
Doc: PS2001-5-2302-011 Rev: R02.00 1-129

Title page

Practical Series

PRACTICAL SERIES AUTOMATION LIBRARY
SOFTWARE CONTROL MECHANISM

AUTHOR: MICHAEL GLEDHILL

2-129 Doc: PS2001-5-2302-011 Rev: R02.00

Published By:

Practical Series of Publications

Published in the United Kingdom

mg@practicalseries.com

Copyright 2021 Michael Gledhill

Document No.: PS2001-5-2302-011

Document Template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto)

Licence

LICENCE This document and associated software are made available under the MIT License:

The MIT License (MIT)

Copyright © 2021 Michael Gledhill

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the “Software”), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-

LAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

Based on template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto) — Indexable PDF format WebIndex:ber

Doc: PS2001-5-2302-011 Rev: R02.00 3-129

Authorisations

DOCUMENT AUTHORISATION
 NAME POSITION SIGNATURE DATE

Author
Michael

Gledhill
Lead Engineer

24 May 2022

 The signature of the author confirms that the document has been prepared in accordance with an

approved document management process, that all content is technically complete and that all relevant

material has been included.

Reviewed by
Frank

Greenwood

Project

Manager
 24 May 2022

The signature of the reviewer indicates that the document has been checked for technical content and

that it complies with the technical standards, specifications and conventions.

Approved by
Christopher

Wish

Quality

Manager
 24 May 2022

The signature of the Approver indicates that the document has been checked for compliance with the

quality management Procedures.

4-129 Doc: PS2001-5-2302-011 Rev: R02.00

Revision history

REVISION
 REVISION DATE REVISED BY DESCRIPTION

R02.00 24 May 2022 Michael Gledhill
Properties standardised across all documents

Changes to interrupt and functional group names

R01.00 21 Mar 2021 Michael Gledhill First release for use

Doc: PS2001-5-2302-011 Rev: R02.00 5-129

Contents

CONTENTS

1. Introduction .. 9

1.1 Software Control Mechanism requirements 10
1.1.1 Module revision numbering mechanism ... 10
1.1.2 A version control system ... 11

1.2 Scope and purpose of this document 13

1.3 Ownership, status & relationship to other documents 14
1.3.1 Ownership of the document ... 14
1.3.2 The status of this document .. 14
1.3.3 Relationship to other documents .. 14
1.3.4 Users of this document .. 14

2. Approach to version control ... 17

2.1 Version control requirements of the SCM 19

3. The software revision numbering mechanism... 21

3.1 Workflow arrangements ... 22

3.2 Master branch revision states ... 23

3.3 Development branch names ... 24

3.4 Development branch commit tags... 26

3.5 Merging a development branch .. 27

3.6 Individual module revision numbers 29
3.6.1 Recording revision numbers within a programmable block 30
3.6.2 Recording revision numbers within a data block 34
3.6.3 Recording revision numbers within a User Data Type (UDT) 37
3.6.4 Software Module Register (SMR) ... 38

3.7 OB1 module revision numbers ... 38

3.8 Commit points and filenames ... 41
3.8.1 OB 1 and filenames .. 42

6-129 Doc: PS2001-5-2302-011 Rev: R02.00

3.9 Parallel development branches ... 43

3.10 OB 1 and the Merging of branches ... 45
3.10.1 Merging a single branch or the first branch to merge 46
3.10.2 Merging additional parallel branches .. 50

3.11 Nested branches ... 56

3.12 A note on commit messages ... 57

4. The website revision numbering mechanism ... 63

4.1 Workflow arrangements ... 63

4.2 Master branch revision states ... 64

4.3 Development branch names ... 65

4.4 Development branch commit tags ... 67

4.5 Merging of development branches ... 67

4.6 Individual page and file revision numbers 68
4.6.1 Recording revision numbers within web page files 71

5. Software storage and folder structures .. 75

5.1 An overview of the Project structure 76

5.2 Engineering stations ... 78
5.2.1 ES software folders .. 80
5.2.2 Software development area (1000 Software Projects) 82
5.2.3 The Workspace and local repository (2500 Git Projects) 85
5.2.4 Understanding the Simatic Workspace ... 87
5.2.5 Understanding the Workspace as a local repository 95
5.2.6 Commit point archives .. 96
5.2.7 Maser ES — local repository backup to NAS ... 96
5.2.8 Remote repository .. 100

5.3 Web development platforms .. 102
5.3.1 WDP software folders ... 104
5.3.2 Understanding the website structure ... 105
5.3.3 Local repository ... 112
5.3.4 Master WDP — local repository backup to NAS 112
5.3.5 Remote repository .. 114
5.3.6 The live website ... 115

Doc: PS2001-5-2302-011 Rev: R02.00 7-129

5.4 NAS based Project documentation 117
5.4.1 Understanding the Project folder structure .. 119
5.4.2 Project registry ... 123
5.4.3 Document versions ... 124

6. References and glossary ... 127

6.1 Document references .. 127

6.2 Glossary of terms ... 128

8-129 Doc: PS2001-5-2302-011 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2302-011 Rev: R02.00 9-129

1. Introduction

1 Introduction

This document is the Software Control Mechanism (SCM) and is applicable to all Si-

matic Controller software developed for the Practical Series Automation Library of soft-

ware modules (the PAL).

The Practical Series Automation Library (PAL) is a library of software modules and

templates that have been made available for the Siemens Simatic S7-1500 range of

controllers (and to a lesser extent the S7-1200 range).

The PAL software is configured and deployed using the Siemens Simatic TIA Portal

programming environment.

The library is freely available under the MIT Open-source licence (see page 2 of this

document).

This document, the Software Control Mechanism, has been produced by Michael

Gledhill, under his authority as the lead engineer of the Practical Series Automation

Library of software modules project.

10-129 Doc: PS2001-5-2302-011 Rev: R02.00

1.1 Software Control Mechanism

requirements

There are two principal requirements for the PAL Software Control Mechanism:

1 Establish a mechanism for numbering and storing the various

software module versions throughout the development, test and

qualification phases of the Project

2 Establish a mechanism for the storage and tracking of software

module revisions within a formal Version Control System (VCS)

Expanding on these subjects:

1.1.1 Module revision numbering mechanism

The Validation Plan (VP) [Ref. 001], established that software version control was a

necessary requirement for the project and that all software modules within the Project

must have individual revision and status information that covers all phases of the soft-

ware development:

• Software development (system build)

• Testing (at both a modular and integrated level)

• Qualification

• Release for use

The revision system must also be applicable to the TIA Projects as a whole (rather than

just the individual modules within the projects); to clarify, the software modules do

not exist within their own right, each software module is stored in TIA Portal project

that expands as each new software module is developed.

These TIA Portal projects are backed up and multiple revisions may be in used at the

same time, all of these TIA Projects must also be part of the Software Control Mecha-

nism).

Doc: PS2001-5-2302-011 Rev: R02.00 11-129

1.1.2 A version control system

A version control system (VCS) is a mechanism for recording changes made to any

files within a software project. It records all the changes, what files were affected by

each change and a reason explaining why those changes were made. It also records

who made the change and the time and date of the change.

The VCS keeps a record of every change made within the project and allows any file

that has been modified to be reverted back to a previous state. It means that if a soft-

ware module is changed, the original module can always be recovered by the VCS.

Version control systems generally have other facilities too, they are able to show the

differences between two different versions of the software (even down to lines within

a file), they allow multiple people to work on the project at the same time—even to

work on the same file at the same time, and they provide mechanisms for resolving

conflicts (where two different people have modified the same section of a file).

Version control systems can be applied to any kind of project; it can be a website, a

documentation project, a software application, engineering control system—anything

at all, as long as it’s a collection of files that can be stored on computer.

The version control system does not itself edit or modify any of the files within the

project; it simply records the changes and, where it recognises a file type, is able to

display those changes that have occurred to it.

The version control system does not care what software application is used to modify

files within the project, it can be anything: text editor, word processor, file manager,

graphics editor, specialist programming application &c. It cares only, that a file under

its control has been modified and why the modification was made.

Version control systems simply record any change made within a collection of files

(the project), who made it, when it was made and the reason why. That is all.

A VCS could be applied to TIA Portal projects, these are stored as archived files (es-

sentially zip files); however, these types of files are proprietary and are not directly

accessible to the VCS. The VCS could, under these conditions, store each archived file,

it would not, however, be able to access the internal components of the file to deter-

mine what changes have been made to any particular part of it (i.e. it could not identify

a particular change to a particular module).

12-129 Doc: PS2001-5-2302-011 Rev: R02.00

With the advent of TIA Portal V16, Siemens introduced the concept of Workspaces,

these are environments (essentially, just Windows folders) into which the programma-

ble aspects of a TIA Project (blocks, data types and tags) can be exported (or imported)

as XML1files.

This is a new concept, previous versions of TIA Portal did not offer the facility of ex-

porting software modules in a widely accessible (text based) format, the software could

only be read by the proprietary TIA Portal package itself.

The benefit of this new Workspace facility is that the exported files are stored as XML

files, and XML files are an ideal format for version control systems (VCSs), version

control systems can read every aspect of an XML file and identify any changes that

have been made, and, just as importantly, keep track of all these changes. Additionally,

each block, data type and tag table is exported as its own XML file and as such allows

the tracking of each individual element within the software library. It would for exam-

ple, be possible to identify all the changes made to a particular Function (e.g. FC01001)

and determine at which point in the revision history each change was made.

This was the purpose of Siemens adding this Workspace facility to TIA Portal, it al-

lows proper version control of the software being developed in a TIA Portal project. It

also does not require a proprietary Siemens VCS, any and all VCS systems can track

text-based files (it is fundamentally, what they were designed to do).

To make things easier, Siemens also allow third-party “add-ins” to be created that can

interface with these new Workspaces. One such add-in (created by Siemens) provides

an interface to the version control system Git and its online partner GitHub.

