase of the next step, the two are not coincident (see
§9.3.2).

Doc: PS2001-5-2101-001 Rev: R02.00 151-268



8.7 Device drivers — control loops

(M Device drivers are split into multiple sections: control loops, valves and drives. This
section is exclusively associated with control loops.

TITLE Standard device driver — control loops — standard PID loop

BLoCK FC 10001 FC10001_StdDevPID_Standard

DESCRIPTION  |mplements a standard three term (PID) controller.
The module has three operating modes:
e  Off (loop is disabled, the output is zero or minimum value)

e  Setpoint (the output is automatically adjusted to maintain a process variable at
the specified setpoint)

e  Fixed Output (the PID loop maintains a fixed output)

The loop can be switched between manual and automatic, in manual all data is provided by
the operator. In automatic, all data is provided by the Controller programme.

Switching between modes and between automatic and manual is bumpless.

The block supports the use of interlock signals, these will set the PID output to a
particular value

TITLE Standard device driver — control loops — standard PID loop with gain scheduling

BLock FC 10011 FC10011_StdDevPID Sched

DESCRIPTION  |mplements a standard three term (PID) controller with gain scheduling.

The module allows for all three PID terms to be changed as the process moves through
different phases, the PID terms applied are dependent on the PID loop error signal (the
difference between the process value and the setpoint), up to 10 different sets of PID
terms can applied to different error signal ranges.

The module has three operating modes:
e  Off (loop is disabled, the output is zero or minimum value)

e  Setpoint (the output is automatically adjusted to maintain a process variable at
the specified setpoint)

e  Fixed Output (the PID loop maintains a fixed output)

The loop can be switched between manual and automatic, in manual all data is provided by
the operator. In automatic, all data is provided by the Controller programme.

Switching between modes and between automatic and manual is bumpless.

The block supports the use of interlock signals, these will set the PID output to a

particular value

152-268



TITLE Standard device driver — control loops — split range modifier

BLoCK FC 10021 FC10021_StdDevPID Split

DESCRIPTION  The split range module accepts a PID loop output signal and converts it into a separately
scaled signal that can be applied to a particular actuator

Split range output
A

SRVp === === m - e e

|
|
|
|
|
|
1
|
|
|
|
SRV; -1 |
|
|
|
|
|

»

T »>
! ! PID output
PIDV, PIDV,

This module allows the output of a PID loop to be split into multiple sub-ranges and each
sub-range can be applied to a separate actuator. The sub-ranges can be mutually exclusive
or can overlap to meet the requirements of the process.

The loop can be switched between manual and automatic, in manual all data is provided by
the operator. In automatic, all data is provided by the Controller programme.

TITLE Standard device driver — control loops — polyline modifier

BLoCk FC 10022 FC10022_StdDevPID Poly

DESCRIPTION The polyline module accepts a PID loop output signal and converts it into a piecewise
linear polyline:

Polyline output

A

PLVs == ~—~—~=======—-

PLVy={--=-=-=----

PLV; —4-------~

PLV, —{==-->
PLV: ~

—T— >
PID PID PID PID PID PID output
Vi oV, VsV Vs

! B

The polyline has a minimum of two points and a maximum of 100 points.

The loop can be switched between manual and automatic, in manual all data is provided by
the operator. In automatic, all data is provided by the Controller programme.

Doc:  PS2001-5-2101-001 Rev: R02.00 153-268



TITLE Standard device driver — control loops — external (stand-alone) controller

BLOCK FC 10022 FC10101_StdDevPID External

DESCRIPTION  Provides an interface to an external (stand-alone) PID controller.
The module supports automatic and manual modes.

The module monitors the external module for hardwired faults and for failure to achieve
setpoint within a specified period.

TITLE Standard device driver — control loops — look-up table

BLOCK FC 10501 FC10501_StdDevPID LookUp

DESCRIPTION  Provides a two-dimensional look-up table, that monitors two discrete values (X and )
and depending on the relative values, returns a third output value (OUT) from the look-up

2D table ™S Xo1 Xoz Xoo

Yoo OUTo‘o OUT]_,Q OUTz,o e OUng'o
Ym OUTD‘]_ 0UT1,1 0UT2’1 i OUT99'1
Yoz | OUTy, | OUT,, A OUT,, OUTyy,

table:

aee ane e e e wae

The table can accommodate a 100 % 100 grid

The loop can be switched between manual and automatic, in manual all data is provided by
the operator. In automatic, all data is provided by the Controller programme.

154-268 Doc: PS2001-5-2101-001 Rev: R02.00



8.8 Device drivers — Valves

TITLE Standard device driver — valves — isolating valve

BLOCK FC 11001 FC11001_StdDevValveIsol
DESCRIPTION  This module controls the operation of either a normally closed or normally open isolating
valve configured with either open, closed, both open and closed or no position feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the valve limit switch signals to be overwritten and set to follow the
demand output.

The module can be configured for normally closed (energise to open) or normally open
(energise to close) valves.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

©) Failed to Open
@ Failed to Close
® Failed while Open
® Failed while Closed
® External Fault
Separate operation times for opening and closing can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Closed

. Closing
. Open

. Opening
o Fault

The module also generates status signals for the selected operating modes and conditions.

155-268



TITLE Standard device driver — valves — 3-way valve

BLock FC 11011 FC11e11_StdDevValve3Way

DESCRIPTION  This module controls the operation of 3-way valve with a common open port (the action
of the valve switches the common port to one of the other two ports) configured with
either position feedback or no position feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the valve limit switch signals to be overwritten and set to follow the
demand output.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

©) Failed to Energise
@ Failed to De-energise
® Failed while Energised
® Failed while De-energised
® External Fault
Separate operation times for energising and de-energising can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. De-energised port open
. Deenergising

. Energised port open

. Energising

. Fault

The module also generates status signals for the selected operating modes and conditions.

156-268



TITLE Standard device driver — valves — bistable isolating valve

BLoCK FC 1110l FC11101_StdDevValveBi
DESCRIPTION  This module controls the operation of a bistable isolating valve configured with either
open, closed, both open and closed or no position feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the valve limit switch signals to be overwritten and set to follow the
demand position.

The module can be configured to either maintain the output when the valve reaches the
demanded position, or de-energise the outputs when position is reached.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

©) Failed to Open
©) Failed to Close
® Failed while Open
® Failed while Closed
® External Fault
Separate operation times for opening and closing can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Closed

. Closing
. Open

. Opening
. Fault

The module also generates status signals for the selected operating modes and conditions.

157-268



TITLE Standard device driver — valves — modulating valve

BLoCK FC 11501 FC11501_StdDevValveMod

DESCRIPTION  This module controls the operation of either a positive acting (opens with increasing
signal) or negative acting (closes with increasing signal) modulating valve optionally
configured with an analogue position confirmation and, additionally, with either none,
open, closed or both open and closed limit switch position feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the analogue position feedback and valve limit switch signals to be
overwritten and set to follow the demand position.

The valve can be configured as positive acting (0% output = fully closed, 100% output =
fully opened) or negative acting (0% output = fully opened, 100% output = fully closed)
The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

@ Failed to achieve demanded position
©) External Fault
Separate operation times for opening and closing can be defined.

The valve module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Closed

. Open (or partially open)
o Fault

. Actual/demanded position

The module also generates status signals for the selected operating modes and conditions.

158-268



8.9 Device drivers — Drives

TITLE Standard device driver — drives — direct online

BLOCK FC 12001 FC12001_StdDevDriveDOL
DESCRIPTION  This module controls the operation of a direct online drive configured either with or
without running feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

O Failed to Start
@ Failed to Stop
® Failed while Running
® Failed while Stopped
® External Fault
Separate operation times for starting (ramp up) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped
. Starting
. Running
. Stopping
. Fault

The module also generates status signals for the selected operating modes and conditions.

159-268



TITLE Standard device driver — drives — direct online reversing

BLoCK FC 12011 FC12011_StdDevDriveDOLRev
DESCRIPTION  This module controls the operation of a reversable direct online drive configured either
with or without running feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

Failed to Run Forward

Failed to Run Reverse

Failed to Stop

Failed while Running Forwards
Failed while Running Reverse
Failed while Stopped

External Fault

CONONONONORONC)

Separate operation times for starting forwards (ramp up forward), starting reverse (ramp
up reverse) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped

. Starting Forwards
. Starting Reverse

. Running Forwards
. Running Reverse

. Stopping Forwards
. Stopping Reverse
. Fault

The module also generates status signals for the selected operating modes and conditions.

160-268



TITLE Standard device driver — drives — bistable

BLoCK FC 12101 FC12101_StdDevDriveBi
DESCRIPTION  This module controls the operation of a bistable direct online drive configured either with
or without running feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand state.

The module can be configured to either maintain the drive outputs when the drive
achieves the required state, or de-energise the outputs when required state is achieved.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

® Failed to Start
@ Failed to Stop
® Failed while Running
® Failed while Stopped
® External Fault
Separate operation times for starting (ramp up) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped
. Starting
. Running
. Stopping
. Fault

The module also generates status signals for the selected operating modes and conditions.

161-268



TITLE Standard device driver — drives — bistable reversing

BLoCK FC 12111 FC12111_StdDevDriveBiRev
DESCRIPTION  This module controls the operation of a reversable, bistable, direct online drive
configured either with or without running feedback.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand state.

The module can be configured to either maintain the drive outputs when the drive
achieves the required state, or de-energise the outputs when required state is achieved.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

Failed to Run Forward

Failed to Run Reverse

Failed to Stop

Failed while Running Forwards
Failed while Running Reverse

Failed while Stopped

CONONONONORONC)

External Fault

Separate operation times for starting forwards (ramp up forward), starting reverse (ramp
up reverse) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals, and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped

. Starting Forwards

. Starting Reverse

o Running Forwards

. Running Reverse

. Stopping Forwards

. Stopping Reverse

. Fault

. Actual and demanded speed

The module also generates status signals for the selected operating modes and conditions

162-268



TITLE Standard device driver — drives — variable speed

BLoCK FC 12501 FC12501_StdDevDriveVSD
DESCRIPTION  This module controls the operation of a variable speed drive optionally configured with
analogue speed feedback, and positive running indication.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

©) Failed to achieve demanded speed
® External Fault
Separate operation times for starting (ramp up) and stopping (ramp down) can be defined.

The drive module supports all forms of interlock, permissive and trip signals and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped

. Starting

. Running

. Stopping

. Fault

. Actual/demanded speed

The module also generates status signals for the selected operating modes and conditions.

163-268



TITLE Standard device driver — drives — variable speed reversing

BLoCK FC 12511 FC12511_StdDevDriveVSDRev
DESCRIPTION  This module controls the operation of a reversable, variable speed drive optionally
configured with analogue speed feedback, and positive running indication.

The reversing mode can be controllable via the analogue signal, or by digital signals to
select the direction.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

@ Failed to achieve demanded speed
©) External fault
Separate operation times for increasing and decreasing speed can be defined.

The drive module supports all forms of interlock, permissive and trip signals and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped

. Running Forwards

. Running Reverse

. Fault

. Actual/demanded speed

The module also generates status signals for the selected operating modes and conditions.

164-268



TITLE Standard device driver — drives — multiple speed

BLoCK FC 12601 FC12601_StdDevDriveMSD

DESCRIPTION  This module controls the operation of a multiple speed drive, where multiple fixed speeds
are available and are selectable by digital signals. The module can be optionally configured
with speed feedback, and positive running indication.

The module supports up to |0 different speed selections.

The module supports automatic and manual control and can be configured with simulation
mode to allow the feedback signal to be overwritten and set to follow the demand output.

The module generates fault logic for the valve that will trigger specific alarms depending
on the fault in question. The alarms within this block are:

Failed to Start
Failed to Stop
Failed while Running
Failed while Stopped

Failed to achieve demanded speed

ONONONORORC

External fault
Separate operation times for increasing and decreasing speed can be defined.

The drive module supports all forms of interlock, permissive and trip signals and
emergency stop signals. The module has the conditional facility to allow the operator to
bypass interlocks, permissive and trip conditions.

Various status signals are generated for supervisory systems:

. Stopped

. Running

o Fault

. Selected speed

The module also generates status signals for the selected operating modes and conditions.

165-268



8.10 Message handling

TITLE Standard message handler — analogue alarm

BLoCK FC 16001 FC16001_StdMsgAnalogAlm

DESCRIPTION  The module compares an analogue value to a specified threshold setpoint; it has the
facility to generate an alarm whenever the signal is beyond the setpoint value (either
above or below).

The alarm signal can be time filtered and has associated hysteresis.

The alarm can be internally acknowledged (from within the Controller) or can rely on the
supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — analogue warning
BLock FC 16002 FC16002_StdMsgAnaloghrn

DESCRIPTION  The module compares an analogue value to a specified threshold setpoint; it has the
facility to generate a warning whenever the signal is beyond the setpoint value (either
above or below).

The warning signal can be time filtered and has associated hysteresis.

The warning can be internally acknowledged (from within the Controller) or can rely on
the supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — analogue event
BLocCk FC 16003 FC16003_StdMsgAnalogEvent

DESCRIPTION  The module compares an analogue value to a specified threshold setpoint; it has the
facility to generate an event whenever the signal is beyond the setpoint value (either
above or below).

The event signal can be time filtered and has associated hysteresis.
TITLE Standard message handler — digital alarm
BLock FC 16101 FC16101_StdMsgDigitalAlm

DESCRIPTION  The module generate an alarm whenever the digital signal is active (signal can be active
high or active low).
The alarm signal can be time filtered.

The alarm can be internally acknowledged (from within the Controller) or can rely on the

supervisory system alarm handling acknowledgment facilities.

166-268 Doc:  PS2001-5-2101-001 Rev: R02.00



TITLE Standard message handler — digital warning
BLoCK FC 16102 FC16102_StdMsgDigitalWrn

DESCRIPTION  The module generates a warning whenever the digital signal is active (signal can be active
high or active low).
The warning signal can be time filtered.
The warning can be internally acknowledged (from within the Controller) or can rely on
the supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — digital event
BLoCK FC 16103 FC16103_StdMsgDigitalEvent

DESCRIPTION  The module generates an event whenever the digital signal is active (signal can be active
high or active low).

The event signal can be time filtered.

TITLE Standard message handler — digital time-stamped alarm
BLOCK FC 16201 FC16201_StdMsgAlmTime

DESCRIPTION  The module generates an alarm whenever the digital signal is active (signal can be active
high or active low). The time at which the alarm occurs is recorded (time-stamped), the
recorded time is extracted from the Controller real time clock and is accurate to the
millisecond. The block also records the signal deactivation time, the duration and the time
of acknowledgement.

The alarm can be internally acknowledged (from within the Controller) or can rely on the
supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — digital time-stamped warning

BLOCK FC 16202 FC16202_StdMsgWrnTime

DESCRIPTION  The module generates a warning whenever the digital signal is active (signal can be active
high or active low). The time at which the warning occurs is recorded (time-stamped), the
recorded time is extracted from the Controller real time clock and is accurate to the
millisecond. The block also records the signal deactivation time, the duration and the time
of acknowledgement.

The warning can be internally acknowledged (from within the Controller) or can rely on
the supervisory system alarm handling acknowledgment facilities.

TITLE Standard message handler — digital time-stamped event
BLOCK FC 16203 FC16203_StdMsgEventTime

DESCRIPTION  The module generates an event whenever the digital signal is active (signal can be active
high or active low). The time at which the event occurs is recorded (time-stamped), the
recorded time is extracted from the Controller real time clock and is accurate to the

millisecond. The block also records the signal deactivation time and the duration.

Doc:  PS2001-5-2101-001 Rev: R02.00 167-268



TITLE Standard message handler — prompt manager

BLock FC 16501 FC16501_StdMsgPrompMgr

DESCRIPTION  Manages operator prompts (that appear on a supervisory system) on a first come, first
served basis (there is no queuing of prompts).

The prompt can be acknowledged by the operator (the acknowledgement being passed
back to the originating software module) or can be forcibly acknowledged by the
Controller software.

TITLE Standard message handler — prompt queue

BLoCK FC 16502 FC16502_StdMsgPrompQueue

DESCRIPTION  Manages operator prompts (that appear on a supervisory system), by storing the prompts
in a queue. The queue can support different priority prompts (the prompt priority is a
number in the range 0 (low priority) to 99 (high priority), the priority is issued when the
prompt is raised); higher priority prompts take precedence over lower priority prompts.

The active prompt can be acknowledged by the operator (the acknowledgement being
passed back to the originating software module) or can be forcibly acknowledged by the
Controller software. Once a prompt has been acknowledged, the next prompt in the
queue becomes active.

168-268 Doc:  PS2001-5-2101-001 Rev: R02.00



8.11  Communication handling

TITLE Standard communication handler — get data from a controller (small)
BLOCK FC 17001 FC17001_StdCommsGetSmall

DESCRIPTION  Uses a single get instruction to read data from a partner controller via an Ethernet
network. This is the fastest mechanism for reading data, but the amount of data is
restricted:

For S7-1500 to S7-1500 a maximum of 880 bytes of data can be read.

If either Controller is an S7-1200 a maximum of 160 bytes of data can be read.

TITLE Standard communication handler — put data into a controller (small)
BLoCk FC 17002 FC17002_StdCommsPutSmal L

DESCRIPTION  Uses a single put instruction to write data to a partner controller via an Ethernet
network. This is the fastest mechanism for writing data, but the amount of data is
restricted:

For S7-1500 to S7-1500 a maximum of 880 bytes of data can be written.

If either Controller is an S7-1200 a maximum of 160 bytes of data can be written.

TITLE Standard communication handler — read data from a controller (65K of data)
BLock FC 17101 FC17101_StdCommsRead65K

DESCRIPTION  Read module in a read/write partnership (in association with FC17102), used to transfer a
large amount of data between controllers via an Ethernet network. The maximum amount
of data that can be transferred is 65535 bytes and requires multiple Controller cycles to
complete (asynchronous operation).

This module cannot be used with S7-1200 Controllers.

TITLE Standard communication handler — write data to a controller (65K of data)
BLock FC 17102 FC17102_ StdCommsWrite65K

DESCRIPTION  Write module in a read/write partnership (in association with FC17101), used to transfer
a large amount of data between controllers via an Ethernet network. The maximum
amount of data that can be transferred is 65535 bytes and requires multiple Controller
cycles to complete (asynchronous operation).

This module cannot be used with S7-1200 Controllers.

169-268



TITLE Standard communication handler — dynamically configure Ethernet interface

BLOCK FC 17401 FC17401_ StdCommsSetIP

DESCRIPTION  Used to dynamically configure or reconfigure an Ethernet or Profinet interface, the
module can change the following:

. IP address

. Subnet mask

. Router address

. Profinet device name (Profinet networks only)

Standard communication handler — read data via a point-to-point interface

BLoCK FC 17501 FC17501_StdCommsPtP_Rx

DESCRIPTION  Read module in a read/write partnership (in association with FC17502), used to transfer
data between controllers via a point-to-point network (RS232/RS485 &c.).

Requires multiple Controller cycles to complete (asynchronous operation).

Standard communication handler — write data via a point-to-point interface

BLock FC 17502 FC17502_ StdCommsPtP_Tx

DESCRIPTION  Write module in a read/write partnership (in association with FC17501), used to transfer
data between controllers via a point-to-point network (RS232/RS485 &c.).

Requires multiple Controller cycles to complete (asynchronous operation).

170-268



0]

@

3

8.12 Subroutines

Subroutine modules are common modules that perform some specific function. Sub-
routine modules can be called from within any other block.

Subroutines are simple modules the perform some function (convert a number to a
string for example) and are intended to provide commonly required utilities that are
often required in Controller programming.

Subroutines can be called by any other software modules, as a generally rule, the PAL
standard modules do not use subroutines, simply for the reason that the standard mod-
ules should be stand-alone modules that do not require other modules to work.

TITLE Standard subroutines — scale an analogue input signal
BLoCk FC 18001 FC18001_StdSubScaleAIl

DESCRIPTION  This module reads and scales an analogue instrument signal received via an analogue input
card. The resultant scaled value is a real (floating point) number that matches the
calibrated range of the instrument in engineering units.

TITLE Standard subroutines — scale an analogue output signal
BLoCk FC 18002 FC18002_StdSubScaleAQ

DESCRIPTION  This module takes a real number in a specified range and converts it to an integer value
suitable for writing to an analogue output card.

TITLE Standard subroutines — timer module (100 ms resolution)
BLock FC 18101 FC18101_StdSubTime100ms

DESCRIPTION  This module is a countdown timer, counting down in 100 ms intervals.
The initial time and the elapsed time are specified in seconds as real numbers.
The timer is accurate for periods up to 27.78 hours (100,000 seconds).

The timer is accurate to within 100 ms.

TITLE Standard subroutines — timer module (I s resolution)
BLOCK FC 18104 FC18104 _StdSubTimels

DESCRIPTION  This module is a countdown timer, counting down in | s intervals.
The initial time and the elapsed time are specified in seconds as real numbers.
The timer is accurate for periods up to | 1.5 days (1,000,000 seconds).
The timer should not be used to time events of less than | hour duration.

The timer is accurate to within | s.

171-268



TITLE Standard subroutines — timer module, long duration timer

BLock FC 18111 FC18111_StdSubTimelLong

DESCRIPTION  This module is a count-up timer that is capable of measuring long time durations with a
resolution of | ms.
The timer measures in integer units of days, hours, minutes, seconds and milliseconds.

The maximum value of the timer is 65535 days (approx. 179 years). The overall accuracy
of the timer is that of the internal clock of the CPU.

Standard subroutines — event duration timer (using the RTC)

BLOCK FC 18151 FC18151_StdSubTimeEventRTC

DESCRIPTION  This module times the duration of an event to nanosecond resolution.

The block records the time the event started, the time the event ended and calculates the
duration of the event (end time minus the start time).

The start and end times are read from the real time clock of the Controller.

TITLE Standard subroutines — count up/down function
BLoCK FC 18201 FC18201_StdSubCounter

DESCRIPTION  This module counts the number of rising edges detected on a signal.

The module can be configured for two signals, a rising edge on the first increments the
counter by a specified amount, a rising edge on the second decrements the counter by a
specified amount.

The count ranges positive and negative, the count is given as a real number.

The counter can be pre-loaded with a starting value and can be reset at any point.

TITLE Standard subroutines — string function — convert an integer to ASCI|
BLock FC 18901 FC18901_StdSubStrIntToASC

DESCRIPTION  Converts a decimal number stored in a double integer to an ASCII string. The number can
be in the range -2,147,483,648 to +2, 147,483,647, the number of characters can be
specified (the result will contain leading zeros where necessary).

The result can be shifted to include decimal places (the decimal will be encoded in the
string)

TITLE Standard subroutines — string function — convert a real to ASCII
BLoCK FC 18902 FC18902_StdSubStrReal ToASC

DESCRIPTION  Converts a real number to an ASCII string.

The string result will reflect the real value exactly, including any exponents.

172-268 Doc: PS2001-5-2101-001 Rev: R02.00



TITLE Standard subroutines — string function — convert a string to an integer value
BLoCK FC 18911 FC18911_StdSubStrASCtoInt

DESCRIPTION  Converts a decimal number stored as a string to an integer value.

Non numeric characters are ignored (including any decimal point), a leading minus sign
will generate a negative number.

TITLE Standard subroutines — string function — convert a string to a real value

BLOCK FC 18912 FC18912_StdSubStrASCtoReal

DESCRIPTION Converts a decimal number stored as a string to a real value.

Non numeric characters are ignored, the decimal point and exponentials are supported; a
leading minus sign will generate a negative number.

TITLE Standard subroutines — string function — case conversion
BLock FC 18921 FC18921_StdSubStrCaseConv
DESCRIPTION  Converts a string to upper case, lower case or sentence case.
TITLE Standard subroutines — string function — concatenate strings
BLoCk FC 18931 FC18931_StdSubStrConcat
DESCRIPTION  Concatenates two strings.

TITLE Standard subroutines — string function — split a string
BLock FC 18932 FC18932_StdSubStrSplit

DESCRIPTION  Splits a string into two strings at a particular character point.

Standard subroutines — string function — find a string within a string

BLOCK FC 18933 FC18933_StdSubStrFind

DESCRIPTION  Finds the first occurrence of a string within another string, the starting point can be
specified.

Doc:  PS2001-5-2101-001 Rev: R02.00 173-268



0]

@

3

)

4

8.13  Debug subroutines

Debug routines are generally used in the testing stages of software development, they
should not under any circumstances be present in deployed software.

Debug subroutines are used in two separate locations:

o Start of cycle (SoC) debug, executed before any other software
(even FCO1001StsSysGlobalData)

) End of scan (EoC) debug, called as the last entry in OB 1 and
executed after all other software

The start of cycle debug is intended to allow IO signals to be manipulated, overwriting
any real IO data from the Controller IO card. The SoC debug also provides various
switch mechanism to allow various different aspects of the debug software to be acti-
vated or deactivated. Typically, these are:

o 10 signal simulation

° Instrument simulation

. Device simulation

. Communication simulation

. Process simulation

o Sequence break point operation

The end of cycle debug generally generates simulation signals, this can be limit switch
signals for a valve (allowing the valve to appear to operate correctly or to force fault
conditions), it can also include more complex simulations, even simulating process
operations (the heating of a vessel for example).

The EoC debug is also responsible for setting sequence break point (stopping a se-
quence at a particular point to allow signal conditions to be assessed) or allowing “sin-
gle-step” operations of sequences.

174-268



TITLE Standard debug subroutines — simulation — isolating valve

BLoCK FC 19001 FC19001_StdDebugValveIsol

DESCRIPTION  Simulates the response of an isolating valve IO signals.

The simulation can be configured for a normally closed or normally open isolating valve,
with either opened, closed, or both opened and closed position feedback (simulation is
not required for valves with no position feedback).

The open and close times can be specified individually, each feedback signal can be

manually changed to simulate fault conditions.

Standard debug subroutines — simulation — bistable isolating valve

BLoCK FC 19002 FC19002_StdDebugValveBi

DESCRIPTION  Simulates the response of a bistable isolating valve 10 signals.

The simulation can be configured with either opened, closed, or both opened and closed
position feedback (simulation is not required for valves with no position feedback).

The open and close times can be specified individually, each feedback signal can be
manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — modulating valve

BLoCK FC 19003 FC19003_StdDebugValveMod

DESCRIPTION  Simulates the response of a modulating valve 10 signals.
The simulation can be configured for a positive acting or negative acting modulating valve,
the block will generate an analogue position feedback signal and opened, closed, or both
open and closed position feedback.

The open rate of change and close rate of change times can be specified individually, each
feedback signal can be manually changed to simulate fault conditions.

Doc:  PS2001-5-2101-001 Rev: R02.00 175-268



TITLE Standard debug subroutines — simulation — drive DOL
BLOCK FC 19011 FC19011_StdDebugDriveDOL

DESCRIPTION  Simulates the O signal responses of a standard or reversing DOL drive.
The simulation can be configured to generate positive running feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can
be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — drive bistable

BLOCK FC 19012 FC19012_StdDebugDriveBi

DESCRIPTION  Simulates the O signal responses of a standard or reversing, bistable DOL drive.
The simulation can be configured to generate positive running feedback.
The ramp-up and ramp-down times can be specified individually, each feedback signal can

be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — drive variable speed

BLock FC 19013 FC19013_StdDebugDriveVSD

DESCRIPTION  Simulates the 1O signal responses of a standard or reversing, variable speed drive.

The simulation can be configured to generate an analogue speed feedback and positive
running feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can
be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — drive multiple speed
BLock FC 19014 FC19014 StdDebugDriveMSD

DESCRIPTION  Simulates the IO signal responses of a multiple speed drive.

The simulation can be configured to generate positive running feedback and selected
speed feedback.

The ramp-up and ramp-down times can be specified individually, each feedback signal can
be manually changed to simulate fault conditions.

176-268 Doc:  PS2001-5-2101-001 Rev: R02.00



TITLE Standard debug subroutines — simulation — instrument flow

BLoCK FC 19101 FC19101_StdDebugInstFlow

DESCRIPTION  Simulates the response of a flow instrument to a change in the process configuration
(opening or closing a valve).
The flow range can be specified as can the response time. The module can simulate a
response to either a modulating valve (variable response) or an isolating valve (on/off
response).

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument level

BLoCK FC 19102 FC19102_StdDebugInstLevel

DESCRIPTION  Simulates the response of a level instrument to a change in the process configuration.
The level range can be specified.

The module can simultaneously accommodate both a feed and a discharge arrangement
(feed increases the level; discharge reduces the level).

The rate of level change for both feed and discharge can be defined separately. The
module can simulate a response to either a modulating feed/discharge (variable response)
or a fixed feed/discharge (on/off response) or a combination of both.

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument temp

BLoCK FC 19103 FC19103_StdDebugInstTemp

DESCRIPTION  Simulates the response of a temperature instrument to a change in the process
configuration.
The temperature range can be specified.

The module can simultaneously accommodate both a heating and cooling arrangement
(heating increases the temperature; cooling reduces the temperature).

The rate of temperature change for both heating and cooling can be defined separately.
The module can simulate a response to either a modulating heating/cooling (variable
response) or a fixed heating/cooling (on/off response) or a combination of both.

The generated signal can be manually changed to simulate fault conditions.

Doc:  PS2001-5-2101-001 Rev: R02.00 177-268



TITLE Standard debug subroutines — simulation — instrument pressure

BLOCK FC 19104 FC19104 StdDebugInstPres

DESCRIPTION  Simulates the response of a pressure instrument to a change in the process configuration.
The pressure range can be specified.

The module can simultaneously accommodate both a feed and a discharge arrangement
(feed increases the pressure; discharge reduces the pressure).

The rate of pressure change for both feed and discharge can be defined separately. The
module can simulate a response to either a modulating feed/discharge (variable response)
or a fixed feed/discharge (on/off response) or a combination of both.

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument |st order response

BLOCK FC 19511 FC19151_StdDebugInstiOrder

DESCRIPTION  Simulates a first order process reaction in response to an input signal.

The range of both the input and output signals can be specified as can the gain and lag
constants.

t
Output = Input - Gain - (1 — e Lag)

The generated signal can be manually changed to simulate fault conditions.

TITLE Standard debug subroutines — simulation — instrument 2"d order response

BLock FC 19512 FC19152_StdDebugInst20rder

DESCRIPTION Simulates a second order process reaction in response to an input signal.

The range of both the input and output signals can be specified as can the gain and
damping constants.

Output — damping = 0.5
A Pt mping

Gainde-emmmm e e e e e -

Output — damping =1

Output — damping =2

Input

»
Ll

The generated signal can be manually changed to simulate fault conditions.

178-268 Doc:  PS2001-5-2101-001 Rev: R02.00



TITLE Standard debug subroutines — simulation — polyline response

BLoCK FC 19513 FC19153 StdDebugInstPoly

DESCRIPTION  Simulates a piecewise linear polyline response to an input signal:

Polyline output
A

PLV; —

PLV, -

PLV; -1

PLV, -4
pLY, -1

I -
>
Vi Vo ViV Vs Input

The polyline has a minimum of two points and a maximum of 100 points.

The generated signal can be manually changed to simulate fault conditions.
TITLE Standard debug subroutines — simulation — sequence breakpoint
BLOCK FC 19701 FC19701_StdDebugSeqBreak

DESCRIPTION  |nterrupts the normal sequence progression, and forces a sequence pause (breakpoint) at
each transition, allowing the sequence step/transition conditions to be examined and

debugged.
TITLE Standard debug subroutines — simulation — sequence breakpoint
BLOCK FC 19999 FC19999_StdDebugForceStop

DESCRIPTION  Conditionally forces the CPU to a stop state.

Doc:  PS2001-5-2101-001 Rev: R02.00 179-268



BLANK PAGE

180-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

0]

@

(©)]

Standard sequence operation

The standard sequence modules associated with the PAL software are designed to al-
low multiple, sequential operations to be configured and implemented within a Con-
troller.

The sequences use a step and transition arrangement to control the progression of a
sequence.

9.1 Operating states and commands

Sequential control within the PAL use a series of standard modules included with the
library these in turn are based upon the sequential function chart requirements of the
IEC 61131-3 standards /Ref 012].

Each sequence within the PAL operates by moving through a series of states that
broadly indicate what the sequences itself is doing (i.e. idle, starting, running, aborting
&ec.).

These states are referred to as the Operating State Logic (OSL) of the sequence; Figure
9.1 shows the full arrangement of Operating States available to the PAL sequences.

Note: 1t is not necessary for every sequence to use every state available to the OSL; most
sequences have a subset of the OSL depending on the functionality and complex-
ity of the sequence in question.

It is true to say that all sequences must have at the very least: idle, starting, run-
ning, completing and completed states (even if these states are empty), these states
are necessary for the sequence to operate normally.

181-268



Automatically triggered
Cmd_Run

_1_Externally triggered
Cmd_Complete

Automatically triggered _|
Cmd_Completed

Automatically or
externally triggered ==
Cmd_RetIdle

'

Externally triggered
Cmd_Reset

| <

Externally triggered

Cmd_Start

All states except idle

(1euondo)
21815 DNILHVLS
10 ONINNNY Ul days

Automatically triggered

Cmd_Start

Externally triggered
Cmd_Hold

HOLDING

1 Cmd_Held

1 Externally triggered
Cmd_Resume

RESUMING

snojaaad 03 suinjay

Automatically triggered

1 Externally triggered
Cmd_ErrHold

\ 4
ERROR
HOLDING

1 Automatically triggered
Cmd_ErrHeld

1 Externally triggered
Cmd_ErrResume

| I

All state except idle, completed,
stopped, aborting or aborted

1 Externally triggered
Cmd_Abort

‘ ABORTING

[~ Cmd_Aborted

y

Automatically triggered

All state except idle, completed,
stopping, stopped, aborting or
aborted

_1_Externally triggered
Cmd_Stop

| Automatically triggered
Cmd_Stopped

STOPPED

| Automatically or
externally triggered
Cmd_RetIdle

ABORTED
1 y
b Automatically or -
externally triggered
Cmd_RetIdle
< < /

182-268

Figure 9.1

Sequential operating state logic (OSL)

Doc: PS200

1-5-2101-001 Rev: R02.00



OPERATING STATE LOGIC KEY
Dwell state: consisting of a single step
STATE that is exited by a specific command Normal flow path
STATE Tra n§|t|0nal state: con5|§t!ng of ) Return flow path
multiple steps and transitions

Entry point Entry point from multiple states —p  Fault flow path

[ e—

Command point (action required to proceed)
Automatic: issued by sequence Cmd_Detail Actual command
External: issued externally to sequence

o

Figure 9.2  Operating state logic — key

) Each state of the sequence consists of various steps and transitions. The step performs
some action (opens a valve, start a drive &c.) and the transition consists of a series of
logical conditions that must be satisfied before the sequence can move to the next step.

©) Each step within a sequence is given a unique number. The numbering ranges of the
steps indicate the OSL to which the step belongs:

STEP NO. STATE (WITHIN THE OSL)

29000 COMPLETED

30000-34999 HOLDING

35000 HELD
36000-39999  RESUMING
40000-44999 ERROR HOLDING

55000 STOPPED

60000-64999 | ABORTING

65000 ABORTED

Table 9.1 OSL sequence step numbers

Doc:  PS2001-5-2101-001 Rev: R02.00 183-268



(O]

@

®

0]

@

3

)

The step number is held in an unsigned integer, this spans the range 0 to 65,535.

The dwell states are single points within the sequence, the sequence will remain in a
dwell state until it receives a command from an external source (external to the se-
quence itself); the IDLE state for example, is the state applicable to a non-active se-
quence (i.e. a sequence that is not currently running).

The sequence will remain in the IDLE state (or any dwell state) until it receives a com-
mand (the Cmd_) of Figure 9.1. Such commands could be directly from the operator
(via a supervisory system) or from elsewhere within the software (for example, a back-
wash sequence might start at a particular time of day, or the sequence to empty at tank
may occur when the tank reaches a certain level).

9.1.1 Normal sequential operation

The normal progression of a sequence would follow the flow paths shown in Figure
9.1. A sequence that is not running will be in the IDLE state and will wait in this con-
dition until it receives a start command (Cmd_Start). The start command causes the
sequence to activate and move to step 1000 (the first step of the STARTING state), the
STARTING state is used to setup the initial conditions for the sequence or to carry out
some preliminary actions prior to the main purpose of the sequence (for example per-
form a pressure test, run a sterilisation process, collect data from the operator &c.).
The STARTING state steps are numbered in the range 1000-9999 (i.e. there is a maxi-
mum of 9000 steps available to the state).