The Git add-in allows TIA Portal to interface with a Git controlled Workspace, Git

also supports various graphical user interfaces, in particular, Git can be controlled and

managed from within the Visual Studio Code (VSC) text editor, VSC is widely used

within the PSP and will be the preferred solution for providing a VCS interface for the

PAL software.

1 XML or eXtensible Mark-up Language files are text files that are both machine and human

readable; very similar to HTML (HyperText mark-up Language) and widely used to store

documents in a manageable and readable format; it contains both content and structure.

https://git-scm.com/
https://github.com/

Doc: PS2001-5-2302-011 Rev: R02.00 13-129

1.2 Scope and purpose of this document

This document is applicable to all software modules developed as part of the PAL, it

explains the mechanisms used to document and control the different versions of each

software module as it progresses through the various project phases. It also details the

Git version control system and its application within the Project to track all software

changes and provide regression mechanisms to access earlier software versions.

Broadly, this document covers the following:

1 Software revision numbering system

 • Software development (system build)

• Testing

• Deployment (commissioning) & Qualification

• Release

2 Git Version Control System

 • Purpose of

• A tracking and development philosophy

3 GitHub Online repository

 • Purpose

• Accessing and control

14-129 Doc: PS2001-5-2302-011 Rev: R02.00

1.3 Ownership, status & relationship to other

documents

This document is an ancillary document for the Project, the ownership of the docu-

ment (those whom control it and are able to modify it), its status within the Project

and its relationship to all other primary documents are important factors and are ex-

plained below:

1.3.1 Ownership of the document

This document has been produced, and is controlled and maintained by the Practical

Series of Publications (PSP).

This document and all the documents that it references are subject to the change con-

trol management procedures for this project.

1.3.2 The status of this document

This document is an internal PSP document and is not a deliverable item under the

terms of the project.

1.3.3 Relationship to other documents

This document expands on the software revision tracking and control and revision

numbering mechanisms discussed in the Functional Specification (FS) [Ref. 002, § 4.5]

and the Software Design Specification (SDS) [Ref. 003, § 5.2.4].

Its place in the document structure for the Project is shown in Figure 1.1.

1.3.4 Users of this document

This document is technical in nature and users of it should be familiar with the TIA

Portal, Git and GitHub version control systems and the terminology common to those

applications.

Doc: PS2001-5-2302-011 Rev: R02.00 15-129

Figure 1.1 Project Documentation

16-129 Doc: PS2001-5-2302-011 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2302-011 Rev: R02.00 17-129

2. Approach t o versi on control

2 Approach to version control

The SCM detailed here must primarily work within the confines of the Git (and

GitHub) version control systems. It must, in addition, provide a navigable set of revi-

sion numbers, both for each module within the PAL and for each revision of the TIA

Portal project that contains those modules.

The revision numbering mechanism must be clear, readable (by humans) and explain

the current status of the software (i.e. under development, under test, in qualification

or released for use).

Git and GitHub use commit numbers derived from the checksum of files being added

to the repository. These appear at best to be seemingly random seven-digit1 hexadeci-

mal numbers. They do not represent a meaningful number that is useful for team mem-

bers trying to identify a revision path.

1 These commit numbers are of course not random numbers. They are a checksum carried

out of all the files in a commit, plus a header that contains other information (the commit

numbers that immediately preceded this commit, plus some information about directory

structures &c.).

A checksum is basically a function applied to the binary value of every byte in a file that gives

a reproducible figure that can be used to check to see if two files are the same or to identify

data corruption within a file.

The commit number used by Git is a checksum encoded by using the SHA-1 algorithm

(Secure Hash Algorithm 1). This produces a 20-byte (40 digit) hexadecimal number that

uniquely identifies a commit. The commit number shown is just the first seven digits of the

full commit number. This is usually enough to uniquely identify a commit (even on very large

projects).

The first seven digits of a commit number gives 268 million unique values, the full 20-byte

number has 1.5×1048 unique values (a similar number to the quantity of atoms that make up

the Earth); these values also only apply within a repository (two different repositories can

have the same commit number, they don’t interact with each other).

The chance of a duplicate 20 byte commit number is vanishingly small, and is generally not

a consideration, even on every large projects.

18-129 Doc: PS2001-5-2302-011 Rev: R02.00

Git and GitHub do however, allow any commit point to have an associated tag, this is

entirely at the discretion of the user and (other than the requirement of being unique) can

be anything at all.

This allows each commit point to be tagged with a more meaningful (semantic) version

number. Something that makes sense to humans.

This sematic version numbering scheme (used to tag each commit point) will provide

a unique number that identifies the current revision of the software module and also

provide status information about which of the phases of software development the soft-

ware is currently in:

• Software development (system build)

• Under test

• Commissioning and qualification

• Released for use

The software version numbering scheme will be incremental in nature (the revision

numbers will only go up), this provides a traceable approach to the software, it will

always be possible to distinguish between earlier and later versions of the software,

simply by examining the version numbers.

To complicate matters, the individual software modules do not exist within their own

right, each software module is stored in TIA Portal project that expands as each new

software module is developed. These TIA Portal projects exist on multiple develop-

ment branches (see section 3) within the VCS (Git and GitHub) repositories, these TIA

Projects must also form part of the Software Control Mechanism(SCM).

The testing of individual software modules (software module testing) and the testing

of multiple modules (software integration testing) is carried out at specific intervals

throughout the course of the Project, each such test must have its own TIA Portal

“test” project as a record of the test (allowing the test to be repeated if required). Again,

the SCM must provide a mechanism for recording and storing each test revision of the

software.

Doc: PS2001-5-2302-011 Rev: R02.00 19-129

2.1 Version control requirements of the SCM

There are seven components that are necessary and required by the SCM in terms of

version control and management:

1 Version tracking of individual modules within a TIA Project or

files within a website

2 Version tracking of the TIA Projects containing the individual

modules

3 Filename allocation to the various TIA Projects

4 Workflow arrangements for the VCS, including branching and

merging procedures

5 Local storage locations of TIA Projects and VCS repositories

6 Remote storage of the VCS repositories (GitHub)

7 Internal (PSP) backup mechanism for TIA Projects

Each of these components is addressed in the remainder of this document.

20-129 Doc: PS2001-5-2302-011 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2302-011 Rev: R02.00 21-129

3. The softw are revision numbering mechanism

3 The software revision

numbering mechanism

This section describes a revision numbering strategy for the PAL software under the

control of the Git and GitHub version control systems.

As stated previously, Git and GitHub use commit numbers to identify individual sub-

missions to the repository, these are commonly referred to as hash or sha (pronounced

shar to rhyme with bar) numbers. These are unique seven-digit hexadecimal numbers,

and while they identify exactly, a particular revision within the repository, they do not

do so in a way that can be easily interpreted by humans trying to understand the work-

flow of the project (given two commit numbers: [af25d47] and [9cf63b1], it would

not be possible to say, just by looking at them, which came first), commit numbers can

be considered completely random, but non-repeating numbers.

Git and GitHub both have the facility to tag any commit point, this tag must be unique,

but it is entirely at the discretion of the user and can contain up to 25 characters.

The SCM numbering mechanism will use these commit tags to identify the particular

revision of both a software module and a TIA Project.

The tags will also from the basis for naming the TIA Portal project at each commit

point.

22-129 Doc: PS2001-5-2302-011 Rev: R02.00

3.1 Workflow arrangements

The workflow within the Git repository consists of a single main branch, the master

branch.

The master branch (after some initial development work to establish it) will, gener-

ally, only contain either finished (released) modules, software that has passed some

level of testing or qualification or software that has been released for use.

Released modules are modules that have undergone a software module test (SMT) and

have passed that test (i.e. a module that is deployable) —it does not indicate that all

software modules are finished, just that the module in question is complete, tested and

deployable.

When the software as a whole (all modules), has completed module testing, integration

testing, has been commissioned and qualified, then the software as a whole will be

released for use.

Development work can take place at any time and will always take place on a separate

branch. Development branches always spur from some definite commit point on the

master branch.

A development branch must have a very restricted scope. I.e. a single module or group

of related modules.

Generally, a development branch will contain all the things associated with that mod-

ule (i.e. the function, any data types, data blocks &c.).

When the module development is complete and tested, it will be merged back to the

master branch, the merge point will be given a five-character tag (Figure 3.1):

Figure 3.1 master branch workflow (typical)

Doc: PS2001-5-2302-011 Rev: R02.00 23-129

3.2 Master branch revision states

The project progresses through various different states along the master branch. Each

state is a commit point and this in turn has a tag with five characters. Each such com-

mit point is referred to as a primary commit.

Each primary commit tag is given a letter that represents the condition of a particular

commit point.

 STATE EXAMPLE MEANING DESCRIPTION

D D0126 Development

The software as a whole is in the build phase and has

not been fully tested.

Certain modules may have undergone module testing

and are released for use. This is on a module-by-module

basis.

P P0001 Proving (test)

The software is released for integration testing. All

modules within the software have undergone module

testing and have been released for use.

Q Q0001 Qualification
The software is deployed for commissioning, installation

qualification (IQ) and operational qualification (OQ).

R R0001 Released The software is released for use.

 Table 3.1 master branch commit point tags

The master branch commit tags have the following format:

 SNNNN

Where S is the state letter (Table 3.1):

• D —Development

• P —Proving (testing)

• Q —Qualification

• R —Released

24-129 Doc: PS2001-5-2302-011 Rev: R02.00

NNNN is a number; this starts at 0001 (there is a special case for the first commit to the

repository, this has value 0000) for each particular state and is incremented by one for

each subsequent issue.

E.g. D0001 → D0002 → D0003 → P0001 → P0002 → R0001 → R0002 &c.

3.3 Development branch names

Generally, development never takes place along the master branch. The only excep-

tion to this is at the start of the project when the repository is created. The initial com-

mit typically takes place on the master branch (this is always tagged D0000), and

there may be subsequent commits on the master branch to establish the repository

structure: folders, configuration files (e.g. .gitignore and .gitkeep files &c.) and

other common repository files (README.md, LICENCE.md &c.).

Such development can take place along the master branch until some suitable point

is reached; this point is usually where module development begins; after this, only mi-

nor changes will take place on the master branch, such changes will be to address any

conflicts that occur when merging multiple development branches back to the master

branch (see § 3.9), or to update some ancillary file information (e.g.README.md).

At this point, no significant development work can take place on the master branch.

Development work always takes place on a separate development branch.

A development branch must have a very restricted scope. I.e. a single module or group

of related modules.

Each development branch is taken from the latest primary commit point on the

master branch (generally referred to as the HEAD). The name given to a develop-

ment branch is always in the format:

 SNNNNb-MMYYYYY

Where SNNNN is the commit point tag on the master branch from which the develop-

ment branch diverges.

Doc: PS2001-5-2302-011 Rev: R02.00 25-129

The b character is an ordinal character identifying multiple branches that start from

the same master branch commit point, the first branch receives character A, the sec-

ond B, the third C &c.

The remainder of the branch name refers to the object being developed; these are gen-

erally software modules. MMYYYYY specifies the object under development, for ex-

ample FC01001. It could equally apply to just a data type e.g. UT01000.

Here, MM refers to the type of module (OB, FB, FC, DB, UT &c.) and YYYYY to the

module number (these are always numerical, five-digit numbers with leading zeros

where necessary)2.

This arrangement can be seen below:

Figure 3.2 Multiple development branches from a master branch primary commit point

Here, two development branches diverge from the latest commit point on the master

branch, point 1. The first branch is used to develop module FC01001, the second to

develop module FC02001.

The first branch name takes the master branch commit point (D0002), followed by

the ordinal character, since this is the first branch the ordinal character is A. Giving

D0002A. This is followed by a dash (-) and the module number, in this case

FC01001.

2 Where some other type of change is being made, for example, standardising an arrangement

of comment information across multiple blocks, the MMYYYYY format can be replaced with

some more meaningful name e.g. UNIFICATION &c.

26-129 Doc: PS2001-5-2302-011 Rev: R02.00

The final branch name is thus D0002A-FC01001. Point 2 in Figure 3.2.

The second branch is also attached to the master branch commit point D0002, but

in this case it is the second branch, giving an ordinal character of B. In this case the

module being developed is FC02001.

This gives a final branch name for the second branch of: D0002B-FC02001. Point

3 in Figure 3.2.

3.4 Development branch commit tags

All development work takes place on the development branch. There will be many

such branches through the course of the Project.

Each development branch will consist of multiple commits, these commits are referred

to as secondary commits (c.f. primary commits made on the master branch). These sec-

ondary commits will mostly be incremental builds (an incremental build is just a point

at which the work was committed to preserve the software at a particular point, these

incremental builds occur often, allowing the software to be recovered if necessary. The

reasons behind an incremental build are at the discretion of the developer, it may be a

significant point in the development of the software, alternatively, it may be just a

commit because it was the end of the day).

Each secondary commit on a development branch is tagged, in the form:

 SNNNNb-nnn.amm

Where SNNNNb is the first part of the branch name (before the dash), see § 3.3. This is

the originating master branch commit point and the branch ordinal character.

The remaining characters (nnn.amm) are all numerical and reflect the current revision

of the module under development, the details of this format are explained in § 3.6.

The development branch will be complete when the module being developed on that

branch has successfully undergone its software module test and the module is at a re-

lease revision, at this point the development branch can be merged back onto the

master branch.

Doc: PS2001-5-2302-011 Rev: R02.00 27-129

3.5 Merging a development branch

When all the work on a development branch is complete, that branch can be merged

back onto the master branch.

Consider the following example:

Figure 3.3 Example development branch

Here a development branch (D0002A-FC01001) was initiated from master branch

commit point D0002.

There have been three commits on the development branch: D0002A-000.101,

D0002A-000.102 and D0002A-000.801; the first two were incremental builds and

the last was a software module test. Let us assume that the module passed its module

test and is now finished (released for use).

There will now be an additional (and final) commit on the development branch to

reflect the released revision of the module:

Figure 3.4 Example development branch, final commit

The development branch can now be merged back to the master branch, following

the merge, a new primary commit point must be created on the master branch. This

will have a revised revision data for OB1 (see § 3.7) and will have the format SNNNN.

28-129 Doc: PS2001-5-2302-011 Rev: R02.00

This new commit point must be given the next, logical tag for the master branch. In

this case, the last primary commit tag on the master branch was D0002, the next,

logical primary tag is thus D0003 (an increment of one on the last master branch tag).

Note: Here, there is a transition from one development tag to the next (D0002 to

D0003). It would be perfectly possible for this to be a transition to a different

state, i.e. it could be going from development (D) to proving (P), in which case

the numbering restarts at 0001.

Diagrammatically, this is:

Figure 3.5 Example development branch, merge to master

Once the merge has taken place, all the secondary commits made on the development

branch will become part of the master branch, thus:

Figure 3.6 The master branch after the merge

Although the master branch now contains all the secondary commit point made on

the development branch, none of them were made on the master branch itself (all this

work happened on the development branch).

This arrangement is correct; ultimately, when the project is finished, there will only be

the master branch left and this will contain every commit made within the project.

To more clearly understand the master branch, only the primary commit points (with

just five characters) need be considered:

Figure 3.7 The master branch significant commit points

Doc: PS2001-5-2302-011 Rev: R02.00 29-129

3.6 Individual module revision numbers

Every module within the PAL software has its own individual revision number, this

was briefly referred to in § 3.4, when discussing the tags of a secondary commit. Each

secondary commit on a development branch has a tag in the form:

 SNNNNb-nnn.amm

Where SNNNNb is the first part of the branch name (before the dash), see § 3.3. This is

the originating master branch primary commit point (the SNNNN) from which the de-

velopment branch diverges and the branch ordinal character, b, (this will be A for the

first, B for the second &c.).

The remaining characters (nnn.amm) reflect the individual revision number of the mod-

ule being developed. The six digits are all decimal numerals.

The numbering of the revision nnn.amm is an incremental numbering system. In this

system nnn reflects the current version of the software; typically, the first properly re-

leased software will be 001. Previous development versions will be 000.

The numbers after the decimal point (amm) reflect development and test modification

to the current revision (for software modifications), in this system a reflects the current

status of the software as follows:

 FIRST DIGIT (a) MEANING DESCRIPTION

0
Released

mm will be 00
Code is released at version nnn (i.e. nnn.000)

1-7 Development
Code is under development and has not been

tested

8 Proving Proving (test) revisions of the software

9 Qualification
Software is deployed to site and is being

commissioned or qualified

 Table 3.2 Software revision number (first digit)

The remaining numbers (mm), are incremental build numbers for the current revision

(this allows development tracking).

30-129 Doc: PS2001-5-2302-011 Rev: R02.00

Note: A release version of the software will have revision 001.000, 002.000,

003.000 &c. I.e. the numbers after the decimal point are all zero. The first

development of the software at release 003 would have revision 003.101.

3.6.1 Recording revision numbers within a programmable block

All programmable blocks (with the exception of OB1, see § 3.7) have the current revi-

sion number stored in the first non-empty network (usually network 2, sometimes net-

work 3 for blocks with a large, textual block descriptions) of the block.

The revision number is both hardcoded in the block and is stored (with additional in-

formation) within the network comments of that network.

Hardcoded module revision data

The hardcoded information is stored internally within the temporary area of the block

as variable revInfo, this is of the user data type: UT01000_St_SysRevision:

DATA STRUCTURE UT01000_St_SysRevision

S IGNAL TYPE FUNCTION

REV_BLOCK String[7] Block number (of this block)

REV_NUMBER String[20] Revision status and by revision number (for this block)

REV_DATE String[10] Revision date in format YYYY-MM-DD

REV_AUTHOR String[20] Revision author (initial and surname) or username

Table 3.3 Data structure: UT01000_St_SysRevision

The purpose of this is to hardcode in a recoverable format the basic, necessary revision

data of the particular module (hardcoded information will always be present and re-

coverable from the Controller, even if the code comments are lost):

• Block ID (the unique number of the block in question)

• Revision number (incorporating status information)

• Revision date

• Revision author

Doc: PS2001-5-2302-011 Rev: R02.00 31-129

An example of this is shown below:

Figure 3.8 Block hardcoded revision information

The temporary variable revInfo is part of the block interface and is common to all

PAL software modules (it must be defined and be present for all blocks within the

PAL), an example is shown below:

Figure 3.9 Hardcoded module revision storage variable

32-129 Doc: PS2001-5-2302-011 Rev: R02.00

Network comment module revision data

The network comments contain considerably more information about the revision and

its point in the software development workflow, under the control of the VCS.

Figure 3.10 show an example of the network revision comments. These comments

represent the example shown in § 3.5, reproduce in Figure 3.11 below.

Figure 3.10 Network comment revision information

Figure 3.11 Example development branch, merge to master

Doc: PS2001-5-2302-011 Rev: R02.00 33-129

Examining the network comments in more detail:

Figure 3.12 Network comment revision information details

Point 1 is the start of the revision table

The information given in point 2 to 4 is identical to the information hardcoded into

the module:

• Revision number (incorporating status information)

• Revision date

• Revision author

Point 5 is the commit tag given to the commit when the software is added to the

repository.

Point 6 identifies the development branch upon which the changes were made, only

the first six characters are required (everything before the dash) to uniquely identify the

branch.

Point 7, the MASTER BRANCH contains two entries: BASE and MERGE.

The BASE entry records the commit point on the main branch from which the devel-

opment branch spurs away, in this example it is at the commit point with tag

D0002:

Figure 3.13 Base commit point (where a branch diverges)

34-129 Doc: PS2001-5-2302-011 Rev: R02.00

The MERGE entry records the commit point tag at which the branch re-joins (merges)

with the master branch. In this case it is at commit tag D0003:

Figure 3.14 Merge commit point (where a branch merges)

The BASE/MERGE entries are complete in Figure 3.12 for the final entry in the revision

list (entry A), but the MERGE entry reads N/A (not applicable) in the preceding entries

(entry C for example). The reason for this is that while the software is being developed

on the D0002A branch, further developments may be taking placed on other branches

(see § 3.9 for an explanation of this), and these branches may merge back to the mas-

ter branch before this one (effectively occupying the next commit point tag).