It is perfectly possible for the STARTING state to be empty, in which case step 1000
will simply trigger the run command.

When the STARTING state is complete, the sequence itself will automatically trigger
the Cmd_Run signal, at which point the sequence will advance to the RUNNING state at
step 10000. This is the sequence proper, and carries out the primary function of the
sequence.

The RUNNING state is generally the largest section of the sequence and can accommo-
date up tol0000 individual steps. A sequence will always have code within the
RUNNING state.

184-268



©®) The RUNNING state automatically triggers the transition to the COMPLETING state by
triggering the Cmd_Complete signal, this forces the sequence to step 20000.

© The COMPLETING state is analogous to the STARTING state, it allows the sequence to
carry out various terminating (housekeeping) activities prior to the sequence ending
(this may be collecting data from the operator, recording final readings &c.).

@ The final action of the COMPLETING state is to trigger the Cmd_Completed signal, this
forces the sequence to the COMPLETED dwell state at step 29000. The sequence will
now remain in this state, indicating that the sequence has run to completion and no
further actions will be taken.

® At this point, the sequence is effectively stopped and is once more inactive, the
COMPLETED dwell state informs any software monitoring the sequence that it has fin-
ished. The sequence returns to the IDLE state when the Cmd_RetIdle signal is issued.

©) The sequence can be optionally configured to automatically trigger the Cmd_RetIdle
signal once the sequence is in the COMPLETED dwell state (this is a normal practice for
sequences that operate independently of other sequences or have little interaction with
other systems).

a9 Where sequences are used within other sequences (usually as part of a parallel arrange-
ment, see § 9.2.3) the COMPLETED dwell state is used to identify when all sections of
the parallel arrangement have completed.

9.1.2 Hold and error hold operation

M There are two modes of holding operations: these are triggered by the Cmd_Hold and
the Cmd_ErrHold signals.

@ Both can only be triggered during the STARTING or RUNNING states (the commands
will be ignored in any other state), the Cmd_ErrHold signal is triggered in the event of
a fault being detected that is applicable to the sequence. The Cmd_ErrHold signal is
normally generated by monitoring logic, this may or may not be part of the sequence
itself, the signal can also be triggered by the operator if necessary.

@ Once triggered, the Cmd_ErrHold signal causes the sequence change state to ERROR
HOLIDNG and to advance to step 40000.

185-268



)

(O]

(O]

@

®

®)

(10)

(I

(12)

The ERROR HOLIDNG state allows the sequence to put the areas of the plant controlled
by the sequence into a known safe condition (for example, isolating a filter or stopping
feed supplies &c.). Once this is done, the Cmd_ErrHeld signal is automatically trigged
and the sequence enters the ERROR HELD dwell state at step 45000. The sequence will
remain in this state, allowing the fault condition to be rectified.

The operator must issue the Cmd_ErrResume signal to allow the sequence to continue.

Triggering the Cmd_ErrResume signal forces the sequence to the ERROR RESUMING
state at step 46000. This state is used to return the plant to an operational state (by
restoring the plant to the previous condition prior to the ERROR HOLIDNG operations.

At the end of the ERROR RESUMING state, there are various configurable options:

. The sequence can automatically return to the last step (in either
the RUNNING or STARTING states) it was at prior to the error con-
dition being detected

. It can start from a particular step (i.e. not the last step it was at,
but any specified step in the sequence

o It can restart from the beginning
The required response is entirely dependent on the nature of the sequence in question.

The Cmd_Hold signal operates in a similar fashion to the Cmd_ErrHold signal, how-
ever in this case, the Cmd_Hold signal can only be triggered by the operator (it is a
manual action).

Triggering the Cmd_Hold signal moves the sequence to the HOLIDNG state (analogous
to the ERROR HOLIDNG state) beginning at step 30000; the automatic triggering of the
Cmd_Held signal places sequence in the HELD dwell state at step 35000. The sequence
will again remain in this state, allowing the operator to take whatever action is re-
quired.

The operator must issue the Cmd_Resume signal to allow the sequence to continue.
the Cmd_Resume signal forces the sequence to the RESUMING state at step 36000.

Again, this state is used to return the plant to an operational state

186-268



(13)

0]

@

(©)]

)

®)

At the end of the RESUMING state, the sequence can continue with any of the configu-
rable options listed for the ERROR RESUMING state (listed above).

9.1.3 Stop and abort operation

The stop and abort operations are alternative mechanisms for terminating a sequence
in the event that something goes wrong and the sequence operations are unrecoverable
(for example, the sequence is waiting for a condition such as a level or pressure that
can never be achieved because of some fault that cannot easily be rectified).

The two modes of operation allow the sequence to be shut down in either a coordinated
and controlled manner (stopping) or more abruptly carrying out only those steps that
are necessary to safely terminate the sequence (aborting).

Stopping and aborting are always triggered manually (or at least via logic external to
the sequence itself) by issuing either the Cmd_Stop or Cmd_Abort signal. The
Cmd_Stop signal can be issued during any state of the sequence excepting IDLE,
COMPLETED, STOPPING, STOPPED, ABORTING or ABORTED. The Cmd_Abort signal has
the same restrictions, except it can also be triggered in the STOPPING state (in this re-
gard aborting has a higher priority than stopping and can interrupt it).

Triggering the Cmd_Stop signal forces the sequence to the STOPPING state (at step
50000) at the end of the STOPPING state, the Cmd_Stopped signal is automatically
trigged and the sequence enters the STOPPED dwell state at step 55000. The sequence
will remain in this state until the issues Cmd_RetIdle signal is triggered (usually by
the operator), at which point the sequence returns to the IDLE state.

Triggering the Cmd_Abort signal forces the sequence to the ABORTING state (at step
60000) at the end of the ABORTING state, the Cmd_Aborted signal is automatically
trigged and the sequence enters the ABORTED dwell state at step 65000. The sequence
will remain in this state until the issues Cmd_RetIdle signal is triggered (usually by
the operator), at which point the sequence returns to the IDLE state.

187-268



0]

@

3

0]

@

U]

@)

9.14 The reset operation

The sequence command: Cmd_Reset this will force a reset of the sequence back to the
IDLE state, irrespective of whatever state the sequence is currently in.

The reset command is an overriding command and will take precedence over any other
command that may have been issued.

The Cmd_Reset signal should only be triggered by the operator. It is intended as a
recovery mechanism for a sequential operation that cannot be recovered by any other
mechanism (hold, error, stop or abort).

9.1.5 The pause operation

The sequence has a final command: Cmd_Pause this is to some extent is a debug func-
tion, if active, it will pause the sequence in its current step, no transitions will be eval-
uated and the step duration and delay timers will pause at their current values.

The sequence will remain in this state whilever the Cmd_Pause signal is in set to true.
Once released, the sequence will continue as if nothing had happened.

9.2 Steps and transitions within a sequence

The non-dwell states within a sequence hold a series of steps and transitions that make
up the sequence, the steps perform an action, the transitions are a series of logical tests,
which, once satisfied, cause the sequence to progress from the current step to another
step (usually, the next step).

Graphically, these sequences can be represented as the step-transition diagram of a
sequential flow chart (sometimes referred to as a GRAFCET" diagram), see Figure
9.3:

I5 GRAFCET, GRAPHe de Commande Etape-Transition, French. Literally, “stage-transition
command graph” a diagrammatic mechanism for showing steps and transitions within a se-
quence.

188-268



Simple
single step

g Initial step

Transition will not be evaluated
until the step at the end of each
branch is active

SaYdURIQ SNOdUBIINWIIS

N
-
(=3
jud
a Only one branch will be
=3 active, depending which
fn transition activates first
g
o
3
o
=
]
w
Jump to a step y

Figure 9.3 Step transition diagram

Doc:  PS2001-5-2101-001 Rev: R02.00 189-268



@ Figure 9.3 shows all the step transition and branching mechanisms available to the
PAL sequences:

9.2.1

Simple step and single transition
Alternative (divergent) branches
Simultaneous (parallel) branches

Jumps (and loops) to a particular step

Simple steps and transitions

() Most steps within a sequence are simple step and transition arrangements that move
from one step directly to the next step when the transition conditions are satisfied:

190-268

J1VY1S DNINNNY

Cmd_Start

JLVLS ONINNNY

Cmd_Complete

STEP20010
Cmd_Completed

COMPLETED 20010

Figure 9.4  Simple step and transition arrangements



@

3

)

0]

@

Figure 9.4 shows a simple sequence progressing through the minimum number of
states (IDLE, STARTING, RUNNING, COMPLETING and COMPLETED). Figure 9.4 shows
the step numbers (and associated transitions) that would be assigned for such a se-
quence.

Where there is a transition from one state to anther (e.g. starting to running), the
final step of the first state automatically triggers the command to move to the next, this
can be an instantaneous action that triggers when the step becomes active, or it can be
linked to a transition condition for the step. Figure 9.5 shows the two symbols for firstly
(on the left) automatic instantaneous command triggering and (on the right) transition
dependent command triggering;:

Instantaneous Command trigger
Command trigger after transition
STEP, STEP,
Cmd_Nnn T,
Cmd_Nnn

Figure 9.5  Automatic command issuing arrangements

The step numbers used in Figure 9.4 increment in intervals of 10; this is done to allow
space for additional step between the existing steps (for example it would be possible
to add an additional 9 steps between step 1000 and step 1010). This approach is not an
essential requirement (it would be perfectly possible to increment the steps by 1 and
leave no gaps), it does however, reflect good practice and is a recommended approach
for sequences using the PAL software.

9.2.2 Alternative branching

Alternative branching is a common requirement for sequential actions, it allows the
sequence to progress down multiple divergent paths. The following diagrams show
divergent sequence arrangements.

The simplest alternative branch splits the sequence path into two, Figure 9.6:

191-268



O}

)

TIOHD

Figure 9.6  Simple alternative branch Figure 9.7  More complex alternative branch

In Figure 9.6, step 10010 has two transitions associated with it (10010a and
10010b), if transition 100 10a activates first, the sequence will move to step 10100
and the alternative leg (with step 10200) will be ignored and never executed.

Similarly, if 10010b activates first, the sequence will move to step 10200 and the
alternative leg (with step 10100) will be ignored and never executed. Whichever
branch is executed, the result will arrive at step 10300 and the sequence will continue
from there.

192-268



©) More complex arrangements can be made (Figure 9.7), here the 10010a and 10010b
transitions operate exactly as Figure 9.6, the 1001 0c transition, however, diverts the
sequence down the step 10400 path and this bypasses completely the merge point of
the 10010a and 1001 0b transitions (at step 10300) and moves to a new merge point
atstep 10500.

® Alternative branches can be as complicated as required and can include commands:

T'I 0000

T1 0010b

Cmd_Complete

T'IO'I'IO

Figure 9.8 Alternative branch with commands

@) Each step within the PAL sequences can have up to eight separate transitions

® In the event of two transitions becoming active at the same time, the lowest number
transition will take priority.

193-268



0]

@

O}

)

(O]

9.2.3 Simultaneous branches

Simultaneous branches are more complicated in their execution than alternative
branches. With alternative branches there is only ever one step active at any given
point in time; simultaneous branches have multiple steps active at the same time and
this is not possible with the PAL sequence arrangements.

Within the PAL, simultaneous branches are achieved by using separate sub-sequences
for each branch as follows:

SubSeq01_Cmd_Start
SubSeq02_Cmd_Start

Wait until SubSeq01 state is COMPLETED

Tio000 AND SubSeq02 state is COMPLETED

Figure 9.9  Simultaneous branches with sub-sequences

The sub-sequences are just PAL sequences, the main sequence triggers the two sub-
sequences by activating the Cmd_Start signal for each sub-sequences, each sub-se-
quence will then operate in its own right.

At some point both sub-sequences will finish and will be at the COMPLETED dwell state,
the transition T10000 is waiting for this condition (i.e. for both sub-sequence 01 to be
in the COMPLETED state AND for sub-sequence 02 to be in the COMPLETED state), at this
point the main sequence will advance to step 10010, this step would issue the
Cmd_RetIdle signals for the sub-sequences.

As many sub-sequences as required can be used (i.e. there is no limit to the number of
simultaneous branches).

194-268



9.2.4 Jumps and loops

M Jumps and loops are very similar in operation to alternative branches, they cause the
sequence to jump to different points depending upon which transition becomes true:

Figure 9.10  Jumps and loops

@ In practical terms, jumps and loops are identical, they simply move the sequence to a
step that is not the logical next step in the sequence. The terminology simply reflects
the direction of the movement: a jump advances the sequence forward to a step that
has not yet been executed, a loop moves the sequence back to a previous step (creating
the potential for a loop)

@ The execution of a jump or loop is identical to that of an alternative branch, the step
has multiple transitions, each jumping (or looping) to a different step.

195-268



9.3 Phases within a step

O At its simplest level, each step within a sequence executes a set of actions (close a valve,
start a drive, wait for a time period &c.); however, each step is equipped with phases
that reflect different aspects of the step:

() Initialising
@  Processing
(3  Terminating

@ These three phases effectively allow a step to be interpreted as a three-step sequence in
its own right:

STEP,

Single cycle | Initialising

Transition

Multiple cycles

TRUE
Single cycle [ Il EY T
v
STEP,,1
Figure 9.11  Jumps and loops

® Each step has three digital signals that identify the current phase: PHS_INIT, PHS_PROC
and PHS_TERM. The initialising phase is active for one Controller cycle when the step
first becomes active. After this cycle, the step will advance to, and remain in the pro-
cessing phase until a transition condition becomes true. At this point, the processing

phase is deactivated and the terminating phase activates. The terminating phase is active
for just one Controller cycle.

196-268



@ This phased approach to a step allows a single step to carry out a complete set of ac-
tions, consider a sequence that is filling a tank, it will take the following actions:

() Open valve V001 (tank inlet)
@ Wait for the tank level (LIT001) to reach the target level (T001)
3  Close valve V001

© In practical terms, if a step within a sequence simply carried out a single set of actions
(the unphased approach), this series of events would require two steps:

LRSI LITeot > ToO1

Figure 9.12  Unphased approach to a sequence step

© With a phase approach, the series of events is accomplished within the phases of a
single step:

STEP10100
Initialising
OPEN V001

Processing
WAIT
(no action)

Transition R TEREN]

Terminating
CLOSE V001

Figure 9.13  Phased approach to a sequence step

197-268



@ With the phase approach, the actions of the step take place (in this instance) in the
initialising and terminating phases, the processing phase is simply waiting for the transi-
tion condition.

® This phased approach to sequence steps is a practical approach to simplifying se-
quences; it allows the scope of a single step to accommodate multiple actions that are
related to each other.

9.3.1 Phase timings for IEC compliant sequence steps

() The following diagram shows the phase timing arrangements between two consecutive

SthS:
Controller cycles from start of step
+= 1 —+= 2 -4 eee - M —+- My —+- My —+ eee += N —+= Ny —+— Ny -+
Initialising
o +o————= B it et et +————— e e o = +
Processing
=== o t==  ——deme———e R e o= +==———= === +
Transition
Terminating STEP, and initialising
Terminating STEPn,l occt;r in samelcycle |
oty Fo————— Fo—————
—+ wee - N —4- Ng —+- Ny —+
Initialising
————— i et e e
Processing
+o===== e T S T o Fmm m—mmm—mee t====== E +
Transition
Terminating

Figure 9.14 IEC compliant phase timing

@ Here, it can be seen that the ferminating phase of steps is coincident (occurs in the
same cycle) with the initialisation phase of step,+1.

198-268



3

)

®)

0]

@

This arrangement is required for compliance with IEC 61131-3 /Ref. 012].

This effectively means the step,+; and step, are both active in at the same time (within
the same Controller cycle).

This methodology is required by the User Requirement Specification /Ref. 003, § 4.2.2
(21)] and has consequently been implemented in the PAL sequence software.

9.3.2 Phase timings for non-IEC compliant sequence steps

This methodology highlighted in the previous section, whilst being complainant with
the TEC 61131-3 specification, is not widely used or highly regarded by those who
practice the programming of Controllers and PLCs.

The more conventional view is that steps within a sequence should not overlap, the
preferred timing arrangement being:

Controller cycles from start of step

+= 1 4= 2 —+ ese - m —+-= My —+— M —+ eee +— N —+4= N5 —+— N —+

Initialising
tmmm—me e et St R e e et it et +

Processing
=S +—————— —— ——dm————— Fo—=== === oo e === === +

Transition
_______ L e B —— — o o —_

/_\ Terminating STEP, and initialising
. . STEP1 occur in different cycles

Terminating / ‘ "l“ ¥ |
3 ° g = —+-- bt

*s - N —4- Ny —+- Ny -+

Initialising
------ Fo— e mm——t——————%

Processing
+m————— +————— +—=" " ———————— = +————— +————— e = +

Transition
Terminating |

_______ F— p g g g pp———p——————— e npp———— S

Figure 9.15 Non-IEC compliant phase timing

199-268



3

Q]

0]

@

3

)

4

6

Y]

Here, it can be seen that the terminating phase of step, is concluded the cycle before
the initialisation phase of stepn+1.

Both the IEC 61131-3 /Ref. 012] compliant and the non-IEC compliant versions are
offered as part of the PAL sequence software. This satisfies the requirement specified
in the User Requirement Specification /Ref 003]; whilst providing the more conven-
tional, and widely used, implementation as well.

9.4 Automatic step timing functions

Every step within a sequence has two timers that operate automatically:
o A step duration timer
. A step delay timer

The step duration time is a measure of how long the particular step has been active, it
counts up from zero (from when the step first became active) in 100 ms intervals.

The step duration counter is stored as a real variable that measures the current time
the step has been active in seconds (accurate to 0.1 of a second).

The step duration timer can be used to trigger a transition (for example, a step could
transition to the next step if a particular level is reached or if the step has been active
for a specified time).

The step delay timer ensures that the step will remain active for a minimum period of
time (given in the step delay timer).

The transition conditions for a step will not be evaluated until the step delay timer has
counted down to zero.

The step delay timer can be specified for any step and is again a real variable that
specifies the minimum time the step will be active in seconds (accurate to 0.1 second).
The step delay timer counts down from the specified value. If the step delay timer is
set to zero (the default value), there is will be no delay associate with that step.

200-268



0]

0]

@

(©)]

0]

@

9.5 Manual modes of operation

All sequences have both a manual and a semi-manual mode. Both allow the operator
to take control of the sequence.