It is not until the development branch is complete, and ready to be merged back to

the master branch, that the final MERGE commit point tag will be known.

3.6.2 Recording revision numbers within a data block

Data blocks, both static and dynamic, like programmable blocks, have the revision in-

formation both hardcoded in the block and stored (with additional information) within

the header comment area of the data block.

If the data block is being developed as part of the development of a software module,

the development branch will have a label associated with the programmable block ra-

ther be directly associated with the data block (in the previous example, the branch

was called D0002A-FC0100, labelled for the software module being developed:

FC01001).

Data blocks are to some extent independent of the standard blocks with which they are

associated, a new device may be added to a project and the associated data blocks will

be modified (and their revisions changed) to accommodate it. The standard module

within which the data blocks are used will not change.

If the data block were the sole focus of the development branch it would be permissible

to label the branch for the data block in question (e.g. D0002A-DB21001).

Doc: PS2001-5-2302-011 Rev: R02.00 35-129

Hardcoded data block revision data

The hardcoded information is stored as the first non-header variable of the data block.

As with programmable blocks, the variable is called revInfo, and is again of the user

data type: UT01000_St_SysRevision; this being the same data type used for pro-

grammable modules (see Table 3.3).

An example of this is shown below:

Figure 3.15 Hardcoded data block revision storage variable

Header comment data block revision data

The network comments for a DB contain the same type of information (and in the

same format) as programmable blocks (see § 3.6.1).

Data blocks do not have the facility for network comments that is available to pro-

grammable blocks; however, all PAL data blocks are configured with a header array

with variable name DB_Header, this is an array of 80 Boolean values and is used purely

as a comment area for the data block. The revision information is contained within the

comment area of this DB_Header array.

Figure 3.16 show an example of the data block header revision comments.

36-129 Doc: PS2001-5-2302-011 Rev: R02.00

Figure 3.16 Header comment revision information

The header comments are applied in exactly the same way as the network comments

of a programmable block (see page 33).

The DB_Header array is of a finite size and cannot accommodate unlimited comment

information (unlike a programmable block), where the revision information becomes

longer than the available space, the oldest revisions will be removed from the list (the

revision information will still be recoverable from earlier commit points affecting that

particular block).

Doc: PS2001-5-2302-011 Rev: R02.00 37-129

3.6.3 Recording revision numbers within a User Data Type (UDT)

UDTs, both static and dynamic, have only hardcoded revision information and this

holds only the current revision information, identical to the hardcoded data in a data

block.

The hardcoded information is stored as a variable of the UDT. As with data blocks,

the variable is called revInfo, and is again of the user data type:

UT01000_St_SysRevision; this being the same data type used for data blocks and

programmable modules (see Table 3.3).

An example of this is shown below:

Figure 3.17 Hardcoded UDT revision storage variable

UDTs are closely associated with a standard module, and any change to a UDT will

cause a subsequent revision change within the associated module (after all, only the

module can do something with the variables in the UDT). It is however, possible, and

indeed common, for a change to the software module to have no effect on the UDTs

associated with it.

For consistency, whenever there is a change to a UDT or to the standard module that

uses that UDT, the UDT revision will be changed to match the released version of the

standard module (even if there has been no change to the UDT). For example, if a

standard module is changed in some way and released at revision 002.000, all the

UDTs that are associated with it will also be released at revision 002.000.

38-129 Doc: PS2001-5-2302-011 Rev: R02.00

In short, the released UDT revision should always match the revision of its parent

software module.

3.6.4 Software Module Register (SMR)

A full list of all software modules is maintained in the Software Module Register

(SMR) [Ref. 007].

This register contains the current revision of each module and the current revision of

all its associated data blocks and UDTs.

3.7 OB1 module revision numbers

Each development branch concentrates (typically) on a single software module (usu-

ally a standard module that will form part of the PAL) with its associated data blocks

and UDTs.

For development purposes, all these blocks are modifiable on a single development

branch and are unlikely to be modified by work on other development (or any other)

branch. In essence, the development takes place in isolation on its own branch.

The revision of the software module under development, its data blocks and UDTs are

all recorded individually in each of the various blocks.

In addition to the module being developed, the main programme organisation block.

OB 1 (more formally identified in the PAL as OB00001_IntINrmMainProgram), will

also be modified, specifically to call the module under development.

OB 1 is considered a special block in the Practical Series Automation Library (and in

terms of most Siemens Controller software). It is the block that executes all the rest of

the controller software.

As such it contains information about the whole project rather than just a software

module. The revision data is also project specific (not module specific).

OB 1 Network 2 contains the current revision of the whole software project (rather than

of a particular block). In this regard the revision information contained in OB 1 does

not follow the nnn.amm format specified for other programmable blocks; it simply

Doc: PS2001-5-2302-011 Rev: R02.00 39-129

adopts the commit tag at the time of the commit, consider the previous example. In its

final stage (at the point of merging the development back to the master branch), it

had the following series of commit tags:

Figure 3.18 Example development branch, merge to master

At each commit point on the development branch, the OB 1 network comments would

have recorded each commit, this can be seen below:

Figure 3.19 OB 1 revision history on the development branch

Here, it can be seen that the comments reflect the secondary commit points made on

the development branch.

Each revision should be restricted to just one line in OB1.

Once the development branch has been merged back to the master branch, there will

be an additional primary commit to reflect this; at this point, the secondary commits

will be removed from OB 1.

40-129 Doc: PS2001-5-2302-011 Rev: R02.00

The revision history contained in OB 1 at each primary commit point only shows the

primary commit information. In this case the primary commit is D0003 and the OB1

revision history is as follows:

Figure 3.20 OB 1 revision history at a primary commit point

The OB 1 revision history is hardcoded in network 2, this is similar to the mechanism

used for all other programmable blocks (see § 3.6.1), the difference is that the revision

information is stored in a data block (all other programmable blocks store the revision

information for the block in temporary storage within the block).

This can be seen here:

Figure 3.21 OB 1 hardcoded revision information

The block number is replaced with the project number (PS2001 in this case), and the

S_MOVE outputs are all passed to variables within data block DB21001.

Doc: PS2001-5-2302-011 Rev: R02.00 41-129

OB 1 comments are slightly more complicated when multiple development branches

exist, see § 3.10.2.

Note: Where a commit is made directly on the master branch (for minor modification

or to change ancillary files, see § 3.3), the revision of OB1 and the filename of the

project must also change to reflect the new commit point tag.

3.8 Commit points and filenames

The TIA Portal project, is saved at each commit point (both primary and secondary);

the project is saved under a new filename at each commit point.

The filename is of the following format:

 PS2001-PAL-<commit tag>

For example, a primary commit filename might be PS2001-PAL-D0002 and a second-

ary commit file name PS2001-PAL-D0002A-000-101.

Note: In the filename, any full stops (.) present in the commit tag field are replaced

with dashes (-).

The following shows the individual filenames for each of the commit points shown in

the example of Figure 3.18, the filenames are shown in green:

Figure 3.22 Commit point filenames

The project is saved at each commit point under the its new file name (see above), the

project is also be archived at this point, using the archive facility within TIA Portal

(PROJECT → ARCHIVE), this will produce a .zap16 file with the same filename as the

TIA Project. This is a compressed (zipped) file that can be used to recover the entire

project. These .zap16 files are all stored as archives on the Practical Series of

42-129 Doc: PS2001-5-2302-011 Rev: R02.00

Publications network accessible storage (NAS) drives (section 5 explains the various

folder structures and storage locations used by the Project).

3.8.1 OB 1 and filenames

The project filename is stored in network 1 of OB 1. This must be updated prior to

each commit being made (in much the same way as the project revision, see § 3.7).

An example of the OB 1 network 1 project name is shown below:

Figure 3.23 Project filename storage in OB 1

Doc: PS2001-5-2302-011 Rev: R02.00 43-129

3.9 Parallel development branches

It is perfectly possible to have two (or more) simultaneous development branches:

Figure 3.24 Parallel development branches

This type of arrangement can appear slightly confusing when all the branches are

merged back onto the master branch:

Figure 3.25 Merged parallel development branches

All the commits are listed in order of the time they were applied.

Things are simplified if only the primary commits are considered:

Figure 3.26 Merged parallel development branches, primary commits

From a workflow point of view, this is how the Project software should be viewed, a

series of primary commits at which some part of the software was released for use.

Note: The secondary commits are always present and can be recovered, however it is the

primary commits that denote milestones in the software development.

44-129 Doc: PS2001-5-2302-011 Rev: R02.00

With parallel branches, it does not matter what order the branches are made or what

order they merge back to the master branch. In the previous example, D0001A is

created first, and is merged back to the master branch first. The following shows a

similar arrangement with the first branch merging last:

Figure 3.27 Parallel development branches with different merge order

Here, the second branch D0001B is created after D0001A but merges back before it;

in this case the merged result would be:

Figure 3.28 Alternative Merged parallel development branches

And with just the primary commits:

Figure 3.29 Alternative Merged parallel development branches, primary commits

Doc: PS2001-5-2302-011 Rev: R02.00 45-129

3.10 OB 1 and the Merging of branches

Where software development takes place on individual development branches, this

will generally involve modules that have no relation to each other, in the example of

Figure 3.24, the first branch develops a particular function (FC01001) and the second

branch a completely different module (FC02001), these two modules (and their asso-

ciated data blocks and UDTs) could be merged back to the master branch without

issue, all the modules developed on the first branch have no connection with the mod-

ules on the second branch and vice versa; indeed, each branch has no knowledge of

the modules being developed on the other branch.

This complete independence of modules on the different development branches means

that there is generally, no conflict when the branches are merged, all the modules of

the first branch can be merged to the master branch, and when the second branch is

merged, it has a completely separate set of modules that can also be merged without

conflict.

There is however, one problem with this: OB 1. OB 1 contains revision information

for the whole project (see § 3.7) and both branches will have a modified OB1 and both

OB 1s will be different; this will not cause a problem when the first branch is merged

back to the master branch, all the changes were on the development branch and will

merge back to the master without any conflict (referred to as a fast forward merge in

Git terminology). However, when the second branch is merged back, there will be a

conflict with OB 1 (because it has been changed on both branches) and there needs to

be some mechanism for reconciling the differences.

To accommodate this, the following section describe how branches should be merged

together and how the primary commits are generated.

There are two types of merge, the first is where the first (or a single) development

branch is merged back to the master branch, this is the easier merge because there will

be no conflict. The second type is where additional branches are merged back, this will

cause a conflict with earlier merges and this is handled slightly differently.

Examining each in turn:

46-129 Doc: PS2001-5-2302-011 Rev: R02.00

3.10.1 Merging a single branch or the first branch to merge

Consider the following example from the previous section:

Figure 3.30 Parallel development branches

For the moment, consider only the first development branch to merge back to the mas-

ter branch: D0001A-FC01001:

At the merge point, the last commit to have been made on the D0001A-FC01001

branch was D0001A-001.000, at this point OB 1 had the following revision comments

in it:

Figure 3.31 First branch merge OB 1 revision data

And the hardcoded revision was:

Doc: PS2001-5-2302-011 Rev: R02.00 47-129

Figure 3.32 First branch merge OB 1 revision hard coded data

The merge will take place in Visual Studio Code (VSC) and will be made as a “fast

forward” merge (this is the standard arrangement with VSC), this does not create a

merge commit, it simple leaves the head at the last commit on the development branch.

After the merge, the master branch would be as follows:

Figure 3.33 master branch after first merge

As yet there is no final D0002 primary commit. This commit is made directly on the

master branch after the merge.

This may seem to contradict the “no development work on the master branch” rule (see

§ 3.3); however, adding this primary commit point is simply updating the revision sta-

tus of OB 1 and cannot be considered development work.

There are three changes to be made to OB 1, the first two are changes to the revision

information (both hardcoded and in the network comments), the third is to the file

name (see § 3.8.1).

48-129 Doc: PS2001-5-2302-011 Rev: R02.00

The changes to the hardcoded OB 1 revision (in network 2) are to update the revision

to the primary commit tag (in this case D0002), as follows:

Figure 3.34 Primary commit point hardcoded update

The update to the network comment requires the removal of the secondary commit

information and the addition of the primary commit revision:

Figure 3.35 Primary commit point network comment update

Doc: PS2001-5-2302-011 Rev: R02.00 49-129

The final change is to the TIA Portal project name in network 1 of OB 1:

Figure 3.36 Primary commit point project filename

Section 3.8 gives details of TIA Portal project names and their association with commit

points.

50-129 Doc: PS2001-5-2302-011 Rev: R02.00

3.10.2 Merging additional parallel branches

Again, consider the example given in the previous section:

Figure 3.37 Parallel development branches

In the previous section, the first branch D0001A-FC01001 was merged back to the

master branch, leaving the overall workflow in the following state:

Figure 3.38 Parallel development after first branch merge

This is the point at which the second branch (D0001B-FC02001) is to be merged

back to the master.

At this point, the last commit to have been made on the D0001B-FC02001 branch

was D0001B-001.000. Figure 3.39 shows the OB 1 revision comments at this point.

It should be noted at this point that the OB 1 comments do not contain any information

about the secondary commits on the D0001A-FC01001 branch or the D0003 pri-

mary commit point, this is because all those commits took place on other branches

(either the D0001A-FC01001 branch or the master branch) and are at this stage

unknow to the D0001B-FC02001 development branch.

Doc: PS2001-5-2302-011 Rev: R02.00 51-129

Figure 3.39 Second branch merge OB 1 revision data

With the hardcoded revision:

Figure 3.40 Second branch merge OB 1 revision hard coded data

Again, the merge will take place in VSC and will again be made as a fast forward

merge.

52-129 Doc: PS2001-5-2302-011 Rev: R02.00

This will do two things, it will merge FC02001 on to the master branch with commit

tag D0001B-001.000.

Secondly, it will indicate a conflict in OB 1, this is because OB 1 has been modified

both on the D0001A-FC01001 branch (now merged to the master branch) and on

the D0001B-FC02001 branch.

This can be seen in the SOURCE CONTROL state of Visual Studio Code (VSC):

Figure 3.41 VSC merge conflict indication

The commit hasn’t been made at this stage; this is because there is a conflict in one of

the files.

This can be seen in point 1 in Figure 3.41, the affected files are listed under MERGE

CHANGES point 2, here it is just OB 1 that has a conflict (conflicted files are indicated

by the red exclamation mark).

All the conflict free files (the ones that will merge without any issues) are showing as

STAGED CHANGES.

Doc: PS2001-5-2302-011 Rev: R02.00 53-129

To allow the commit to take place, the OB 1 modifications will be discarded, this is

done by right clicking the OB 1 file in MERGE CHANGES point 2 in Figure 3.41 and

selecting ACCEPT ALL CURRENT in the dropdown menu (the current being the current

or, in this case the master branch).

The merge can now be committed, in this case with commit message D0001B-

MERGE.

This will commit all the changes from the D0001B-FC02001 branch, but leave OB 1

as it was at the D0002 commit point, the list of commits on the master branch is

shown below.

All the commits are there from both branches, the master branch has the following:

Figure 3.42 Merge intermediate commit

However, another primary commit now needs to be made on the master branch, this

will be D0003, and this must include the updates made to OB 1, in the last commit on

the D0001B-FC02001 branch.

This is similar to the changes made to OB 1 for commit D0002 (see § 3.10.1); it should

be noted at this point that OB 1 is currently in the same state as it was at D0002, the

last primary commit on the master branch

Again, there are three changes to be made to OB 1, the first two are changes to the

revision information (both hardcoded and in the network comments), the third is to

the file name (see § 3.8.1).

The changes to the hardcoded OB 1 revision (in network 2) are to update the revision

to the primary commit tag (in this case D0003), as follows:

54-129 Doc: PS2001-5-2302-011 Rev: R02.00

Figure 3.43 D0003 primary commit point hardcoded update

The update to the network comment requires the removal of the secondary commit

information and the addition of the primary commit revision:

Figure 3.44 D0003 primary commit point network comment update

Finally, the TIA Portal project name in network 1 of OB 1:

Doc: PS2001-5-2302-011 Rev: R02.00 55-129

Figure 3.45 D0003 primary commit point project filename

Other changes to OB 1 may be required, if additional information is stored (such as a

summary of completed modules &c.).

56-129 Doc: PS2001-5-2302-011 Rev: R02.00

3.11 Nested branches

It is possible to have a development branch from another development branch (referred

to as nesting). Nested branches always merge back onto their parent branch:

Figure 3.46 Nested development branches

The nested development branch name has an extra character before the dash, this is

another ordinal number, identifying the number of the nested branch. The rest of the

branch name is as § 3.3:

 SNNNNbX-MMYYYYY

The extra character (X) starts at 1 for the first nested branch and incremented by 1 for

each additional nested branch.

Each commit on the nested branch has the format:

 SNNNNbX-nnn.amm

I.e. identical to the those of § 3.4, with the addition of the (X) character. Generally, the

a value should be incremented by 1 to identify a separate development state.

Doc: PS2001-5-2302-011 Rev: R02.00 57-129

3.12 A note on commit messages

Commit messages should have a short (less than 50 characters) first line. In Visual

Studio Code (VCS), extended commits are possible (these are commits where more

than one line can be entered), and the Commit Message Editor extension makes the

configuration of commit messages into a standardised form-based format.

The Commit Message Editor settings should be adjusted to match the following set-

tings:

settings.json

 "commit-message-editor.tokens": [
 {
 "label": "Type",
 "name": "type",
 "type": "enum",
 "options": [
 {
 "label": "---",
 "value": ""
 },
 {
 "label": "PS (Mas) - Dev",

 "description": "PS master branch - development"
 },
 {
 "label": "PS (Mas) - Merge",
 "description": "PS master branch - merge point adjustment"
 },
 {
 "label": "PS (Mas) - Prove",
 "description": "PS master branch - proving (test)"
 },
 {
 "label": "PS (Mas) - Qual",
 "description": "PS master branch - qualification"
 },
 {
 "label": "PS (Mas) - Release",
 "description": "PS master branch - released for use"
 },
 {
 "label": "PS (Dev) - Dev",
 "description": "PS development branch - development"
 },
 {

58-129 Doc: PS2001-5-2302-011 Rev: R02.00

 "label": "PS (Dev) - Merge",
 "description": "PS development branch - merge point adjustment"
 },

 {
 "label": "PS (Dev) - Prove",
 "description": "PS development branch - proving (test)"
 },
 {
 "label": "PS (Dev) - Qual",
 "description": "PS development branch - qualification"
 },
 {
 "label": "PS (Dev) - Release",
 "description": "PS development branch - released for use"
 },
 {
 "label": "PS (Gen) - Rev",
 "description": "PS development branch - revision update"
 },
 {
 "label": "PS (Gen) - Type",
 "description": "PS development branch - typographical changes only"
 },
],
 "description": "Type of changes"
 },
 {
 "label": "Commit Tag",
 "name": "scope",

 "description": "The commit tag that will be applied to this commit (e.g. D0002B-0.101)",
 "type": "text",
 "multiline": false,
 "prefix": "[",
 "suffix": "]"
 },
 {
 "label": "Commit Title",
 "name": "description",
 "description": "Commit title line text",
 "type": "text",
 "multiline": false
 },
 {
 "label": "Body",
 "name": "body",
 "description": "Optional body",
 "type": "text",
 "multiline": true,
 "lines": 10,

Doc: PS2001-5-2302-011 Rev: R02.00 59-129

 "maxLines": 100
 },
 // {
 // "label": "Footer",
 // "name": "footer",
 // "description": "Optional footer: ",

 // "type": "text",
 // "multiline": false,
 // }
],
 "commit-message-editor.view.defaultView": "form",
 "commit-message-editor.dynamicTemplate": [
 "{scope} — {description}",
 "",
 "{type}",
 "",
 " ──",
 "",
 "{body}",
 " ",
 " ──",
 "Those aspects of the PAL project that have been migrated to the GitHub",
 "Version Control System (VCS) are operating under the Software Control",
 "Mechanism (SCM) specified in document PS2001-5-2302-011:",
 " https://practicalseries.com/2001-pal/31-git/11-00-scm.html"
],

 Code 3.1 Visual Studio Code — Commit Message Editor settings

This arrangement gives a common form that can be used to enter and edit a commit

message before making the commit. It has the following appearance:

60-129 Doc: PS2001-5-2302-011 Rev: R02.00

Figure 3.47 Visual Studio Code — Commit Message Editor form

The TYPE field is a dropdown selection that indicates the type of commit being made,

those beginning PS(MAS) are commits directly on the master branch, those beginning

PS(DEV) are on a development branch, those beginning PS(GEN) are of a general na-

ture (not generally applicable to the software itself — e.g. a change to a README file

or some file that is external to the Controller software).