9.5.1 Semi-manual mode

In semi-manual mode, the sequence will not automatically issue any commands, it will
simply wait at the point where the command would have been issued and wait for the
operator to issue the command manually.

Once the command is issued, the sequence will continue automatically through the
next state (carrying out steps and transmissions automatically), until it again reaches
the point where a command is needed to progress to the next state.

At any point, the operator can issue a command to divert the sequence to another state
(or even back to a previous state).

9.5.2 Full manual mode

Full manual mode provides all the same features as semi-manual mode, however,
manual intervention is required at each step, to activate the transition conditions. It
effectively allows the operator to single-step through a sequence and lets the operator
choose which transition is activated after each step.

Full manual mode also allows the operator to jump to a particular step in a sequence.

201-268



BLANK PAGE

202-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

3

Q]

1 O Supervisory system user
interface

All physical equipment (valves, drives, instrumentation &c.) connected to a Controller
usually have some form of graphical representation on a supervisor system such as a
SCADA or HMI'®. While these systems are outside the scope of this Project, the inter-
face between these systems and the PAL software modules is not; and this must be
clearly defined in order to provide the necessary signals to display and interact with
the any supervisory system.

The interface between a supervisory system and the PAL software modules is defined
in this section; it includes example graphical arrangements that are compliant with the
data available from each type of device.

The interface for each of the different types of equipment will all be different (the in-
terface to an instrument will for example be completely different to that of a valve);
however, a commonality of approach (and where possible, signals) is adopted to give
consistency to these interfaces, for example, where devices have a manual mode, the
same signal name will be used across all devices and the mechanisms of operation and
selection will be as common as possible.

Additionally, signals of similar type (alarms, device status, operating modes &c) will
have common prefixes and grouping to allow the type of signal to be readily identified
(for example, status signals are prefixed status_, alarms and warnings prefixed msg_
and operating modes prefixed mode_).

6 SCADA (supervisory control and data acquisition) system is a computer system used to
gather and analyse real time data from the control system, it will display the status of the
equipment (graphically showing if a valve is opened or closed, if a drive is running, instrument
readings &c.), it will show alarm and warnings and will allow the operator to issue commands
to the control system (start a sequence, take manual control of a device &c.).

HMI (human machine interface) is generally a panel mounted computer-based system similar
in functionality to a SCADA system, but generally more restricted in its facilities and capa-
bilities.

Collectively SCADA and HMI systems are referred to as supervisory systems.

203-268



©® Figure 10.1 shows an example of how a PAL mimic is expected to look:

FERMENTER FE0O1 v 0 FERMENTER FE011 SYSTEM PAGE Y/ A|jO|M
FERMENTER FE002 v 0 FERVIENTER FE012 v oM
FERMENTER FE0O3 v o FERMENTER FE013 Y A|lO|M
YIA|O FERMENTER FE014 v E ™M
10 LITRE FERMENTER — FE004
0.25 Bar 0.25 Bar|
67.4 %
95.1 %
FEED 7.38L

%
48724 208

120 g/hr 12,0 g/hr,
WICO01

45.0°C

Operaring status & reset function

Canfiquration

sl o s | E—n
= e

57.6 %

Figure 10.1 Example supervisory system graphical mimic

© Graphical mimics have several aspects:

. There are fixed graphics that are not animated (typically, pipe-
work, tanks, vessels, labelling &c.)

. There are dynamic objects (valves, drives, instruments &c.)

. There are navigation areas (the buttons at the top of the page) that
allow the operator to select different parts of the plant

. Thera are command areas (the buttons at the bottom) that allow
the operator to perform some action (start batch in the example)

™ The PAL has specific requirements in terms of graphical objects.

204-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

(©]

Q]

®)

©)

™

10.1 Scope restrictions with the PAL

The development of supervisory systems (SCADA and HMI) is not within the scope
of this Project. However, consideration has been given to the nature of the interface
between the PAL software modules and any such supervisory system.

It is anticipated that a future project will undertake the development of a supervisory
system and that this system will utilise the PC based WinCC Professional application
available within the TTA Portal software.

To this end, the PAL expects the supervisory system to interface with the PAL software
modules in a particular way and to have specific graphical objects that link correctly
with the standard modules.

The objects described in the following sections demonstrate how the PAL software
expects a supervisory system to be configured and the facilities and functions listed
here establish the full functions that would be available to an operator via that super-
visory system.

The objects listed here and the design implications inherent within them are all capable
of being implemented by the WinCC Professional application, this being the baseline
system for any such development. This does not preclude other supervisory systems
being used — however if such systems have restricted capabilities compared with the
WinCC system, the full functionality of the PAL software modules may not be avail-
able to the operator.

All the graphical objects and mimics listed here are compliant with the current engi-
neering standards for supervisory systems specified in the EEMUA! 201 /Ref 016/
standard for Process Plant Control.

All alarm handling and reporting capabilities listed here are compliant with the current
standards for such mechanisms: the EEMUA 191 /Ref. 015] Guide for Alarm Systems.

17 EEMUA — Engineering Equipment and Materials Users' Association

205-268



0]

@

©)

)

10.2  Symbols block icons and faceplates

All plant equipment whether devices that can be operated by the Controller (valves,
drives, motors, pumps &c.) or pseudo-devices such as PID loops (these are internal
constructs of the Controller, but act as devices in their own right) or instruments that
are read by the Controller, require an operator interface, the operator must be able to
see what the devices are doing or what the instruments are reading, and where neces-
sary take control of those devices.

The PAL achieves these requirements through the use of symbols and block icons, two
such groups of symbol and block icon are shown below:

ISOLATING VALVE MODULATING VALVE
SYMBOL SYMBOL

VOO1 CVO0O01
AR AR

BLOCK ICON 3 0 . 8 %

BLOCK ICON

Figure 10.2  Isolating valve symbol and block icon Figure 10.3 Modulating valve symbol and block icon

The symbol provides a graphical representation of a device and what state it is in (open,
closed, fault &c.), the block icon provides additional information about the device (op-
erating modes, energised state &c.).

Examining these in turn:

206-268



0]

@

(©)]

Q]

®)

(C]

@

®

10.2.1 Symbols

Symbols are animated objects that represent a particular device and visually indicate
what the device is doing (what state it is in; e.g. for a valve this could be opened, closed,
in fault &c.).

Each symbol is designed to link directly with the static and dynamic data that is appli-
cable to a particular standard module (typically a device driver).

All the symbols listed here are based on the standard process and instrumentation dia-
gram (P&ID) symbols.

All the symbols shown here are compliant with EEMUA 201 /Ref. 016] standard for
Process Plant Control; this dictates that objects appear in a grey colour when inactive
and are highlighted only when the device is in a non-passive state (i.e. when a valve is
energised or a drive is running), the PAL uses muted greens to indicate open and run-
ning states and muted reds for fault conditions.

This section lists all the symbolic representations available to the standard device driv-
ers listed in §§ 8.7, 8.8 and 8.9.

Multiple symbols are available for each module, this is particularly true of drives, for
example, a direct online drive may be a pump, motor, compressor, &c. it may also be
a completely different form of device (such as a heating element), these all however,
operate in an identical fashion to a direct online drive.

Similarly, the isolating valve module may utilise normally closed or normally open
symbology, or it may use a motorised valve symbol.

The following sections show the most common symbols for the device driver modules.

207-268



©)

(10)

(I

Analogue instruments

Generally, analogue instruments are represented by block icons (see § 10.2.2) rather
than symbols, there are exceptions when showing values associated with vessels (level,
pressure &c.), here it is often necessary to give a dynamic, animated indication of the
property, this can be seen in Figure 10.1, where the tank level is shown graphically as
a green bar rising vertically.

Where instruments have alarm and warning points, these can also be shown:

Figure 10.4  Analogue instrument symbols

The alarm and warning points (the triangles in Figure 10.1) are dynamically positioned
relative to the bottom of the bar graph. The actual position is determined by the alarm
and warning setpoint values specified in the individual module data.

208-268



Scaled Graduated Clean SIGNAL DESCRIPTION
10 10
L) 1)
7 7
& [
5 s actual_Vale Scaled value
4 4
1] o
Inactive Active SIGNAL DESCRIPTION
Q ‘ Status_AlmH Alarm high condition
q @ Status_WrnH Warning high condition
Q ‘ Status_Desc Any message condition (or threshold)
Q ‘ Status_WrnL Woarning low condition
Q ‘ Status_AlmL Alarm low condition
Table 10.1 Symbols — Analogue instruments

Digital instruments

(12 Digital instruments are represented by block icons (see § 10.2.2) rather than symbols;
occasionally, where necessary, the state of the instrument can be graphically repre-
sented using the alarm and warning condition symbols specified for the analogue in-
struments.

Doc:  PS2001-5-2101-001 Rev: R02.00 209-268



Isolating valves

Isolating valve symbols FC11001_StdDevValvelsol

Status_Fault Fault (valve body shows state)

N/A Loss of communications

Standard Standard Motorised Motorised SIGNAL DESCRIPTION
NC valve NO valve NC valve NO valve

& &j % % Status_Closed Closed
% % % % Status_Opening Opening
& ﬁ ﬁ ﬁ Status_Opened Opened
&ﬂ & % &j Status_Closing Closing

Table 10.2 Symbols — Isolating valve NC — Normally closed NO — Normally open

3-way isolating valves

3-way isolating valve symbols FCI1011_StdDevValve3Way

(14)

N/A

4

Loss of communications

SIGNAL DESCRIPTION
% ﬁ % ﬁ Status_PortD Closed
% % & & Status_PortDtoE Opening
RO ORI DG Dl o o
* % % & Status_PortEtoD Closing
% % Iﬁ Iﬁ Status_Fault Fault (valve body shows state)
Q S @ S
R R XX

Table 10.3 Symbols — 3-way isolating valve

E = Energised, D = De-energised

Three-way valves have many orientations, only a selection are shown here, the head
of the valve shows the de-energised path, the port with a circle is the common port.

210-268 Doc:

PS2001-5-2101-001 Rev: R02.00




Bistable valves

Bistable (motorised) valve symbols

Motorised bistable

SIGNAL

Status_Closed

Status_Opening

Status_Opened

Status_Closing

Status_Indeterminate

Status_Fault

N/A

FCI1101_StdDevValveBi

DESCRIPTION

Closed

Opening

Opened

Closing

Indeterminate (unknown) state

Fault (valve body shows state)

Loss of communications

e XK e X 2o Be Je

Table 10.4

Modulating valve

Modulating valve
Modulating (control) valve

WRPLPBTD K

s — Bistable (motorised) valve

FCI11501_StdDevValveMod

SIGNAL

Status_Closed

Status_PartOpenli

Status_PartOpen2

Status_PartOpen3

Status_PartOpen4

Status_Opened

Status_Fault

N/A

DESCRIPTION

Closed (0%) or closed limit

Partially open (<20%)

Partially open (20-40%)

Partially open (40-60%)

Partially open (60-80%)

Opened (280%) or opened limit

Fault (valve body shows state)

Loss of communications

Table 10.5 Symbols — Modulating valve

Doc: PS2001-5-2101-001

Rev: R02.00

211-268




Direct online drive

Direct online drive symbols FC12001_StdDevDriveDOL

General SIGNAL DESCRIPTION

Status_Stopped Stopped

Status_Starting Starting

Status_Running Running

Status_Stopping Stopping

Status_Fault Fault (body shows state)

el [ INR

N/A Loss of communications

OXOQAO’
ANOGOG'

(OXO@O®O

Table 10.6 Symbols — DOL drive starting and stopping states are momentary unless slow ram times are used

Reversing direct online drive

Reversing direct online drive symbols FCI12011_StdDevDriveDOLRev
Alternate General Alternate SIGNAL DESCRIPTION

=

Status_Stopped Stopped

Status_StartingF  Starting forwards

Status_RunningF Running forwards

Status_StoppingF  Stopping forwards

Status_StartingR  Starting reverse

Status_RunningR Running reverse

Status_StoppingR  Stopping reverse

al L
HXOGOOOO
Ol L

fbidal fulal JulBR

Status_Fault Fault (body shows state)
N/A Loss of communications
Table 10.7 Symbols — Reversing DOL Note: starting and stopping states are momentary unless slow ramp times are used

212-268 Doc:  P$2001-5-2101-001 Rev: R02.00



Bistable drive

Direct online bistable drive symbols FCI12101_StdDevDriveBi

Bistable drives generally use the symbols for the FC12001_StdDevDriveDOL (direct online drive) module
— it is not generally necessary to identify a drive as a bistable device within a supervisory system symbol

Table 10.8 Symbols — Bistable DOL drive

Bistable reversing drive

Direct online bistable reversing drive symbols FCI2111_StdDevDriveBiRev

Bistable reversing drives generally use the symbols for the FC12002_StdDevDriveRevDOL (direct online
reversing drive) module — it is not generally necessary to identify a drive as a bistable device within a
supervisory system

Table 10.9 Symbols — Bistable DOL drive

Variable speed drive

Variable speed drive symbols FC12501_StdDevDriveVSD

Blower Motor General SIGNAL DESCRIPTION

Status_Stopped Stopped

Status_PartRuni Running (£20% speed)

Status_PartRun2 Running (20-40% speed)

Status_PartRun3 Running (40-60% speed)

Status_PartRun4 Running (60-80% speed)

=
I3
© K
¢ E
@ K
® B
x X
>

Status_Running Running (280% speed)
Status_Fault Fault (body shows state)
N/A Loss of communications

UL L LLIVUR

)
IXOOO®OV©®

Table 10.10  Symbols — Variable speed drive

Doc: PS2001-5-2101-001 Rev: R02.00 213-268



Reversing variable speed drive

Reversing variable speed drive symbols FCI12511_StdDevDriveVSDRev

) )0 O O (0 9

A

Alternate General Alternate SIGNAL

Status_Stopped

Status_RunningF

Status_RunningR

Bl i L]
PXOOOOOOOOIN®

Status_Fault

N/A

Status_PartRunF1

Status_PartRunF2

Status_PartRunF3

Status_PartRunF4

Status_PartRunR1

Status_PartRunR2

Status_PartRunR3

Status_PartRunR4

DESCRIPTION

Stopped

Running forward (<20% speed)

Running forward (20-40% speed)

Running forward (40-60% speed)

Running forward (60-80% speed)

Running forward (280% speed)

Running reverse (£20% speed)

Running reverse (20-40% speed)

Running reverse (40-60% speed)

Running reverse (60-80% speed)

Running reverse (280% speed)

Fault (body shows state)

Loss of communications

Table 10.11

214-268

Symbols — Reversing variable speed drive

Doc:

PS2001-5-2101-001 Rev: R02.00




Multiple speed drive

Multiple speed drive symbol FC12601_StdDevDriveMSD

Blower Motor General SIGNAL DESCRIPTION

Status_Stopped Stopped

Status_Starting Starting

Status_Running Running
Status_Speed (small number indicates speed)

Status_Stopping Stopping

XAm®
ordel L1V

OXOQQO’
HXNOO®O

Status_Fault Fault (body shows state)
N/A Loss of communications
Table 10.12  Symbols — Multispeed Drive Note: starting and stopping states are momentary unless slow ram times are used

Doc: PS2001-5-2101-001 Rev: R02.00 215-268



0]

@

3

)

4

(6

10.2.2 Block icons

All devices have a block icon, the block icon identifies the device (by tag number, see
§ 6.2.1) and provides additional information about the device. In the case of analogue
instruments, the primary use of the block icon is to display the value the instrument is
reading.

Block icons are located adjacent to any device symbol that may be in use; generally,
block icons are positioned below the device in question and this is the preferred posi-
tion. It is accepted however, that this is not always possible and it is permissible to
position the block icon either above the device or to either side.

There are generally multiple styles of block icons available to each device, these are of
different size and complexity. For example, the PID loop block icon has three formats:

PIDOO1 A SP
Sp 20.98 MI/min PIDOO1

PV  19.82 MI/min PIDOO1 A SP A SP
s 2098 Mymn | |20.98Mm

Figure 10.5 PID full block icon Figure 10.6  PID standard block icon Figure 10.7 PID compact block icon

The style of block icon is entirely at the user’s discretion. Generally, however, which-
ever style is chosen should be applied to all similar objects on the graphical display

page.

Where alternative block icons exist, these are also shown in the following sections.
Where the block icon display changes to reflect particular operating modes, these are
also shown.

Each block icon is designed to link directly with the static and dynamic data that is
applicable to a particular standard module (typically a device driver or instrument
block); where possible, the variables that drive the individual aspects of the block icon
are listed — for certain block icons, these variables require further explanation, the
details of which are contained in the Software Module Design Specification (SMDS)
[Ref. 008] for the block in question.