The entry following the dash indicates the phase of the software as follows:

Doc: PS2001-5-2302-011 Rev: R02.00 61-129

ENTRY MEANING

Dev Development commit (incremental build &c.)

Merge Branch merge point

Prove Proving (the software is at a test commit)

Qual Qualification (the software is at a qualifying commit)

Release Software (or module) is released for use

Rev Revision change only

Type Typographical corrections

Table 3.4 Commit message type field

The COMMIT TAG is the commit tag that will be applied to the commit.

COMMIT T ITLE is the first line of the commit, the first line is always shown in bold to

indicate that it is a title.

The BODY field contains the description of the changes being made at this commit

point.

The completed commit has the following appearance:

Figure 3.48 Visual Studio Code — Actual commit message

62-129 Doc: PS2001-5-2302-011 Rev: R02.00

Where:

1 Is the COMMIT TAG

2 Is the COMMIT T ITLE

3 Is the TYPE

4 Is the BODY

5 A common footer attached to all commit messages

Doc: PS2001-5-2302-011 Rev: R02.00 63-129

4. The website revision numbering mechanism

4 The website revision

numbering mechanism

The revision numbering mechanism and version control systems discussed in the pre-

vious sections was associated with the PAL software developed for the Siemens Con-

trollers using TIA Portal and stored in the PS2001-pal-software GitHub repository

(see § 5.2).

In addition to this repository, there is a second repository PS2001-pal-website that

stores the website pages that are published in association with the PAL software (see

§ 5.3 for details of the website and associated GitHub repository).

This website is also developed using the same revision numbering mechanism detailed

in the previous section, there are however, some minor differences, particularly in the

naming of branches. These differences are discussed in the following sections.

4.1 Workflow arrangements

The website Git repository, like the software Git repository consists of a single main,

master branch and various development branches.

The master branch (after some initial development work to establish the repository)

will, generally, only contain released web pages

Released web pages are pages that have been built, tested and are complete and ready

for live use on the website server.

As with the PAL software, development work can take place at any time and will al-

ways take place on a separate development branch and each development branch will

spur from some definite commit point on the master branch.

With the website, each development branch has a very limited scope, usually the de-

velopment of a single web page or series of webpages that are linked together (a section

of the website for example). The branch may also be concerned with developing a

background element of the website such as a particular JavaScript, jQuery or CSS file.

64-129 Doc: PS2001-5-2302-011 Rev: R02.00

4.2 Master branch revision states

The website development progresses through various different states along the master

branch in the same way as the PAL software (see § 3.2), where each state is a primary

commit point. There are however, fewer states that can be applied to the website:

 STATE EXAMPLE MEANING DESCRIPTION

D D0126 Development

The website as a whole is in the build phase and has not

been fully tested.

Certain web pages may have been developed and tested

and released for use. This is on a page-by-page basis

P P0001 Published

The website is published for testing. All web pages

within the software are present, and the site as a whole

is being tested on a live website for consistency checks,

final proof reading and link integrity.

R R0001 Released The website is released for use

 Table 4.1 master branch commit point tags

The master branch commit tags have the same format as the PAL software:

 SNNNN

Where S is the state letter (Table 4.1):

• D —Development

• P —Published

• R —Released

NNNN is a number; this starts at 0001 (there is a special case for the first commit to the

repository, this has value 0000) for each particular state and is incremented by one for

each subsequent issue.

E.g. D0001 → D0002 → D0003 → P0001 → P0002 → R0001 → R0002 &c.

Doc: PS2001-5-2302-011 Rev: R02.00 65-129

4.3 Development branch names

The main difference between the website workflow and the PAL software workflow is

in the naming of development branches.

The website development like the PAL software development branches will always

diverge from the latest primary commit point on the master branch. The difference is

the name, the website development branch name is in the format:

 SNNNNb-WW-PageName

Where SNNNN is the commit point tag on the master branch from which the develop-

ment branch diverges and b is the ordinal character identifying multiple branches (this

is identical to the PAL software in § 3.3.

The remainder of the branch name refers to the section of the website and the web page

being developed. WW refers to the number main folder of the website (see § 5.3.2):

 00-comres Common resources

 01-admin Various administration pages

 11-web The main website containing the PAL user guides and information

 21-project Holds all the documentation associated with the Project (validation documents)

 31-git Contains information used by the GitHub repositories

 81-binary Contains binary files (the TIA Project archive files &c.)

 91-userdocs The online version of the User Documentation files embedded in the TIA Project

I.e. WW will be 00, 01, 11, 21, 31, 81 or 91.

The PageName is the name of the HTML file for the particular page, an example being:

11-00-scm.html

This file (11-00-scm.html) is part of the 31-git folder of the website, hence the

WW-PageName part of the branch name would be (don’t include the file extension):

31-11-00-scm

66-129 Doc: PS2001-5-2302-011 Rev: R02.00

The PageName consists of a pair of number (11-00 in the above example) followed by

a short description indicating the purpose of the web page (scm in the example). The

number pair is always in the format cc-ss where cc is the “chapter” number of the

web page and ss is the “section”. The web pages are assigned chapter and section num-

bers like a document (e.g. this part of this document is chapter 4, section 3; its web

page equivalent would thus be 04-03).

The development branch is generally associated with a particular web page, and is

named accordingly, however, the development branch will include all the files associ-

ated with, and required by that web page (i.e. the development branch will include the

various CSS, JavaScript, jQuery, image files and binary files needed for the web page

to work properly).

The index.html file associated with each of the main folders does not have any lead-

ing numbers in its file name (it is just called index.html), however, for the sake of

consistency, such index files are given the number 00-00 in the branch name. E.g.:

31-00-00-index

Where the development branch is associated with a section (multiple pages) of the

website, the branch name will use the chapter number only (just the cc part), for ex-

ample, if a branch were developing the introduction pages of the website in the 11-web

folder, its branch name would be:

11-01-intro

Where the development branch is for a particular file, rather than a web page (this is

usually where a common file that affects the whole website is being change or created)

then the branch name will have the format:

 SNNNNb-00-FileName

The common files are always stored in the 00-comres folder (hence WW will always be

00), the file name is the name of the file being modified (without the extension) for

example, if the main style.css file were being modified, the branch name would be:

SNNNNb-00-style

Doc: PS2001-5-2302-011 Rev: R02.00 67-129

4.4 Development branch commit tags

Development branch commit tags (secondary commits) are identical to those of the

software development branches (§ 3.4); where each secondary commit is tagged and

the tag has the format:

SNNNNb-nnn.amm

Where SNNNNb is the first part of the branch name (before the dash), see § 4.3. This is

the originating master branch commit point and the branch ordinal character.

The remaining characters (nnn.amm) are all numerical and reflect the current revision

of the web page (or file) under development, the format of this revision number is sim-

ilar to that of the PAL software and is explained in § 3.6.

4.5 Merging of development branches

The merging of development branches is generally a simplified arrangement of that

used for the PAL software (see §§ 3.4 and 3.5).

Development branches within the website are usually mutually exclusive and have no

impact on each other (this is different to the PAL software where multiple branches

usually have some degree of commonality, particularly with OB 1). This exclusiveness

means that multiple branches can be merged without any conflict and the approach

taken in § 3.5 for merging a single development branch or the first of multiple devel-

opment branches can be adopted for all development branches within the website re-

pository.

Exceptions exist where common table of contents (TOC) are being modified (and pos-

sibly where two simultaneous branches exist to modify a common file).

To minimise such conflicts, it is generally better to manage the workflow such that

simultaneous (parallel) branches do not target common resources. Better to manage

common files and common TOCs in a single development branch.

68-129 Doc: PS2001-5-2302-011 Rev: R02.00

4.6 Individual page and file revision numbers

All the files associated with a web page (HTML, CSS, JavaScript and jQuery) have

their own revision number. The current file revisions for all components of a web page

are displayed at the top right of all web pages:

Figure 4.1 Web page component revisions

This can be seen in more detail below:

Doc: PS2001-5-2302-011 Rev: R02.00 69-129

Figure 4.2 Web page component revisions (detail)

The Page revision data, point 1, shows the current revision of all the files associated

with the particular web page.

The Common resources, point 2, shows the revision of the standard files that are

common to all web pages.

Finally, the Global resources, point 3, shows the revision of all third-party files (these

are normalised revision generated within the project, i.e. project revision 001 of

normailse.css reflects the actual file build of 8.0.1, the association between the

normalised project build and the actual third-party build is listed in the revision table

at the start of each file).

The numbering of the webpage (or file) revision nnn.amm is an incremental numbering

system. In this system nnn reflects the current version of the software; typically, the

first properly released software will be 001. Previous development versions will be 000.

70-129 Doc: PS2001-5-2302-011 Rev: R02.00

The numbers after the decimal point (amm) reflect development and test modification

to the current revision (for software modifications), in this system a reflects the current

status of the software as follows:

 FIRST DIGIT (a) MEANING DESCRIPTION

0
Released

mm will be 00

Page/file is released at version nnn

(i.e. nnn.000)

1-7 development
Page/file is under development and has not been

tested

8 Publication
Page/file has been published (on the webserver)

for live testing

 Table 4.2 Web page/file revision number (first digit)

The remaining numbers (mm), are incremental build numbers for the current revision

(this allows development tracking).

Note: A release version of a page or file will have revision 001.000, 002.000,

003.000 &c. I.e. the numbers after the decimal point are all zero. The first

development of the software at release 003 would have revision 003.101.

The Global resources revisions, point 3, in Figure 4.2 only have the first three digits

(nnn), third party software is always at a released version.

Doc: PS2001-5-2302-011 Rev: R02.00 71-129

4.6.1 Recording revision numbers within web page files

All HTML, CSS, JavaScript and jQuery files have a modification history at the start

of the file; an example for style.css is shown below:

Figure 4.3 Modification history shown in file header

72-129 Doc: PS2001-5-2302-011 Rev: R02.00

In addition, the revision information is also hardcoded into each file:

Figure 4.4 Hardcoded revision information (for style.css)

The various revisions for each file type are displayed by the HTML as multiple rows

in a revision table, the following shows the format of each entry:

Web page .html file

<!-- ~~~

 TABLE - REVISION TABLE


      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --> 

 
                    <table class="table-rev"> 

 
<!-- Data row -->       <tr> 

 
                            <td class="leading" style="height: 1em"></td> 

 
                            <td class="table-cent" style="width: 30%"></td> 

                             <td class="table-left" style="width: 40%">NAME:</td> 

                             <td class="table-right" style="width: 30%" id="ID_NAME"></td> 

 
                        </tr> 

  

 Code 4.1 Revision data displayed on a web page  

The NAME and ID_NAME are as follows: 

 NAME ID_NAME DESCRIPTION 

 Page rev-doc Hardcoded revision of the web page 

 scroll.js rev-scroll ID_NAME is replaced by revision number in NAME file 

 codelines.css rev-codelines ID_NAME is replaced by revision number in NAME file 

 script.js rev-script ID_NAME is replaced by revision number in NAME file 

 style.css rev-style ID_NAME is replaced by revision number in NAME file 

 style-pal.css rev-style-pal ID_NAME is replaced by revision number in NAME file 

 grid.css rev-grid ID_NAME is replaced by revision number in NAME file 

 ps-fonts.css rev-ps-fonts ID_NAME is replaced by revision number in NAME file 

 normalise.css rev-normalise ID_NAME is replaced by revision number in NAME file 

 lightbox.css rev-lightbox ID_NAME is replaced by revision number in NAME file 

 waypoints.css rev-waypoints ID_NAME is replaced by revision number in NAME file 

 hyphenator.css rev-hyphenator ID_NAME is replaced by revision number in NAME file 

 ionicons.css rev-ionicons ID_NAME is replaced by revision number in NAME file 

 prettify.css rev-prettify ID_NAME is replaced by revision number in NAME file 

 prettify.js rev-run-prettify ID_NAME is replaced by revision number in NAME file 

 



Doc: PS2001-5-2302-011 Rev: R02.00 73-129 

 

Each file listed in the NAME column appends its own revision number to the ID_NAME 

ID, in the case of style.css, the code is: 

 
style.css 

 /* **************************************************************************** 
    REVISION 
    **************************************************************************** */ 
 #rev-style:after { content: "000.102"; } 
  

 Code 4.2 Revision information for style.css  

In the case of a .js file, it has the following appearance (this is for script.js) 

 
script.js 

 /* **************************************************************************** 
    REVISION 
    **************************************************************************** */ 
  
     $('#rev-script').append ( 
         "<p>000.101</p>" /* LOCAL JS REVISION NUMBER */ 
     ); 
  

 Code 4.3 Revision information for script.js  

The actual HTML file has the data hardcoded in the HTML table after the rev-doc 

ID (000.101 in this case): 

 
Web page .html file 

 <!-- Data row -->   <tr> 
                         <td class="leading" style="height: 1em"></td> 
                         <td class="table-cent" style="width: 30%"></td> 
                         <td class="table-left" style="width: 40%">Page:</td> 
                         <td class="table-right" style="width: 30%" id="rev-doc">000.101</td> 
                     </tr> 
  

 Code 4.4 Revision data for the HTML file  

 

  



74-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

 

 

 

 

 

  

BLANK PAGE 



Doc: PS2001-5-2302-011 Rev: R02.00 75-129 

 

5. Software storage  and folder structures  

5 Software storage and folder 

structures 

There are several aspects to the PAL storage locations: there are the software files (the 

modules that form the PAL itself), there are the Git and GitHub repositories that hold 

those modules within the version control system. There are the Project directories that 

hold all the project documentation, there is a website that makes the Project documen-

tation and PAL software available to those to whom it is of interest and finally, there 

is the backup storage locations for all of it. 

Broadly, the software and folder structures cover the following: 

1 Project software storage on an Engineering Station 

2 Project document storage and the Project directories 

3 Website folder structure and Web Development Platform 

4 Local (Visual Studio Code) machine repositories 

5 Remote (GitHub) repositories 

6 Cloud based storage (Dropbox) 

7 Network storage and backup facilities 

This section covers each of these areas in detail. 

  



76-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.1 An overview of the Project structure 

Figure 5.1 shows the entire Project structure and all its components. 

Physically, there are three main components: 

1 Engineering Stations (ES) for the development of the PAL soft-

ware 

2 Web Development Platform (WDP) for the configuration of the 

web sites that accompany the Project 

3 Network accessible storage (NAS) that holds all the Project doc-

umentation, drawings, schedules &c. 

In addition there are remote, cloud-based storage facilities that hold the version control 

repositories associated with the project. 

There is also “off-site” mirror storage of the NAS and all files and folders therein. 

In terms of physical machines, there can be any number of Engineering Stations (ESs), 

each will have a copy of the PAL software repository. Each engineer working on the 

PAL software development will have a fully equipped Engineering Station 

There can also be any number of Web Development Platforms (WDP) each with a 

copy of the website repository. In practice there will be a limited number of such ma-

chines. 

The Project documentation is stored on the NAS drive and is accessible to all Project 

personnel. There is no special requirement for machines that can access the Project 

documentation (any standard office machine is suitable). 

In addition to the remote repositories, cloud-based synchronisation is carried out be-

tween the NAS drive and all master engineering stations and all master web develop-

ment platforms, this provides up to date repository backups on the NAS drive as well 

in the remote repositories. 

 



Doc: PS2001-5-2302-011 Rev: R02.00 77-129 

 

 

Figure 5.1 The full project folder structure 
 



78-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.2 Engineering stations 

Engineering stations (ES) are used to develop the PAL software, they are generally 

high-powered machines with at least 512 GB of hard drive storage and 16 GB of RAM. 

Typically with a 10th or 11th generation i7 processor or equivalent (such as an AMD 

Ryzen 7). 

Engineering stations should be equipped with dual 27" QHD (quad high definition) 

screens (these have a resolution of 2560 × 1440 pixels). 

The configuration of an ES, including drive allocation, device naming, software pack-

age installation &c. is explained in the ES/WDP Configuration Manual [Ref. 006]. 

In summary, it is assumed that the ES has been configured in line with the above doc-

ument and is equipped as follows: 

The ES is equipped with three hard drive partitions (as a minimum): 

 C: OpSys Operating system and application files 

 D: Projects PSP project files 

 E: Licences Storage area for licences &c.  

 

The C: drive (OpSys) holds the operating system and any installed programmes and 

applications (the Siemens application software and any office applications will be in-

stalled on this drive). The C: drive should be at least 200 GB in size. 

The D: drive (Projects) holds any Controller, HMI and SCADA projects developed 

using TIA Portal. This consists of the source code, archives, graphical images, runtime 

configurations and any other files needed to develop the control system software. The 

D: drive should fill the remainder of the hard drive, excepting 1 GB that should be 

reserved for the E: drive. The D: drive should be at least 200 GB in size. 

The E: drive (Licences) holds all the licences needed to activate the Siemens TIA 

Portal software and its installed options.  



Doc: PS2001-5-2302-011 Rev: R02.00 79-129 

 

The E: drive is generally very small, it need only be a few megabytes in size (in prac-

tice, a 1 GB partition is more than adequate). 

The software applications and configuration below are required on an ES: 

 1. TIA Portal has been installed 

 • The TIA Portal settings have been set to the PAL configuration 

 • The TIA Portal Git add-in has been installed and enabled 

 2. A GitHub user account has been setup 

 • The account has been added as a contributor to the PracticalSeries organisation 

 3. Git SCM has been installed 

 • Notepad++ is installed as the Git default editor 

 • An SSH key link has been established between Git and GitHub 

 4. The Visual Studio Code text editor has been installed 

 • The standard set of Visual Studio Code extensions have been installed 

  

The packages above are listed in the order in which they should have been installed on 

the engineering station. The exact details for installing and configuring the above ap-

plication is given in the ES/WDP Configuration Manual [Ref. 006]. 

  



80-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.2.1 ES software folders 

All the Controller software for the PAL is stored on the D: drive (Projects). 

The D: drive has two primary folders: 

 1000 Software Projects TIA Portal Projects folder 

 2500 Git Projects Git Workspace folder 

 

The underlying structure is: 

 

Figure 5.2 ES Project folder structure 

 



Doc: PS2001-5-2302-011 Rev: R02.00 81-129 

 

The software projects folder: 

1000 Software Projects 

is used to store the individual Controller projects that are opened and developed using 

TIA Portal. All such projects (within the PAL) are named as follows (see § 3.8): 

PS2001-PAL-<commit tag> 

The alternate branch on the D: drive is: 

2500 Git Projects 

This is used to store the Git repository that is used to store the TIA Portal Project 

Workspace. 

These two folders: 

 1000 Software Projects TIA Portal Projects folder 

 2500 Git Projects Git Workspace folder 

 

are examined further in the following sections. 