216-268



Analogue instruments

Remote/local

None (ALL mode)
status_RLOff = 1

-
Alarms

D No alarm

In remote High alarm active
status_RemoteOn = 1 status_Alm_H = 1
In local Low alarm active
status_LocalOn = 1 status_Alm_L = 1
High alarm masked
o " N status_Alm_H_Masked = 1
Simulation mode
N | i Low alarm masked
tOI:tma ;)Peora Iona status_Alm_L_Masked = 1
status_simln =  E— ) .
Simulati d o High alarm disabled
m Imula Iop mode on status Alm H Disabled =
status_SimOn = 1 - -
~ / Low alarm disabled
- N status_Alm_L_Disabled =
Fault
Device in fault - -
status_Fault = 1 Warnings
Device healthy D No warning
tat Fault = @ . . .
\ Stetus Ted / High warning active
status_Wrn_H = 1
YVYY Low warning active
Tag name FICO01 I I | I | status_Wrn_L = 1
INFO_TAG . B
- 2098 L/s High warning masked
: A status_Wrn_H_Masked = 1
Inst t readi Low warning masked
nstrument reading status_Wrn_L_Masked = 1
actual_Value

—
| Units
INFO_UNITS
- vy

High warning disabled
status_Wrn_H_Disabled

Low warning disabled
status_Wrn_L_Disabled

ALTERNATIVE BLOCK ICON STYLES

FICO01

20.98 L/s

Standard

IFI(|:OO1

[ ] Compact
20.98 L/s

Table 10.13

Doc:  PS2001-5-2101-001

Block icon — Analogue instruments

Rev: R0O2

.00

217-268




Remote/local (Alarms h
None (ALL mode) I:I No alarm
status_RLOff =1
In remote High alarm active
status_RemoteOn = 1 status_Alm_H = 1
| Inlocal Low alarm active
status_LocalOn = 1 status_Alm_L = 1
High alarm masked
(. . ™\ status_Alm_H_Masked = 1
Simulation mode Low alarm masked
Ntolmal ;)_pe(;’atlone status_Alm_L_Masked = 1
status_SimOn = EEE— . :
Simulati d s 5 High alarm disabled
m imula IOf_‘l mode on status_Alm_H_Disabled = 1
status_SimOn = 1 )
- Low alarm disabled
S~ status_Alm_L Disabled = 1
) \ - = J
Fault
& Device in fault e N A
status_Fault = 1 Warnings
Device healthy I:I No warning
tat Fault = @ . . .
Status_fad J High warning active
status_Wrn_H = 1
Tag name \A A Low warning active
N e FICO01-L1 | | | | | |<— status_Wrn_L = 1
- High warning masked
status_Wrn_H_Masked = 1
Low warning masked
status_Wrn_L_Masked = 1
E High warning disabled
status_Wrn_H_Disabled = 1
Low warning disabled
status_Wrn_L_Disabled = 1 )
ALTERNATIVE BLOCK ICON STYLES
FICO01-L1
FICO01-L1 | [ | | | | Standard T T Compact

Table 10.14  Block icon — Analogue threshold

218-268 Doc:  PS2001-5-2101-001 Rev: R02.00



Digital instruments

Remote/local
None (ALL mode)
status_RLOff = 1
In remote
status_RemoteOn = 1

~
Latched condtion
Latched condition

— status_Trip = 1

W In local
status_LocalOn = 1

Normal
status_Trip = @

Fault

=l Device in fault - -
status_Fault = 1 Alarm/warnings

Device healthy D No alarm/warning
status_Fault = @

Alarm(general)
status_Alm = 1

High alarm active
status_Alm H = 1

Tag name

INFO_TAG .
- Low alarm active

status_Alm_L = 1

A 4 Y VVY . Warning (general)
|LSL001 I I I I I H— status_Wrn = 1
A High warning active
status_Wrn = 1

Low warning active
status_Wrn_L = 1
. Threshold (general)
Simulation mode status_Thold = 1
Normal operation ﬂ High threshold
status_SimOn = @ status_Thold_H
m Simulation mode on Low threshold
status_SimOn = 1 L status_Thold_L

n
[y

n
[y

ALTERNATIVE BLOCK ICON STYLES

LSLOOT T T T T T] Standard LSLO,‘”, Compact

Table 10.15  Block icon — Digital instruments

Doc:  PS2001-5-2101-001 Rev: R02.00 219-268



Control loops

PID loop block icon FC10001_StdDevPID_Standard/ FC1001|_StdDevPID_Sched

Remote/local ( R

N (AL mode) Interlocks
one mode .
ctatus RLOFF = 1 L? D Not interlocked

In remote
status_RemoteOn = 1

In local

Il Interlock active
Status_Ilock =1

tatus Localon = 1 P Permissive active
status_toca.tn = ] Status_Perm = 1
a Trip active

Status_Trip =1

Interlocks bypassed
Status_Bypass = 1

v
Hi E-Stop active

fAutomatic/manuaI \_ Status_EStop =1 )
Device in automatic p .
Mode_Auto = 1 PID Mode
Device in manual Automatic mode
Mode_Man = 1 OFF

main display shows cv

: ] \A 4 .

'SP | d
I:gon:;:e PIDO01 ALLISP m rsne:i'r)lo«;:LI':; sﬁows sp
- ? 2‘(398 I;{s Fixed output mode

main display shows cv

( Manual mode

OFF

main display shows cv

Setpoint mode

main display shows sp

LDispIayed quantity value J [Units ] Fixed output mode

Displayed quantity ]

\

main display shows cv

. J
ALTERNATIVE BLOCK ICON STYLES AND MODES
PID001 _ [Al | [OFF 5
sp 2098 L/s Large PIDOOT _JAl | JOFF|Sundard | 15 I?OICC);FF Compact
PV 1982 L/S Off CcvV 0,0 % Off ov 00% Off
cv 0.0 % :
PID001 [Al | [SP 5
sp 20.98 L/s Large PIDO0T Al | [ SP |Standard A '?Ologp Compact
P 9.8 Setpoint sp 2098 L/s Setpoint 20.98L/s| Setpoint

0.0 %

PIDO01 ‘Al | 'FIX

sp 2098 L/s Large |p|Doo1 IAI | |FIX Standard QDOO' fiy| Compact
v 19.82 L/s Fixed output | K& 48.3 % Fixed output iy Fixed output
cv 483 %

Table 10.16  Block icon — Control loops Details of the displayed quantity, displayed quantity value and units variables
are explained in the associated SMDS

220-268 Doc: PS2001-5-2101-001 Rev: R02.00



Isolating valves

Isolating valve block icon FCI11001_StdDevValvelsol

S
Demand/simulation
Off, no simulation

Tag name status_Demand = @
INFO_TAG & status_SimOn = @
On, no simulation
N status_Demand = 1
Fault & status_SimOn = @
Device in fault V001 Off, simulation on
status_Fault = 1 — IAl I I <t status_Demand = @
- A & status_SimOn = @
Device healthy T
status_Fault = @ On, simulation on
/ status_Demand = 1
& status_SimOn = @ y
. N\
Automatic/manual s N
Device in automatic Interlocks
Mode Auto = 1 Lo I:I Not interlocked
Device in manual
Mode Man = 1 II Interlock active
- < Status_Ilock = 1
Fn Permissive active
Remote/local 5 Status_Perm = 1
None (ALL mode) & Trip active
status_RLOff = 1 Status_Trip = 1
In remote E Interlocks bypassed
status_RemoteOn = 1 Status_Bypass = 1
In local Hi E] E-Stop active
status_LocalOn = 1 Status_EStop = 1

J

Table 10.17  Block icon — Isolating valve

3-way isolating valves

3-way Isolating valve block icon FCI1101|_StdDevValve3Way

3-way isolating valves use the block icon for the FCI1001_StdDevValvelsol (isolating valve) module

Table 10.18  Block icon — 3-way isolating valve

Bistable valves

Bistable (motorised) valve block icon FCI1101_StdDevValveBi

Bistable valves use the block icon for the FCI1001_StdDevValvelsol (isolating valve) module

Table 10.19  Block icon — Bistable isolating valve

Doc:  P$2001-5-2101-001 Rev: R02.00 221-268



Modulating valve

Modulating valve block icon

FC11501_StdDevValveMod

Remote/local

D None (ALL mode)
status_RLOff = 1
In remote
status_RemoteOn = 1 ~\
In local Interlocks
status_LocalOn = 1 Lo D Not interlocked
Interlock active
 Automatic/manual ) Status Ilock =1
Device in automatic 2 [[d Permissive active
Mode Auto = 1 s Status_Perm = 1
M Device in manual & QR Trip active
Mode Man = 1 Status_Trip = 1
- o p— E Interlocks bypassed
Status_Bypass = 1
r N
Fault Hi [E | E-Stop active
&l Device in fault L Status_EStop = 1 |
status_Fault = 1
; e
Device healthy Demand/simulation
status_Fault = @ - )
- J Off, no simulation
status_Demand = @
LA A4 & status_SimOn = @
e VOO T IALT [ I« cratus Deasnd - 1
status, eman =
— 99.9 % & status_SimOn = @
A Off, simulation on
. status_Demand = @
Instrument reading 8 status_Simon = @
actual_Value . .
Units On, simulation on
ni status_Demand = 1
INFO_UNITS & status_SimOn = @
ALTERNATIVE BLOCK ICON STYLES
VO0T [ Al ] AR
999 % Standard Compact
: 99.9 %
Table 10.20  Block icon — Modulating valve

222-268

Doc: PS2001-5-2101-001

Rev: R02.00




Direct online drive

Direct online drive block icon FC12001_StdDevDriveDOL

P
Demand/simulation
Off, no simulation
status_Demand = @
& status_SimOn = @
On, no simulation
status_Demand = 1
& status_SimOn = @
Off, simulation on
status_Demand = ©
Tag name & status_SimOn = @
INFO_TAG On, simulation on

status_Demand = 1
& status_SimOn = @

s
Fault Optional
Device in fault 001 Reverse, no sim
status_Fault = 1 — IA I I status_DemandR
. A & status_SimOn

Device healthy

status_Fault = @ - Reverse, sim on
~ status_DemandR
& status_SimOn

A

mu
[N

=

s A N
Automatic/manual - N

Device in automatic Interlocks
Mode_Auto = 1 Lo I:l Not interlocked

Device in manual .
Mode_Man = 1 Interlock active

N - Status_Ilock = 1

Permissive active
Status_Perm = 1

< Trip active

>
=
—
o
=

Status_Trip = 1

E Interlocks bypassed

i

Remote/local

None (ALL mode)
status_RLOff = 1

In remote

status_RemoteOn = 1 Status_Bypass = 1

o
[l In local H E-Stop active

status_LocalOn = 1 L Status_EStop = 1 )

Table 10.21  Block icon — Direct online drive

Reversing direct online drive

Reversing direct online drive block icon FC1201 | _StdDevDriveDOLRev

DOL reversing drives use the block icon for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.22  Block icon — Reversing DOL drive

Bistable drive

Direct online bistable drive block icon FC12101_StdDevDriveBi

Bistable drives use the block icon for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.23  Block icon — Bistable drive

Doc: PS2001-5-2101-001 Rev: R02.00 223-268



Bistable reversing drive

Direct online bistable reversing drive block icon FCI12111_StdDevDriveBiRev

Bistable reversing drives use the block icon for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.24  Block icon — Bistable reversing drive

Variable speed drive
Variable speed drive block icon FCI12501_StdDevDriveVSD
~
Interlocks
Remote/local Lo D Not interlocked
None (ALL mode)
status_RLOFf = 1 Interlock active
Status_Ilock = 1
In remote -
status_RemoteOn = 1 é\ ﬂ Permissive active
— -
|_ In local g St.atus_.Per'm =1
status_LocalOn = 1 o T”P active
Status_Trip = 1
PEE—— B Interlocks bypassed
( . Stat B: =1
Automatic/manual _ arus_ y_Pass
Device in automatic Hi E-Stop active
Mode Auto = 1 L Status_EStop = 1 )
Device in manual p
Mode_Man = 1 ) Demand/simulation
Off, no simulation
- N status_Demand = @
Fault & status_SimOn = @
Device in fault On, no simulation
status_Fault = 1 status_Demand = 1
. & stat SimOn = ©
Device healthy ° a_ e _lm "
status_Fault = @ Off, simulation on
< status_Demand = @
& status_SimOn = @
\A A 4 On, simulation on
Tag name PMOO1 | JAl | | |« status_Demand = 1
INFO_TAG o & status_SimOn = @
99 9 % Optional
A Reverse, no sim
Instrument reading Etiiﬁﬁiage??ﬂgﬁ N é
actual_Value Units ) Reverse, sim on
nt status_DemandR = 1
INFO_UNITS & status_SimOn = @
= J \ = Y,
ALTERNATIVE BLOCK ICON STYLES
PMOOQ1
PMO0O1 [ AL [ 1 AL T ]
999 % Standard Compact
: 99.9 %

Table 10.25  Block icon — Variable speed drive

224-268 Doc:  P$2001-5-2101-001 Rev: R02.00



Reversing variable speed drive

Reversing variable speed drive block icon

FC12511_StdDevDriveVSDRev

~
Interlocks
N .
Remote/local Lo D Not interlocked
None (ALL mode)
status_RLOFf = 1 “Interlock active
Status_Tlock = 1
In remote -
status_RemoteOn = 1 2 Permissive active
— -
In local g St.atus_.Per‘m =1
status_LocalOn = 1 o g Trip active
Status_Trip = 1
P— E Interlocks bypassed
(" . Stat B! =1
Automatic/manual ] e y_pass
Device in automatic Hi E-Stop active
Mode_Auto = 1 L Status_EStop = 1
Device in manual I -
Mode_Man = 1 ) Demand/simulation
Off, no simulation
e ~ status_Demand = @
Fault & status_SimOn = @
Device in fault On, no simulation
status_Fault = 1 status_Demand = 1
Device_healthy & status_SimOn = @
status Fault = @ Off, simulation on
= / status_Demand = @
& status_SimOn = @
\A A 4 On, simulation on
Tag name PMOO1 I IAI I I -« status_Demand = 1
INFO_TAG ) & status_SimOn = @
999 % Optional
A Reverse, no sim
A status_DemandR = 1
Instrument reading & status Simon - @
actual Value Units Reverse, sim on
nt status_DemandR = 1
INFO_UNITS & status_SimOn = @ )
ALTERNATIVE BLOCK ICON STYLES
PMO0O1
PMOO1 [ AL [ | AL T ]
999 % Standard Compact
. 99.9 %
PMOQ1
PMOO01 A Standard A Compact
o) . .
-99.9 % Running reverse 090 9 9 Running reverse
Table 10.26  Block icon — Reversing variable speed drive
Doc: PS2001-5-2101-001 Rev: R02.00 225-268




Multiple speed drive

Multiple speed drive block icon FCI12511_StdDevDriveMSD

Remote/local

None (ALL mode)
status_RLOff = 1

Ve ~
In remote Interlocks
status_RemoteOn = 1 Lo D Not interlocked

[l Inlocal
- status LocalOn = 1 II Interlock active
- Status_Ilock = 1
( . A 2 E Permissive active
Automatic/manual 5 Status Perm = 1
Device in automatic = Trip active
Mode_Auto = 1 Status_Trip = 1
Se;”cil in rr_1a;1ua| — JE— E Interlocks bypassed
L ode_Man = y, Status_Bypass = 1
p - Hi E-Stop active
Fault L Status_EStop = 1
Device in fault
status_Fault = 1 ( . . h
o Demand/simulation
Df"t'ce hFea|th1y_ . Off, no simulation
status_rault = Y, status_Demand = @
& status_SimOn = @
VYVY On, no simulation
Tag name MOO1 | Al | | |« status_Demand = 1
INFO_TAG l SPEED 5 & status_SimOn = @
Y Off, simulation on

status_Demand = @
& status_SimOn = @

On, simulation on

Speed status_Demand = 1
speed_Value L & status_SimOn = @
ALTERNATIVE BLOCK ICON STYLES
MO0 NG Standard “I\\AO(l”l Compact
SPEED > SPEED 5

Table 10.27  Block icon — Multiple speed drive

226-268 Doc: PS2001-5-2101-001 Rev: R02.00



10.2.3 Faceplates

0 All plant equipment (instruments, valves, drives, motors, pumps &c.) or pseudo-de-
vices such as PID loops have selectable and configurable operating modes (e.g. manual
mode, simulation mode &c.). These modes are optional (each mode can be disabled
in the static data for the device); however, where these options are used, it is necessary
to have an operator interface that allows the various modes to be selected.

@ To this end, the modes are selected through the use of a faceplate, this is a pop-up win-
dow that appears on the supervisory system, overlaying the plant mimic. Each type of

device has its own faceplate and multiple devices can have their faceplates open at the
same time.

@ An active faceplate can be considered to be a window in its own right and can be
dragged to different positions on the screen (Figure 10.8).

\ [Nz 1saads
e [v [0 omnniarens | v [ @ fowemes [v[alofuw g8
e | v] o [w|mweren —[v[alofm]  (v]alojw @
IGO0l 000 S—— 0 00
NS v | o | oo Vol [v/)o m|  sowmsmaror |

10 LITRE FERMENTER — FE004

PICO0T
L2117 R " i
w003 0.25 Bar 0.25 Bar
A H

&
{3 D*—— _Processvent >
CVOD3
AT R
674 %
V002
PMOOT Al]
{ COOLING WATER RETURN >
ER 1061 £x7 COOLING WATER RETURN
: 738
i )
} | P — FILTERED STEAM
H L
(10 N WICO0T TIC001 3,3 3% |
18729 A AL ISP

7t 45.0°C cvoo1
12.0 g/r 120 g/h] ¥, AL
0.0 %

WO

Status Operating status & resst function
[

)
R f—= COCLING WATER

WIC00T A P
5 2.0 a/te

CONDENSATE RETURN

State g

¥001
=
||

olslocks| Ty | Ty 0T A

@)
E — DISCHARGE LINE
V004
Al

START BATCH

Figure 10.8 Example Faceplate

) Each device has the ability to disable the faceplate operation from within its configu-
ration data within the Controller.

227-268



4

(O]

@

®

Where a device permits a faceplate to be used, the supervisory system generally limits
the access of a particular user to ensure that only specific user groups are able to operate
particular faceplate functions.

Faceplates typically have six functional areas:

Q)

Status
Shows the status of the device and clearly identifies the selected
operating modes

Mode
Displays the operating modes available to the device and allows
the operator to activate or deactivate any such modes

Interlocks
Shows the interlock states and allows the interlocks to be by-
passed (if permitted)

Simulation
Allows the device to be switched to simulation mode and lets
the operator select the various simulation modes

Configuration

Displays the primary configuration information for the device
(operating times, alarm limits &c.) and in certain cases allows
the operator the modify the values

Messages
Displays any alarms, warning or messages that may be active for
the device

The signals needed to operate the faceplates are provided by the dynamic and static
data interfaces to the block. The detailed requirements for which are specified in the
Software Module Design Specification (SMDS) /Ref. 008] for the relevant module.

The following sections show typical examples of various types of faceplates (it should
be noted that these are examples and the final faceplates may have minor differences.
However, these examples remain representative of any final faceplates).

228-268



Analogue instruments

FICO01 FIC001

Operating status & reset function Simulation modes

FICO01
Configuration 20.98 L/s Configuration

Messages Messages Simulation oo o0

Simulation TTTT]

Simulation mode & signal configuration

g| Simulation| Off | 67.5%

FIC001 FIC001

Status Device configuration Device configuration
Simulation Alarm L WarnH Wam L Ranges Simulation AlarmH AlarmL WamH Warn L

Instrument type: 4-20 mA - 4 wire
Range min: 0Lfs

Range max: 100 L/s
Qver-range limit: 102 Lfs

On delay time: Under-range limit: 2L/

Off delay time: Units: Lfs

Messages

FIC001 FIC001 - TREND x

@[E|w e |Qpliand|e3 s

Status Messages 0
0.08

Simulation
Configuration 04

36:00 PM 12:36:10 PM 12:36:20 P 12:36:30 PM 12:36:40 P 12:36:50 PN L
0/2020 91202020 920/2020 5/20/2020 920/2020 5/20/2020 9

Ready P 12:36:50 PH.

Table 10.28  Faceplate — Analogue instruments

Doc:  PS2001-5-2101-001 Rev: R02.00 229.268



Digital instruments

LSLOO1 LSLOO1

Operating status & reset function Simulation modes
Simulation

Configuration 151001 I | LSLOO1 Configuration

Messages Messages Simulation oo o

Simulation mode & signal configuration

State Simulation Signal active
Condition

Signal inactive

LSLOO1

Status Device configuration Status Messages
Simulation Simulation

Configuration
Level switch

No

High
On delay time: 10s
Off delay time: 10s

Table 10.29  Faceplate — Digital instruments

230-268 Doc:  PS2001-5-2101-001 Rev: R02.00




Control loops

PID loop faceplate FC10001_StdDevPID_Standard/ FC1001 | _StdDevPID_Sched

PID0O1 PID0OO1

Operating status & reset function Modes of operation

Mode PIDOO1 Al | ISP Automatic/manual selection
Interlocks 2098 L Interlocks

Configuration Configuration Automatic

Manual selection

State| Runnin Mode| Auto
- Off Setpoint | |Fixed output
Interlocks| Healthy Bypass 198 L/ 675 %

PIDOO1 PID0OO1

Interlock & bypass Status Device configuration
Mode Bypass interlocks, permissives & trips pode

Limits Interlocks Ranges
Interlocks

Configuration Bypass  Tumn off Proportional term: 5.0

Integral term: 31.0s

Interlock| Healthy | Permissive 1/~ Differential term: 0.0 ms

Deadband: Off

Trip| N/A E-Stop| Healthy Parameter set: Not applicable

PIDOO1 PID0OO1

Status Device configuration Status Device configuration
Mode Terms. Interlocks Ranges Mode Terms  Limits Ranges
Interlocks Interlocks

Qutput limit max: 100.0% Interlock state CV: 0%

Qutput limit min: 0.0% Permissive state CV:  Not applicable
Trip state CV: Not applicable

PID0O1

Status Device configuration
Mode
Interlocks

Type Timers Interlocks

PV range max: 100 L/s
PV range min: 0L/s
Units: %

Associated instrument: FICO01

Table 10.30  Faceplate — Control loops

Doc: PS2001-5-2101-001 Rev: R02.00 231-268




Isolating valves

Isolating valve faceplate FCI11001_StdDevValvelsol

Voot Voo1

Operating status & reset function Modes of operation
Moc.iie ks ﬂ] V001 ok Automatic selection
Interloc Al I Interloc

Sinlaten Automatic

Simulation
Configuration State[Openingl Model Auto ]

Configuration

Manual selection

Messages Interlocks[ Activel Bypass[ Off ] Messages

RESET Simulation| Off |

Voo1 Voo1
Interlock & bypass Simulation modes
Bypass interlocks, permissives & trips Simulation mode & limit configuration

Simulation Bypass [ off Simulation 1 off

Configuration Configuration Follow demand

Messages Interlock Permissive 1/ s (}‘OEH@(’
Closed

No limits

Voo1 V001

Status Device configuration Status Device configuration
Mode Mode

Interlocks Interlocks
Device type: Normally closed Time to open 10s

Simulation Position feedback: Yes simulation Time to close =

Interlocks

Limit switches: Opened and closed Actual timer value 8s
Messages

Vo001 V001
Status Device configuration Status Messages

" v e
ineocks G -~ ntaocks
Interlock state: Opened

Simulation y . Simulation
Permissive state: Not applicable

Configuration

Trip state: Not applicable

Table 10.31  Faceplate — Isolating valve

232-268 Doc: PS2001-5-2101-001 Rev: R02.00



3-way isolating valves

3-way Isolating valve faceplate FCI1011_StdDevValve3Way

Voo1 Voo1
Operating status & reset function Modes of operation

IMOd‘e . Voo terlocks Automatic selection
nterloc CTAT [ 1 | nterloc|

Automatic

Simulation Simulation
Configuration Statel Closed I Model Auto ]

Configuration

Manual selection

Manual Open

Messages Interlocks[ Healthyl Bypass[ Off ] Messages

RESET Simulation

Voo1 V001

Interlock & bypass Status Simulation modes
Mode

Interlocks
v 5 Bypass  Turm off Simulation urn off

Configuration Configuration

Mlssegras Interlock| Healthy | Permissive 11/ iesemms Opene

Trip.  N/A E-Stop

Bypass interlocks, permissives & trips Simulation mode & limit configuration

Vo001 Voo1

Status Device configuration Status Device configuration
Mode Mode

Interlocks Interlocks
Simulati Device type: Normally closed Simulati Time to open 10s
'muration Position feedback: Yes imu‘ation Time to close 7s

Interlocks

Limit switches: Opened and closed Actual timer value 8s
Messages

Vo001 V001

Status Device configuration Status Messages

o e e
ks Y -~ W ks
Interlock state: Closed

Simulation , Simulation
Permissive state: Not applicable

Trip state: Not applicable Configuration

Table 10.32  Faceplate — 3-way Isolating valve

Bistable valves

Bistable (motorised) valve faceplate FCI1101_StdDevValveBi

Bistable valves use the faceplate for the FC11001_StdDevValvelsol (isolating valve) module

Table 10.33  Faceplate — Bistable Isolating valve

Doc:  PS2001-5-2101-001 Rev: R02.00 233-268



Modulating valve

Modulating valve faceplate

FC11501_StdDevValveMod

Mode
Interlocks
Simulation
Configuration
Messages

Cvoo1

Operating status & reset function

cvool | AL

State[ Opened I Model Auto ]

Interlocks[HeaIthyl Bypass[ Off ]

RESET Simulation| Off |

CV0o01
Modes of operation

Automatic selection
Interlocks
Sinlaten Automatic
Configuration .

Manual selection
Messages

Simulation
Configuration
Messages

CVoo1
Interlock & bypass

Bypass interlocks, permissives & trips

Interlock Permissive 1/~

CVoo1
Simulation modes

Simulation mode & limit configuration
Simulation T off

im value

Configuration
Messages

No limits

Status
Mode
Interlocks
Simulation

Messages

CV001
Device configuration

Interlocks Ranges

Time to reach position: 10s
Actual timer value 8s

CVoo1

Status Device configuration
Mode
Interlocks

Type Timers Ranges

. R Interlock state: Closed
Simulation o
Permissive state: Not applicable

Trip state: Not applicable

Status
Mode
Interlocks
Simulation

CV001
Device configuration

Type Timers Ranges

Interlock state: Closed
Permissive state: Not applicable

Trip state: Not applicable

Cvoo1

Status Device configuration

Mode Type Timers Interlocks
Interlocks

. . Position range max: 100%
Simulation - N
Position range min: 0%
Units: %

Messages

Status Messages

Mode
Interlocks
Simulation

Configuration

Table 10.34  Faceplate — Modulating valve

234-268

Doc: PS2001-5-2101-001

Rev: R02.00



Direct online drive

Direct online drive faceplate

FC12001_StdDevDriveDOL

MO001

Operating status
Mode
Interlocks .
Simulation
Configuration

Messages

RESET

Interlocks

& reset function

MOO01

Mock| o

Bypass,  Off

Simulation

Interlocks
Simulation
Configuration
Messages

MO001
Modes of operation
Automatic selection

Automatic

Manual selection

Simulation Bypass

Configuration
Messages
Trip| N/A

Bypass interlocks,

Turn off

Interlock| Healthy | Permissive "/~

Interlock & bypass

permissives & trips

Turn on

Configuration
Messages

Simulation modes

Simulation mode & signal configuration

Turn on

Simulation  Turm off

Follow demand
Running
Stopped

Status
Mode

Interlocks
Device type:

Silaton Rotation feedback:

Messages

Device configuration

Status

Mode

Interlocks
DOL single direction

Simulation
Yes

Messages

Device configuration
Interlocks

Time to ramp up 2s
Time to ramp down 25

Actual timer value 2s

MO001

Status
Mode
Interlocks
Simulation

Messages

Configuration

Status
Mode
Interlocks
Simulation

Messages

MO001

Device configuration

Interlock state: Stopped

Permissive state: Not applicable

Trip state: Not applicable

Table 10.35

Doc: PS2001-5-2101-001

Faceplate — Direct online drive

Rev: R02.00

235-268




Reversing direct online drive

Reversing direct online drive faceplate FCI12011_StdDevDriveDOLRev

M001 MO001

Operating status & reset function Modes of operation

etz " MO00T | Automatic selection
Interlocks ] ] Interlocks

Simulation Simulation Automatic
Statel Running| Model Auto |

Configuration

Messages Interlocks‘ Healthy| Bypass| Off | Messages

RESET Simulation|  Off |

Configuration

Manual selection

Interlock & bypass Status Simulation modes
Mode Bypass interlocks, permissives & trips pods Simulation mode & signal configuration

Interlocks

Configuration Configuration

MessegEs Interlock| Healthy | Permissive 11/ Nisezses

nning rex
Trip.  N/A E-Stop

ped

Status Device configuration Status Device configuration
Mode Timers Interlocks Mode Interlocks
Interlocks Interlocks
Simulati Device type: DOL dual direction Simulati Time to ramp up 25
imulation imulation
Rotation feedback: Yes Time to ramp down 2s
Actual timer value 25
Messages Messages

MO001 MO0O01

Status Device configuration Status Messages

Interlocks Interlocks

. . Interlock state: Stopped . .
Simulation : . Simulation
Permissive state: Not applicable )
Trip state: Not applicable Conﬁguratlon

Messages

Table 10.36  Faceplate — Reversing DOL

Bistable drive

Direct online bistable drive faceplate FCI12101_StdDevDriveBi

Bistable drives use the faceplate for the FC12001_StdDevDriveDOL (direct online drive)

Table 10.37  Faceplate — Bistable DOL drive

236-268 Doc:  PS2001-5-2101-001 Rev: R02.00



Variable speed drive

Variable speed drive faceplate

FC12501_StdDevDriveVSD

Mode
Interlocks
Simulation
Configuration
Messages

PMO0O1

Operating status & reset function

Interlocks.

RESET Simulation

Interlocks
Simulation
Configuration
Messages

PMO0O01

Modes of operation
Automatic selection

Automatic

Manual selection

Demand

Simulation
Configuration
Messages

PMO001

Interlock & bypass

Bypass interlocks, permissives & trips

Turn on

Bypass  Tum off

Interlock Permissive

Configuration
Messages

PMO001

Simulation modes

Simulation mode & signal configuration

Turn on

Simulation T off

im value
Running
Stopped
No signals

Status
Mode
Interlocks
Simulation

PMO001

Device configuration

Timers Interlocks Ranges

Device type: V5D single direction

Speed feedback: Yes
Rotation detection: Yes
Demand/actual hyst. +2%

Status
Mode
Interlocks
Simulation

Messages

PMO0O01

Device configuration

Interlocks Ranges

Time to ramp up:
Time to ramp down:

Actual timer value:

5.0s
5.0s
3.8s

Status
Mode
Interlocks
Simulation

PMO001

Device configuration
Type  Timers Ranges

Interlock state: Stopped
Permissive state: Not applicable

Trip state: Not applicable

Status
Mode
Interlocks
Simulation

Messages

PMO0O01

Device configuration

Type Timers Interlocks

Speed range max:
Speed range min:
Units:

100%
10%
%

Simulation

Configuration

Table 10.38  Faceplate — Variable speed drive

Doc: PS2001-5-2101-001

Rev: R02.00

237-268




Reversing variable speed drive

Reversing variable speed drive faceplate FCI12511_StdDevDriveVSDRev

MO001 MO001

Operating status & reset function Modes of operation

Mode Mool | JA] | [ Automatic selection
s 67.5 % Interlocks Automatic

State[ Run rev I Model Auto ]

Simulation Simulation

Configuration

Messages Interlocks[HeaIthyl Bypass[ Off ] Messages

RESET Simulation| Off |

Configuration

Manual selection

M001 M001
Interlock & bypass Simulation modes

Bypass interlocks, permissives & trips Simulation mode & signal configuration

Simulation Bypass [ off Simulation 1 off

Configuration Configuration

Interlock Permissive 1/
Messages Messages
. Stopped
Running reverse
No signals

MO001 MO001

Status Device configuration Status Device configuration
Mode Timers Interlocks Ranges Mode Interlocks Ranges
Interlocks Interlocks
. ) Device type: VSD dual direction . . Time to ramp up: 5.0s
Simulation Simulation y
Speed feedback: Yes Time to ramp down: ~ 5.0s
Rotation detection: Yes Actual timer value: Not running

Messages Demand/actual hyst. ~ +2% Messages

MO001 MO001

Status Device configuration Status Device configuration

Mode Type Timers Ranges Mode Type Timers Interlocks
Interlocks Interlocks

Simulati Interlock state: Stopped Simulati Speed range max: 100%
imulation imulation
Permissive state: Not applicable Speed range min: -100%
Trip state: Not applicable Units: %

Messages Messages

MO001

Status Messages
Mode

Interlocks

Simulation

Configuration

Table 10.39  Faceplate — Reversing variable speed drive

238-268 Doc:  PS2001-5-2101-001 Rev: R02.00



Multiple speed drive

Multiple speed drive faceplates

FC12601_StdDevDriveMSD

MO001

Mode

Operating status & reset function

PMO0O1

LIAL ]

Interlocks
Simulation

SPEED 5

Interlocks

Simulation

Configuration

State| Run 05 |

Mndel Auto | Configuration

Messages

Interlocks[ Healthy |

Bypassl Off | Messages

RESET

Simulation

MO001
Modes of operation
Automatic selection

Automatic

Manual selection

Manual

Speed ¥ Stop

Simulation Bypass
Configuration

Interlock
Messages nterioc

Interlock & bypass

Tum off

Trip.  N/A

Bypass interlocks, permissives & trips

Turn on

Permissive

Configuration
Messages
E-Stop

Simulation modes

Simulation mode & signal configuration

Turn on

Simulation  Turn off

Follow demand
Running
Stopped

Status
Mode
Interlocks

. . Device type:
Simulation

Messages

Device configuration

Rotation feedback:

Status
Mode
Interlocks

Timers Interlocks Ranges

DOL single direction

Simulation
Yes

Messages

Device configuration
Interlocks Ranges

Time to ramp up 25
Time to ramp down 2s

Actual timer value 25

MO001

Status
Mode

Interlocks

Type Timers

. . Interlock state:
Simulation .
Permissive state:
Trip state:

Messages

Device configuration

Status
Mode

Interlocks

Ranges

Stopped Simulati
Not applicable imulation

Not applicable
Messages

MO001

Device configuration

Type Timers Interlocks

No. discrete speeds 10

MO001

Messages

Simulation

Configuration

Table 10.40

Doc: PS2001-5-2101-001

Faceplates — Multiple speed Drive

Rev: R02.00

239-268




10.3  Graphical styles

() The PAL does not at this stage formally prescribe the graphical styles that must be used
(although future projects may do so), this to a certain extent is dependent on the super-
visory system being used. The PAL does require that all the graphical objects and mim-
ics are compliant with the current engineering standards for supervisory systems spec-
ified in the EEMUA 201 /Ref. 016] standard for Process Plant Control.

@ The graphical depictions shown in the previous sections (for symbols, block icons and
faceplates) are accurate representations of what the graphical representation must ac-
commodate as a minimum requirement.

@ The following figures illustrate some of the different graphical approaches that may be
taken:

| 23 JUN 20 15:23:45

\

oo v[a[o o [rowemeeos | v [ @ v ___[v[alo[w o
rewevnra: | v) o ez [v[ajojul ______ [vialojm @
roweenrians | V)03 o ) rwavienrios | v aloful____[vialojm| /NGED

(EEamENTER RO v [~ [0 [ [rermenterreors [ |ERofm][ [ JEM(o[m][" aommistraror

10 LITRE FERMENTER — FE004

o PICO01
FTOOT [ ITT1]. _ JACTTsP
s 0.25 Bar 0.25 Bar
ALl g
@)
[ INOCULUM Q (— PROCESS VENT
CVa03
A
674 %
‘ vooz |
PM00T AIZI
A
951 % T I & o COOLING WATER RETURN
H ‘ 7381 N
H 10 LITRE M
. FERMENTER FILTERED STEAM
e | |} cvoot
WT001 T WICoD1 Ticooi
w729 AL ISP A sp 308 %
130 afh 12,0 g/t 450°C cvoo1
0 g/hr == - AL
wicoo ; 00 %
Operating status & reset tunction i .‘ COOLING WATER
Mode WIC00T AT TSP J
Interlocks S 120 o 4
Configqueation H
= &:{ CONDENSATE RETURN
. Ti001 I ]
State|Running Mode| Auta — 4295 C VOO
Interiocks| Healthy | Bypass| Off AT

%=( DISCHARGE LINE

VD4
Al

START BATCH

Figure 10.9  Standard graphical arrangement with “3D” effects

240-268



) The subtle three-dimensional effect of Figure 10.9 is considered to be a typical, stand-
ard graphical arrangement.

©®) Figure 10.10 shows the same arrangement with a “flattened” appearance, there are no
gradient colours and fewer embellishments.

FERMENTER FE004 A
10 LITRE FERMENTER — FE004

025 8r

4872 g
12.0 g/hr

Operating status & rosct function

oy o |
metods sy Byess_0n_|

START BATCH

Figure 10.10 Graphical arrangement with “flat” appearance

Doc: PS2001-5-2101-001 Rev: R02.00 241-268



© The final example is a variation of the flattened version and is more minimalistic.

U000 IR u000 CCaennen
EEEESU0n0 e unon aeeeesenon ¢ T

oo [v1n [o [ frewavenras  [v]alolw] ——[vinlolw AT
(Fwavrmos [ v]n [0 [wjmmavenrn [v]alolw] — [vlalolw]

10 LITRE FERMENTER — FE004

INOCULUM *

COOLING WATER

RETURN

FILTERED STEAM

START BATCH

Figure 10.11 Graphical arrangement with minimal effects

@ All of these are just examples to illustrate the nature of a graphical interface.

242-268 Doc:  P$2001-5-2101-001 Rev: R02.00



0]

@

10.4  PAL Graphical arrangements

All supervisory systems have some mechanism for navigation around the various
graphical mimics and for issuing commands to the Controller, the PAL defines certain
arrangements for navigation, command and other displayed functions.

The basic arrangements for a graphical page that is compliant with the PAL is shown

below:

1. ALARM BANNER [shows latest alarm] 2. DATE & TIME

5. NAVIGATION BUTTON AREA

6. TITLE BAR

7. GRAPHICAL MIMIC AREA

8. COMMAND BUTTON BAR

Figure 10.12 PAL graphical page arrangements

Doc: PS2001-5-2101-001 Rev: R02.00 243-268



@ The graphical page is broken down into eight discrete areas:

©) Alarm banner
This is a single line area at the top of the screen, it dis-
plays the most recent unacknowledged alarm, if all
alarms are acknowledged, it displays the most recent
acknowledge, but active alarm

@ Date and time
Displays the system time and date. The time must use
the 24-hour clock with leading zeros (i.e. 13:04:20). The
date must be displayed in an unambiguous format:
23 Jun 20 (month identified as letters)
2020-07-23 (ISO 86018 international standard)

® Logo
Display area for a logo of some description.

@ User
Shows the username of the current user logged on to the
particular supervisory system terminal.

® Navigation button area
This shows the active plant area mimic (active mimic is
in blue in the background), the ¥ button allows the user
to select any sub-screens associated with the plant area.

The other buttons show any active alarms/warnings (A
button), operator prompts (O button) and messages (M
button).

® Title bar
Contains the title of the graphical mimic being displayed.

18 ISO 8601 [Ref. 017], is the international format for recording dates. It has a standard form:
YYYY-MM-DD and avoids the ambiguity of the American/English date formats: MM/DD/YY
and DD/MM/YY respectively.

244-268



0]

@

O}

)

)

@ Graphical mimic area
Displays the graphical interpretation of the plant area
(usually based on the P&ID diagram for the plant area).
The symbols, block icons and faceplates used in this area
are discussed in §§ 10.2-10.3.

Command button bar
This is a mimic dependent area that allows the operator
to issue specific commands to the Controller (e.g. to start
a particular sequence or function &c.).

Command buttons are dynamic and can be enabled or
disabled by the Controller depending on the current
plant conditions.

10.4.1 Screen sizes and resolutions

Supervisory systems are generally PC based SCADA systems or smaller (panel
mounted) HMI devices.

HMI systems

Where HMISs are used, the size of the HMI is usually dependent on the complexity of
the plant in question, for plants of a simple arrangement (or where the function of the
HMI is extremely limited, or restricted to a very small aspect of plant control), small
screen HMIs may be used.

More typically, where HMISs are representing a local area of plant in the same detail as
a SCADA system, larger HMIs must be used.

The default PALL HMI is considered to be a HMI with a capacity equal to or better
than a Siemens Simatic TP1200 Comfort Touch panel (part no.: 6AV2128-3MB06-
0AXO0), this is the same HMI specified as part of the test rig (see Section 3).

This HMI has a screen resolution of 1280 x 800 pixels and this is considered to the
minimum practical screen resolution for an HMI application of all but the simplest
functions.

245-268



(6

Y]

®

PC based supervisory systems

PC based supervisory (or SCADA) systems are more powerful than local HMI panel
and may be single stand-alone stations or multiple-user, server-client systems.

The PAL minimum requirement for a supervisory system is based around the Siemens
Simatic WinCC Professional application.

This WinCC application does not in itself set specifications for the PC hardware upon
which it is to run (apart from a basic minimum specification), the PAL, however, does
set certain minimum specifications:

) Each stand-alone station or client station (if using a server ar-
rangement) will be dual monitor station and each monitor will
have a minimum resolution of 2460 X 1440 pixels.

. Stand-alone stations and servers will have 32 GB of internal
RAM
. Stand-alone stations and servers will have 6 TB of hard disk stor-

age available

o Client stations will have a minimum of 16 GB of internal RAM
o Client stations will have a minimum of 3 TB of hard disk storage
available

o High power CPUs will be used (Intel i7 or better)

246-268



0]

@

(O]

)

10.5  Alarm handling

Alarm handling is generally a supervisory system function; all instrumentation and
plant devices connected to the Controller (either for monitoring or control purposes)
are constantly examined for fault and failure conditions. The failure of any such equip-
ment will result in an alarm condition being generated and displayed on the supervi-
sory system.

Whatever supervisory system is used; it must be compliant with the current standards
for such alarm handling: the EEMUA 191 [Ref 015/ Guide for Alarm Systems.
Broadly, this requires that alarms and warnings have the following facilities:

o All alarms and warnings are time stamped and can be filtered

. Alarms and warnings can be suppressed by process area with a
dedicated display showing all suppressed alarms

. State-based smart alarm/warning hiding that will hide alarms and
warnings when not required (i.e. when part of the plant is not in
operation)

o Alarms and warnings will be given priorities and will be colour

coded to indicate the type of alarm

. alarms and warnings will be logged (archived) and can be recov-
ered when required

The supervisory system will log and display all plant alarm and warning conditions,
the most recent unacknowledged, (or if all alarms and warnings are acknowledged, the
most recent acknowledged alarm/warning that is still active) alarm/warning will be
displayed in the alarm banner on each graphical mimic screen and will always be visi-
ble.

Where required, alarms and warning signals may be marshalled into specific data
blocks (or other common area), this is dependent on the specific requirement of the
supervisory system in question.

247-268



4

(6

@

The system will accommodate the following types of alarms:

ALARM TYPE

Process Alarm/
warning

Discrete (Digital)
Alarm

Device Alarm

Instrument Alarm

Derived Alarm/
warning

System Alarm

Table 10.4]1  Alarm Types

DESCRIPTION

Process alarms are generally derived from analogue instruments (such as flow,
temperature, pressure &c.) and indicate that there is something wrong from
the point of view of the manufacturing process (e.g. low pressure). Process
alarms can also be generated from digital instruments monitoring for a
particular alarm condition associated with the process (e.g. a low seal pressure
switch).

Discrete alarms are generally digital alarms reporting specific occurrences of an
event outside of the normal process, for example an emergency stop condition,
or failure of a service supplied to the system.

Device alarms are associated with a particular piece of equipment controlled by
the system (a valve or drive). Device alarms are generated whenever the device
is not responding correctly (or within it operational time) to the demands of
the system. E.g.:

Valve Failed to Open
Valve Failed to Close

Instrument alarms are associated with the state of an instrument itself (rather
than the process value it is reading). Instrument alarms are generated whenever
the instrument is giving out of range or fault signals.

Derived alarms are conditions that are determined by the system performing a
calculation based on two or more monitored values, for example a low rate of
change would be a derived alarm based on a value changing with time (value
and time being the two monitored values).

A system alarm is associated directly with the Control System and its
infrastructure (communication networks &c.). E.g.

Communication Failure
Component Failure — Failure of a Controller card, rack or component &c.

The Supervisory system will organise alarms into groups associated with different
plant areas (typically, organised in the same arrangement as the navigation area).

The Supervisory system will also have a global alarm page that shows all the currently
active alarms and warnings across the whole system. The Operator will be able to ac-
cess this global alarm page directly from all screens (usually by clicking the alarm ban-
ner at the top of each screen).

248-268



®

®)

(10)

(I

0]

@

O}

)

Alarm logging (the recording of when alarms occur, when and by whom they were
acknowledged and when they were cleared from the system) for record keeping pur-
poses, is a supervisory system activity requiring that an Operator be logged-on to the
system.

All alarms screens have different fields associated with the alarms and warnings (time
of occurrence, time of acknowledgement, alarm description, current state &c.), these
screens will be filterable by any of the associated fields.

The PAL software has some independent (Controller based) alarm routines that allow
the Controller to time stamp particular alarm conditions (this improve the accuracy of
the alarm time stamp) under specific conditions (usually where high speed reporting is
required, e.g. electrical switchgear monitoring).

It is also possible for PAL software to disable specific alarms under designated condi-
tions and even automatically acknowledge active alarms.

10.6  User management

The supervisory system must support individual user logon and user groups.

Different users will have different capabilities within the system. Each user will be as-
signed to a specific user group and each group will have specific privileges and re-
strictions.

The PAL does not prescribe the number of user groups, nor does it specify the privi-
leges and restrictions to be applied to each group; these are determined by the plant in
question and the requirements of the plant operators. It does however, require that the
supervisory system (both SCADA and HMI) support such facilities.

Generally, if no user is logged on, the supervisory system will display a blank screen
showing only the logon window. It is permissible for a supervisory system to allow
read-only access to the graphical screens when no user is logged on (the plant can be
viewed and alarms and warnings examined, but no actions can be taken, including the
acknowledgement of alarms); this read only facility, while permissible is not generally
recommended, its use should only be considered where necessary; e.g. plant mounted
HMIs may be required to constantly display specific information.

249-268



BLANK PAGE

250-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

(©)]

1 1 Template and documentation
modules

A series of template and documentation modules will be provided to give worked ex-
amples of how the standard and application modules should be used in a control system
project.

The template modules will provide an example of each type of application module,
demonstrating how each application module is to be used and how it calls its associ-
ated standard modules.

The documentation modules are specific examples of how to comment the various
aspects of software written using the PAL, these give a consistent look and feel to the
software. The documentation modules contain summaries of the various styles and
comment formats that can be copied and used within software modules. These are
essentially quick reference (proforma) guides that can be used as the outline for applica-
tion modules &c.

251-268



U]

0]

@

11.1 Template modules

The template modules explain how to use and deploy the various standard and applica-
tion modules and also the various organisation blocks (OBs) that may be required in
various circumstances. The template modules provide detailed example usage for all
the standard modules and demonstrate different operating modes and configurations.

11.1.1 Template modules for application and standard modules

There is a template module associated with each of the application modules. Each
template module gives an example of how its associated application module should be
used and coded. Where application modules are numbered 20,000 to 39,999, the tem-
plate modules are numbered 40,000 to 59,999; thus, template module 42,000 is an ex-
ample of how application module 22,000 is to be used.

The following table gives the associated numbering between template modules and
application modules:

TEMPLATE ASSOCIATED APPLICATION
FUNCTION GROUP MODULE NUBER MODULE NUMBER

Safety systems FC 44nnn FC 24nnn

Calculations & mathematics FC 45nnn FC 25nnn

Command handling FC 48nnn FC 28nnn
Device drivers (control loops) FC 50nnn FC 30nnn
Device drivers (valves) FC 51Innn FC 31Innn
Device drivers (drives) FC 52nnn FC 32nnn
Message handling FC 56nnn FC 36nnn

Communication handling FC 57nnn FC 37nnn
Debug (end of cycle) FC 59nnn FC 39nnn

Table |11 Template module and application module associations

252-268 Doc: PS2001-5-2101-001 Rev: R02.00



3

)

)

()

The template modules are based around a small fermenter project; this is a relatively
simple project, but covers all aspects of the PAL software, to this end it provides a
worked example of all the common elements of a project:

Q)

@ @ © 6 &® O O

® © ®

@

System management and global signal generation
Instrumentation handling (read, scale and evaluation)
Interlock functions

Safety systems

Calculations

Continuous logic control

Sequence logic control

Command execution logic (convert continuous and sequential
logic decisions to physical output signals)

Device handling (control loops)
Device handling (valves, drives &c.)
Message handling (alarms, warnings, user prompts &c.)

Communications

All template modules will be fully documented and will reflect the PAL documenta-
tion standards given in the Style Guide (SG) /Ref 010)].

The documentation for the template fermenter project is contained within document

module FC 65000.

The following table give a full list of the template modules included in the PAL soft-

ware:

253-268



TEMPLATE MODULES ASSOCIATED

COORDINATING MARSHALLING PROGRAMMING APPLICATION MODULE

FC44000_TmtSafe FC24000_AppSafe
FC44101_TmtSafeZonel FC24101_AppSafeZonel
FC45000_TmtCalc FC25000_AppCalc
FC45001_TmtCalcAvg FC25001_AppCalcAvg
FC45700_TmtCalcNabla FC25700_AppCalcNabla

FC48000_TmtCmdHandler FC28000_AppCmdHandler
FC48001_TmtCmdPID FC28001_AppCmdPID
FC48101_TmtCmdVlvisol FC28101_AppCmdVivisol
FC48151_TmtCmdVIivMod FC28151_AppCmdVIivMod
FC48201_TmtCmdDriveDOL FC28201_AppCmdDriveDOL
FC48251_TmtCmdDriveVSD FC28251_AppCmdDriveVSD
FC50000_TmtDevDriver FC30000_AppDevDriver
FC50001_TmtDevPID FC30001_AppDevPID
FC51001_TmtDevVivisol FC31001_AppDevVivisol
FC51501_TmtDevVIivMod FC31501_AppDevVIivMod
FC52001_TmtDevDrvDOL FC32001_AppDevDrvDOL
FC52501_TmtDevDrvVSD FC32501_AppDevDrvVSD
FC56000_TmtMsgHandling FC36000_AppMsgHandling
FC56101_TmtMsgClassify FC36101_AppMsgClassify
FC57000_TmtCommsHandling FC37000_AppCommsHandling
FC55101_TmtCommsCon2 FC35101_AppCommsCon2
FC59000_TmtDebugEOS FC39000_AppDebugEOS
FC59101_TmtDebugSim FC39101_AppDebugSim
FC59201_TmtDebugSeq FC39201_AppDebugSeq

Table 11.2 Full list of template modules and associated application modules

254-268 Doc: PS2001-5-2101-001 Rev: R02.00



0]

@

O}

11.1.2 Template modules for organisation blocks

The PAL utilises organisation blocks for fault and interrupt handling. Each such or-
ganisation block has a template module that can be copied into the relevant OB to
provide the necessary functions required by the PAL, these templates form the basis of
each interrupt block providing the basic functions and minimum requirements needed
by each.

The template modules for organisation blocks are numbered in the FC 60000 to
FC 60999 range, specifically they have the default OB number plus 60000, thus the
OB 35 template module is given the number FC60035.

The following lists all the template modules for organisation block and their associated
OB number:

TEMPLATE MODULE ASSOCIATED OB INTERRUPT TYPE

Controller main program cycle

FC60001_TmtINrmMainProgram OBO00001_IntINrmMainProgram Called at the start of each Controller cycle
. ) Time of day Interrupt
FC60010_TmtINrmTimeOfDay OB00010_IntINrmTimeOfDay Called by time and day of week
FC60020_TmtINrmTimeDela ©OB00020_IntINrmTimeDela Time delay Interrupt
= Y - Y Called after a specified delay has expired
FC60030_TmtINrmCyclic OB00030_IntINFmCyclic Timed cyclic Incerrupt

Called at specified intervals

Error Interrupt

FC60083_Tmt  ModuleChange OBO00083_Int - ModuleChange o e e

Error Interrupt

FC60086_Tmt  RackErr OB00086_Int ~ RackErr :
= = Rack failure or fault

Start-up Interrupt

FC60100_Tme  StarcUp ©OB00100_Int - StartUp Called when the CPU transitions to RUN

Error Interrupt

FC60121_Tmt  ProgramErr OBO00I121_Int  ProgramErr

Programming fault or error

Error Interrupt

FC60122_TmtlErrlOErr OBO00122_IntlErrlOErr
10 card access fault

Table 11.3 Template modules for organisation blocks

Doc:  PS2001-5-2101-001 Rev: R02.00 255.268



0]

@

3

)

)

11.2 Document modules

The PAL software is extensively documented and makes use of various naming con-
ventions for variables, constants &c.

The standards and conventions for documenting the PAL software are detailed in a
separate document, the Style Guide /Ref’ 010].

The Style Guide, defines a series of rules, guidelines and practices that produce a con-
sistent (and pleasing) programming style. It is the basis for all documentation within
the PAL modules and templates.

The practices specified in the style guide are summarised within the documentation
modules, these are intended to be proforma examples of comments, variable and con-
stant naming and block parameterisation.

The document modules have the following allocations:

NUMBER CLASS FUNCTION

Example block comments, containing the following:

e  Block title e  Body text
FC61000 Doc e  Block description (typical) e Table, equations & figures
e  Revision and modification history e  Special characters
e  Headings, list and indented text e  Network comments
FC62001 Doc Block allocations and block naming conventions
FC62002 Doc Tag, variable and constant naming conventions

FC65000 Doc Template project documentation

Table 11.4 Document modules for the PAL

256-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

(©)]

)

®)

1 2 Regulatory requirements

12.1 Hardware regulatory requirements

12.1.1 GxP requirements

This Project will comply with, and be written to, the standards necessary for Good
Manufacturing Practice (GMP), generally referred to as GxP (see § 2.4).

The GxP requirements are encapsulated in the International Society for Pharmaceuti-
cal Engineering (ISPE) guidelines, referred to as Good Automation Manufacturing
Practice (GAMP), currently at revision 5 (GAMP 5), /Ref. 011].

The hardware requirements are determined by GAMP 5, this provides two hardware
categories:

CATAGORY DESCRIPTION EXAMPLE REQUIREMENTS

Commercially available Record:
y Instruments, PLCs, valves, :

I equipment

Standard drives, inverters &c. Ve, ez ey
tandar Serial No. &c.
hardware - .
Assembled equipment using i Verify installation
components Electrical panels :
standard components Terminal schedules &c.
2 Specialist laboratory equipment  Custom interfaces As category | plus:
Custom built . . dard i URS
Hardware design specifically to ~ non-standard instruments .
hardware . Supplier assessment
suit the process bespoke valve or drive )
components Tests against URS

Table 12.1 GAMP 5 hardware classifications

All hardware used within the Project will be of category 1, i.e. standard hardware com-
ponents that are commercially available from multiple sources.

Standard components are often referred to as “commercial, off-the-shelf”, indicating that
these are common, commercially available items that have not been specifically de-
signed or built for this particular application. Such items are readily available, can eas-
ily be replaced and allow for spares holding.

257-268



12.1.2 Regulatory requirements

0) The Project hardware: electrical installation, panel, instrumentation and all associated
equipment and wiring will comply with the following standards and regulations:

e  Electrical Equipment (Safety) Regulations 2016

e Supply of Machinery (safety) Regulations 2008

e BS7671 IET Wiring Regulations |7t Edition

e BSEN60204 Safety of machinery - Electrical equipment of machines

e EN 13850 Safety of machinery — Emergency stop function

e EN 60947-5-5 Electrical emergency stop devices with mechanical latching functions
e BS6739 Code of Practice for Instrumentation in Process Control Systems:

Installation Design and Practice
e  BSEN60439-1 Specification for low voltage switchgear and control gear assemblies.

e |EC 61508 Functional safety of electrical/electronic/programmable electronic
safety related systems

12.2  Software regulatory requirements

12.2.1 Regulation and legislative requirements

M There are two specific sets of regulations that apply to control systems in pharmaceu-
tical environments:

° CFR 21 Part I | US Code of Federal Regulations, Title 21, Food and Drugs, Part || —
Electronic Records, Electronic Signatures [Ref. 013]
e  Eudralex Vol 4 EU Regulations Volume 4: Pharmaceutical legislation — Medicinal Products
Annex | | for Human and Veterinary use — Good Manufacturing [Ref. 014]

@ Generally, if a system is compliant with GAMP 5 it will satisfy the EU Regulations
Volume 4, Annex 11%°.

19 There are some additional documentation requirements and these are specifically addressed
in the Project Validation Plan (VP), [Ref. 002].

258-268



3

)

0]

0]

@

0]

CFR 21 Part 11 is concerned with the accuracy, reliability and storage of electronic
signatures; this is more relevant to supervisory systems rather than the Controller soft-
ware of this Project; however, were applicable the PAL software will comply with
these regulations.

The Practical Series Automation Library software will be written to comply with the
above regulations, the software will also conform to the standards specified below:

12.2.2 Software standards

The Practical Series Automation Library software will be written to the standards set
down in the International Electrotechnical Commission (IEC) publication 61131-3: Pro-
grammable controllers - Part 3: Programming languages, listed here as [Ref. 012].

12.2.3 Maintenance and publication of verification certification
The software library will be validated and will be fully GMP compliant (see § 2.4). The
details of the validation process are given in the Validation Plan (VP), /Ref. 002].

The completed verification documents (e.g. test specification, calibration certificates,
&c.) will be made available as secure documents that clearly identify the software mod-
ule and its version number. Each document will be complete with signatures and all
attachments.

12.3 Software restrictions

This software must not be deployed within high-speed applications. The software is
designed to run on systems with a response time of 100 ms or greater.

259-268



BLANK PAGE

260-268 Doc:  PS2001-5-2101-001 Rev: R02.00



0]

@

3

Q]

®)

()

1 3 PAL user documentation

TIA portal supports various mechanisms for storing the user documentation of soft-
ware modules; the PAL makes extensive use of this facility.

All software modules within the PAL are extensively documented within the modules
themselves, see the Style Guide /Ref- 010] for details, this includes block headers and
individual network comments.

In addition, the TIA facility for user documentation (referred to as 714 User Documen-
tation) is also used. This facility allows documents to be stored in a variety of formats:
PDF documents, text documents, Microsoft Word documents and also as web pages.

Of all these formats, the PDF format offers the most flexibility, it is readily produced
from the Software Module Design Specifications /Ref. 008/ (written in Word DOCX
format), can be configured to use the document headings as navigable bookmarks and
can be rendered in most standard web browser.

The PAL user documentation will also provide links to the various documents gener-
ated within this project. This includes the following:

° The User Guide /Ref. 009/

° The software Design Specification [Ref. 006]

° Individual Software Module Design Specifications /Ref. 008/
o The Style Guide [Ref. 010]

The PAL user documentation will also be developed as a full website. This website
provides a standard format for displaying the PAL user documentation, it has the fol-
lowing appearance:

261-268



&
. t\ PRACTICAL SERIES AUTOMATION LIBRARY

&
APAL > Software Module Design Specification

FC O'l OO 'l _StdSysGlobalData

SYSTEM

STANDARD SYSTEM GLOBAL DATA

AUTHOR: MICHAEL GLEDHILL SOFTWARE VERSION:

FC 01000 STANDARD SYSTEM GLOBAL DATA

Abstract

1 Block technical summary 4 Parameters
2 Functional overview 5 Data structures & usage
3 Detailed block description 6 Temporary (local) data
31 Enabling the clock memory byte . ek cail
32 The PAL system tag tabl

it 8 Associated blocks
33 Globallogic signals
34 Global timing signals 9 System block calls & data types
341 Scan synchronised timing pulses 10 Special properties & requirements
342 Scansynchronised timing square waves 101 Block optimisation
35 Cyclically dependent signals 10.2 Calling requirements
351  Record cycle timesand properties ¥ Esainpli uigs & vevilon Wiy
36 Real time clock (RTC) data

ABSTRACT

This block (FC01001_StdSysGlobalData) is an essential system block that generates the in-
ternal logic and timing signals needed by all the other PAL software modules.

The block records the controller scan times and converts the Controller real time clock value to
discrete integers, making the data globally available to all systems including non-Siemens equip-
ment.

The block provides the following functions:

All the blocks within the PAL conform to the PAL style guide. This block (FC 01001) is a tem-
plate module that holds common arrangements for various aspects of the block notation and docu-

mentation styles.

It sets out the basic approach to documenting a block and includes:

- Generates global logic signals (TRUE and FALSE)
- Generates the following scan synchronised timing pulses:
50ms, 100ms, 200ms, 500ms, Is and 25
- Generates the following (1:1 mark/space) square wave signals:
100ms, 200ms, 500ms, 1s and 2s
= Generates odd and even (alternating) cycle tick-tock signals
. Generates a first-gyele signal indicating the controller has just started
L Records the cycle time of the last, maximum and minimum controller cycles
L Reads the controller internal real time clock and converts the values to discrete

integer values containing: year, month, day, day of week, hour, minute, second
and millisecond

The block requires that the controller clock memory function is enabled.

The block must be the first block call within the main organisation block (OB 1).

Figure 13.1 PAL Typical PAL user documentation web page

262-268 Doc: PS2001-5-2101-001 Rev: R02.00



@

®

®)

M

@

The PAL user documentation website will support the following functions in addition
to the standard displaying of text:

. Utilise embedded fonts

° Be responsive to screen resolution (support for phone and tablet
devices)

o Utilise JavaScript and jQuery

. Utilise persistent “sticky” navigation to ensure ease of use
° Provide facilities for:
. Allowing images to be overlayed on the screen

“lightbox” imaging
o Display code fragments
o Display mathematical formulae

The PAL user documentation website will be distributed within the library software
(distributed as part of the software project itself).

The PAL user documentation website will be available in its own right from with the
PSP internal intranet.

13.1 Training

The User Guide [Ref. 009/ forms the principle training document for the PAL software,
formal training based around the User Guide will be provided for all PSP personnel
involved with the deployment and use of the software.

The PAL software requires the implementation of software within the Simatic S7-
1500 and S7-1200 ranges of Controller; as such, it should only be used by those whom
have a detailed knowledge of Simatic Controller and the TIA Portal programming en-
vironment.

263-268



BLANK PAGE

264-268 Doc:  PS2001-5-2101-001 Rev: R02.00



14.1

REF
001

002
003
004
005
006
007
008
009
010
01l

012
013
014
015

016

017
018
019

Table 14.1

References and glossary

Document references

DOCUMENT NO.
PS2001-5-0101-001

PS2001-5-0121-002
PS2001-5-1101-001
PS2001-5-1111-001
PS2001-5-2101-001
PS2001-5-2211-001
PS2001-5-2311-001
PS2001-5-2312-fcNo
PS2001-5-7111-001
PS2001-5-2313-011
GAMP 5

IEC6113-3

CFR 21, Part 11

EudralLex Vol 4
Annex ||

EEMUA 191

EEMUA 201

ISO 8601
PS2001-5-2301-001
PS2001-5-2302-011

Table of references

AUTHOR
PSP

PSP
PSP
PSP
PSP
PSP
PSP
PSP
PSP
PSP
ISPE

IEC

US CFR

EU
Regulations

EEMUA

EEMUA

ISO
PSP
PSP

TITLE/DESCRIPTION
Quality Plan (QP)
Validation Plan (VP)
User Requirements Specification (URS)
Requirement Traceability Matrix (RTM)
Functional Specification (FS) (THIS DOCUMENT)
Hardware Design Specification (HDS)
Software Design Specification (SDS)
Software Module Design Specifications (SMDSs)
User Guide (UG)
Style Guide (SG)
Good Automated Manufacturing Practice

Programmable controllers - Part 3:
Programming languages

US Code of Federal Regulations, Title 21, Food and Drugs,
Part | | — Electronic Records, Electronic Signatures

Vol 4: Pharmaceutical legislation — Medicinal Products for
Human and Veterinary use — Good Manufacturing

Alarm systems - a guide to design, management and
procurement

Control rooms: a guide to their specification, design,
commissioning and operation

Date and time format
Register of software modules and revisions

Software Control Mechanism (SCM)

265-268



14.2  Glossary of terms

ABBREVIATION DESCRIPTIONS

AC Alternating Current

Al Analogue Input

AQ Analogue Output

ASCII American Standard Code for Information Interchange
BS British Standard

BS EN British standards (BS) adoption of a European Standard (EN)
CFR Code of Federal Regulations

CPU Central Processing Unit

CSS Cascading Style Sheet

DC Direct Current

DB Data Block

DI Digital Input

DOL Direct Online

DQ Digital Output

EEMUA Engineering Equipment and Materials Users' Association
EoC End of Cycle

EN European Standards

Eudral ex European Union Drug Regulation Authority Legislation
EU European Union

FAT Factory Acceptance Test

FB Function Block

FC Function

FMS Fieldbus Message Specification

FS Functional Specification

GAMP Good Automated Manufacturing Practice

GMP Good Manufacturing Practice

GRAFCET GRAPHe de Commande Etape-Transition (sequence documentation)
GxP Collective abbreviation for GMP and GXP

HDS Hardware Design Specification

HMI Human Machine Interface

HTML Hypertext Mark-up Language

iDB Instance Data Block

266-268



ABBREVIATION
IEC

IEC61131-3
IET

ISPE
ISO
JavaScript
iQuery
Ladder
MDF
MIT
NC

NO

OB

0Q
OsL
PAL
P&ID
PDF
PDT

PI

PID

Pl

PIP

PIPI
PIPQ
PIQ
PLC
ProfiBus
Profinet
PSP

QP

DESCRIPTIONS
International Electro-technical Commission
|IEC standard for the syntax and semantics for PLC programming
Institution of Engineering and Technology
Interface Module
Input/Output
Internet Protocol
Installation Qualification
International Society for Pharmaceutical Engineering
International Standards Organisation
A web-based scripting language
A library of JavaScript objects, commonly used in web development
Ladder Logic (PLC programming language)
Medium-density Fibreboard
Massachusetts Institute of Technology (Licence)
Normally Closed (type of valve)
Normally Open (type of valve)
Organisation Block
Operational qualification
Operating State Logic
Practical Series Automation Library
Piping and Instrumentation Diagram
Portable Document Format
PLC Data Type
Process Image
Proportional, Integral, Derivative — a common type of control loop
Process Image of Inputs
Process Image Partition
Process Image Partition of Inputs
Process Image Partition of Outputs
Process Image of Outputs
Programmable Logic Controller (another name for a Siemens
Process Field Buss
Process Field Net
Practical Series of Publications

Quality Plan

267-268



ABBREVIATION

TCP/IP
ubT
UG

Ul or U/I
URS

us

uT

VAC
VDC

VP

VSD
Table 14.2

268-268

Glossary

DESCRIPTIONS
Colour standards (Reichs-AusschuB fiir Lieferbedingungen und Giitesicherung)
Random Access Memory
Rate of Change
Resistance Temperature Device
Requirements Traceability Matrix
Supervisory Control and Data Acquisition
Software Control Mechanism
Software Design Specification
Style Guide
Software Module Design Specification
Start of Cycle
Statement List (PLC programming language)
Totally Integrated Solutions (TIA Portal, a Siemens programming tool)
Thermocouple (when referring to 10 cards)
Transmission Control Protocol/Internet Protocol
User Data Type
User Guide
Voltage and current (when referring to 10 cards)
User Requirements Specification
United States of America
User Data Type (alternative abbreviation)
Voltage (alternating current)
Voltage (direct current)
Validation Plan

Variable Speed Drive



	Title page
	Licence
	Authorisations
	Revision history
	Contents
	1. Introduction
	1.1 Scope and purpose of this document
	1.2 Ownership, status & relationship to other documents
	1.2.1 Ownership of the document
	1.2.2 The status of this document
	1.2.3 Relationship to other documents


	2. Overview
	2.1 A description of the Project
	2.2 The approach
	2.2.1 The structure of the software
	2.2.2 The standard modules
	2.2.3 User interface
	2.2.4 Templates and documentation
	Documentation modules

	2.2.5 Hardware test environment

	2.3 Background to the Project
	2.4 Regulations and standards
	2.4.1 Regulations, legislation and standards

	2.5 Assumptions and limitations
	2.6 Nonconformity
	2.7 Addressing the URS requirements

	3. Hardware
	3.1 Hardware functions
	3.1.1 General arrangements
	3.1.2 The test bed
	3.1.3 The electrical panel
	General arrangements
	Power supply and safety systems
	Panel equipment

	3.1.4 IO signals and access
	3.1.5 Network arrangements
	3.1.6 The HMI
	3.1.7 The Controller hardware


	4. The controller software and structure
	4.1 Internal structure of the Controllers
	4.1.1 Programmable blocks
	Organisation Blocks (OBs)
	Functions (FCs)
	Function Blocks (FBs)

	4.1.2 Data storage blocks
	Data blocks (DBs)
	Instance data blocks (iDBs)
	User Data Types (UDTs)

	4.1.3 Built in system blocks
	4.1.4 Block numbering, quantities and number ranges

	4.2 Execution of Controller software
	4.2.1 Cyclic programme execution
	4.2.2 The process image
	4.2.3 Process images partitions
	4.2.4 Common CPU properties

	4.3 The passing of data between modules
	4.3.1 Block parameters
	4.3.2 Data storage and passing of data to blocks
	4.3.3 Instance data blocks

	4.4 Identification of modules and their type
	4.5 Software Control Mechanism
	4.5.1 Module revision numbering mechanism
	4.5.2 A version control system


	5. The PAL software structure
	5.1 Functional group module numbering
	5.1.1 Functional group summary

	5.2 Module naming conventions
	5.2.1 Block class
	5.2.2 Block function
	5.2.3 Block description
	5.2.4 Block naming restrictions

	5.3 Module symbolic names
	5.4 The PAL structure within a Controller
	5.4.1 Application modules
	5.4.2 Standard modules within the PAL structure
	5.4.3 Interrupt modules within the PAL structure
	5.4.4 Third-party modules

	5.5 Common signals within the PAL
	5.5.1 System signals: parametric access and direct access
	5.5.2 UDT system signals for parametric access
	5.5.3 Bit memory direct access and the PAL system tag table
	5.5.4 System signal naming conventions
	5.5.5 Global logic signals
	5.5.6 Global timing signals
	Isochronous timing pulses
	Isochronous timing square waves

	5.5.7 Cyclically dependent signals


	6. Data handling within the PAL
	6.1 Data in the form of memory bits
	6.2 IO Data
	6.2.1 IO Tag naming conventions
	A note on monostable and bistable output signals


	6.3 Data block data storage
	6.3.1 Data block and UDT naming conventions
	6.3.2 DBs holding recipe data


	7. Application modules
	7.1 Coordinating application modules
	7.2 Marshalling application modules
	7.3 Programmed application modules
	7.4 A summary of application module types

	8. Standard module library
	8.1 System function modules
	8.2 Instrument read modules
	8.3 Interlock and protection modules
	8.4 Safety and safety system modules
	8.5 Calculations and mathematics modules
	8.6 Sequential control
	8.7 Device drivers — control loops
	8.8 Device drivers — Valves
	8.9 Device drivers — Drives
	8.10 Message handling
	8.11 Communication handling
	8.12 Subroutines
	8.13 Debug subroutines

	9. Standard sequence operation
	9.1 Operating states and commands
	9.1.1 Normal sequential operation
	9.1.2 Hold and error hold operation
	9.1.3 Stop and abort operation
	9.1.4 The reset operation
	9.1.5 The pause operation

	9.2 Steps and transitions within a sequence
	9.2.1 Simple steps and transitions
	9.2.2 Alternative branching
	9.2.3 Simultaneous branches
	9.2.4 Jumps and loops

	9.3 Phases within a step
	9.3.1 Phase timings for IEC compliant sequence steps
	9.3.2 Phase timings for non-IEC compliant sequence steps

	9.4 Automatic step timing functions
	9.5 Manual modes of operation
	9.5.1 Semi-manual mode
	9.5.2 Full manual mode


	10. Supervisory system user interface
	10.1 Scope restrictions with the PAL
	10.2 Symbols block icons and faceplates
	10.2.1 Symbols
	Analogue instruments
	Digital instruments
	Isolating valves
	3-way isolating valves
	Bistable valves
	Modulating valve
	Direct online drive
	Reversing direct online drive
	Bistable drive
	Bistable reversing drive
	Variable speed drive
	Reversing variable speed drive
	Multiple speed drive

	10.2.2 Block icons
	Analogue instruments
	Digital instruments
	Control loops
	Isolating valves
	3-way isolating valves
	Bistable valves
	Modulating valve
	Direct online drive
	Reversing direct online drive
	Bistable drive
	Bistable reversing drive
	Variable speed drive
	Reversing variable speed drive
	Multiple speed drive

	10.2.3 Faceplates
	Analogue instruments
	Digital instruments
	Control loops
	Isolating valves
	3-way isolating valves
	Bistable valves
	Modulating valve
	Direct online drive
	Reversing direct online drive
	Bistable drive
	Variable speed drive
	Reversing variable speed drive
	Multiple speed drive


	10.3 Graphical styles
	10.4 PAL Graphical arrangements
	10.4.1 Screen sizes and resolutions
	HMI systems
	PC based supervisory systems


	10.5 Alarm handling
	10.6 User management

	11. Template and documentation modules
	11.1 Template modules
	11.1.1 Template modules for application and standard modules
	11.1.2 Template modules for organisation blocks

	11.2 Document modules

	12. Regulatory requirements
	12.1 Hardware regulatory requirements
	12.1.1 GxP requirements
	12.1.2 Regulatory requirements

	12.2 Software regulatory requirements
	12.2.1 Regulation and legislative requirements
	12.2.2 Software standards
	12.2.3 Maintenance and publication of verification certification

	12.3 Software restrictions

	13. PAL user documentation
	13.1 Training

	14. References and glossary
	14.1 Document references
	14.2 Glossary of terms