 

 

  



82-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.2.2 Software development area (1000 Software Projects) 

There may be multiple projects under the  

1000 Software Projects 

Each project is identified by its project number (PSnnnn) followed by the name and 

some brief description of the project. In the case of the PAL software the project num-

ber is (PS2001) and the full project folder is (PS2001-PAL-Build-SW). 

The PS2001-PAL-Build-SW folder holds all the TIA projects, these are the projects 

that can be downloaded via TIA Portal into a Controller. 

The entire software development takes place in TIA Portal and is stored as a TIA pro-

ject locally on the engineering station. 

All TIA Projects are stored in the folder 31 SW TIA PAL: 

 

Figure 5.3 PAL local ES TIA Project folder structure 

Each TIA Portal project is stored in its own sub-folder under the 31 SW TIA PAL 

directory. Each project is named according to its commit point (see § 3.8 for infor-

mation about file names). 

  



Doc: PS2001-5-2302-011 Rev: R02.00 83-129 

 

An example is shown below: 

 

Figure 5.4 TIA Projects within the folder structure 

The interior of a TIA Project folder has the following appearance: 

 

Figure 5.5 TIA Projects within the folder structure 

The .ap16 file (highlighted in blue), if clicked would open the project in TIA Portal. 

The folder structure above is all part of the TIA Project and independent modification 

of this structure or any files within it may result in the corruption of the project. 



84-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The top-level folder of a project (in this case PS2001-PAL-D0003) should be consid-

ered to be the TIA Portal Project in its entirety, everything below this level is best left 

alone.  

Figure 5.2 shows an additional folder under the PS2001-PAL-Build-SW directory, 

this is the 41 TIA PoC folder. This also holds TIA Projects; these are not formally part 

of the PAL software, they form “proof of concept” projects. 

Proof of concept software is used to develop, test or demonstrate that a particular ap-

proach works within the PAL prior to that approach being formally adopted within 

the PAL. 

Proof of concept projects can be considered a test bed or prototyping area for software. 

The final folder under the PS2001-PAL-Build-SW directory is designated 81 SW 

Archive; this is used to store “archived” copies of each build of the TIA Project soft-

ware. 

Archived copies of a project are produced by TIA Portal, they are essentially zipped 

versions of the TIA Project folder with non-essential (or re-buildable) information re-

moved  

Archive files are a convenient way of transporting projects (and indeed, each archived 

copy of the software is available for download from the website, see below).  

Project archive files all have the extension .zap16 (and are universally referred to as 

“zap” files), they are indeed zip files, if the extension were change from .zap16 to 

.zip, the contents could be extracted by Windows Explorer. 

There is an archive file for all commit points (see § 3.8) within the software (both pri-

mary and secondary). These are accessible from the website at the following address: 

https://practicalseries.com/2001-pal/31-git/81-00-archive.html 

  

https://practicalseries.com/2001-pal/31-git/81-00-archive.html


Doc: PS2001-5-2302-011 Rev: R02.00 85-129 

 

5.2.3 The Workspace and local repository (2500 Git Projects) 

The ES stores all its Git repositories in the directory: 

2500 Git Projects 

Specifically, the PAL repository associated with the Controller software development 

is the PS2001-pal-software folder: 

 

Figure 5.6 PAL local ES repository folder structure 

This folder is a Git repository, this can be seen by the hidden .git folder, this contains 

all the underlying repository structures required by Git and GitHub to control and 

manage the folder.  

The .git folder is similar to the TIA Project folders, in that, no changes should ever 

be made directly to anything that is in there. The best thing to do is to never open it or 

look in it; just leave it alone, it looks after itself. 

The remainder of the PS2001-pal-software folder holds the working files for the 

TIA Portal Workspace. 

The top-level folder (CON100) is the Workspace equivalent of the controller in the TIA 

Project, this is also called CON100 (this is in accordance with the Siemens naming con-

ventions discussed in the Software Design Specification [Ref. 003], § 3.1.4) 



86-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The Workspace folder contains the XML versions of the TIA Project exportable ob-

jects, these objects are also stored in (pre-named) folders: 

 Program blocks Holds the XML versions of Controller blocks: FBs, FCs, OBs and DBs 

 PLC tags Holds any tag tables configured for the Controller 

 PLC data types Holds the User Data Type (UDT) structures  

 

The linkage between the controller and the Workspace folder can be seen below: 

 

Figure 5.7 Project (left) and Workspace (right) associations 

The Workspace only holds the programmable objects from the Controller software 

(there is no hardware configuration, watch tables or traces &c.). It can be seen that 

each folder and object in the TIA Project (left-hand side) has an equivalent in the 

Workspace (right-hand side). 

It can also be seen that the Workspace also holds some additional files: .gitinore, 

LICENCE.md and README.md; these are all files associated with the Git repository itself 

and have no associations within the TIA Project. 

These association are explained further in the following section: 

  



Doc: PS2001-5-2302-011 Rev: R02.00 87-129 

 

5.2.4 Understanding the Simatic Workspace 

A Workspace is just a Windows folder located somewhere on the ES hard drive. It can 

be any folder and can have any name. 

The folder can be created directly through Windows or when being define via TIA 

Portal. 

In TIA Portal terms, a Workspace is simply a folder to which it will export copies of 

all the following types of objects (if they exist in the Project): 

1 Code blocks:  

 • Organisation blocks (OBs) 

• Functions (FCs) 

• Function blocks (FBs) 

• Data blocks (DBs) of any type including instance DBs 

2 User (PLC) data types (referred to here, as UDTs) 

3 PLC tag tables (referred to here as just tag tables) 

TIA Portal exports them as text files, specifically as XML files. 

In addition to this, TIA Portal keeps track of the files it has exported and identifies if 

differences exist between its internal Project files and those files in the Workspace. If 

differences do exist, TIA Portal is able to synchronise those files in either direction (it 

can make the Workspace files match the Project files or, it can make the Project files 

match the modified Workspace files). 

The ES/WDP Configuration Manual [Ref. 006] contains a full description of how to 

create and link a Workspace to a TIA Portal Project. 

  



88-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

   

 Author’s note — How we got here   

   

 This isn’t a new concept for Siemens, although it is new to TIA Portal. The forerunner to 

TIA Portal was a PLC programming package called Simatic Manager (or, more commonly, 

Step 7), this was used to programme earlier ranges of PLCs called S7-300 and S7-400 (TIA 

Portal will also programme these PLCs). 

Simatic Manager had the facility to export (or import) programmable blocks in a readable 

format, referred to as Source Blocks, all blocks could be converted to Source Blocks and 

the resulting Source Blocks were all text files that held a version of the software written in 

a Pascal like language (actually called Structured Control Language or SCL). 

The Source Files were again very useful, they were text files and so could be stored easily 

and could also be incorporated in a version control system — they were also readable (by 

humans). 

When TIA Portal was introduced and Simatic Manager began to be phased out (you can 

still get it, but most people use TIA Portal now), the Source Block functions (or any such 

equivalent) was not included in TIA Portal, and this upset a lot of people — virtually 

everyone to whom version control was important. 

Siemens were reminded of their deficiencies by those people, “oh tut deary me” they said, 

“you seem to have forgotten this” or its Anglo-Saxon equivalent. 

Siemens have now addressed their shortcomings and have added the required features; the 

format is different: it exports thing as XML text files (rather than SCL text files), but it can 

be used in much the same way. I.e. version control systems can read the files and 

determine any changes that have been made. Siemens refer to the whole thing as part of 

their “openness” strategy. So, it’s arrived late, but at least it’s here now. 

 

   

   

Looking once more at the Workspace in TIA Portal: 

 

Figure 5.8 Workspace viewed in TIA Porta 



Doc: PS2001-5-2302-011 Rev: R02.00 89-129 

 

The CON100 folder (on the right) has been expanded out to show all the objects within 

it. On the right, the Program block folder has been opened showing the two blocks 

present within it. These are the XML equivalents of the blocks beginning OB00001 

and FC61000 on the left. 

Opening one of the XML files (in this case OB00001), gives something similar to: 

 

Figure 5.9 The XML file for OB 1 

The XML files, although not instantly comprehensible, can be read by the human eye 

and ultimately understood. 

  



90-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

Understanding the Workspace symbols 

Looking once more at Figure 5.8, in the left pane, there are two columns, STATUS and 

ACTION. The STATUS tells us the state of the object in the TIA Project compared with 

the state of the object in the Workspace folder. The green dot  means the two version 

are identical (generally, this is the preferred state). 

The STATUS can have the following values: 

SYMBOL MEANING DESCRIPTION 

 No differences 

The compared versions of the object in the project and the 

Workspace are identical. 

If at a group level, all lower-level elements are identical in the 

project and in the Workspace. 

 Lower-level differences 
One or more lower-level elements are different in the project 

and the Workspace, open the group to see the affected files. 

 Not in workspace The object is only available in the project 

 Project object modified 

The compared versions of the object in the project and the 

Workspace are different. The TIA Portal object has been 

changed since the last synchronisation operation (Project is 

newer) 

 
Workspace object 

modified 

The compared versions of the object in the project and the 

Workspace are different. The Workspace file has been changed 

since the last synchronisation operation (Workspace is newer) 

 Both modified 

The compared versions of the object in the project and the 

Workspace are different. Both the TIA Portal object and the 

Workspace file have been changed since the last 

synchronisation operation 

 Not known The comparison result is not known 

Table 5.1 Status symbols and meaning 

 

  



Doc: PS2001-5-2302-011 Rev: R02.00 91-129 

 

The ACTION allows us to do something with the files, the Action field can have the 

following values: 

SYMBOL MEANING DESCRIPTION 

Blank Not applicable 
Not applicable to this object (usually folders of groups, the 

folders or group must be expanded to see individual objects) 

 No action No action will be taken (do nothing) 

 Export to Workspace 
The object will be exported to the Workspace (Workspace 

object will be made identical to Project object) 

 Import to Project 
The object will be imported from the Workspace (Project 

object will be made identical to Workspace object) 

Table 5.2 Action symbols and meaning 

Synchronising the Workspace 

If changes have been made to blocks within TIA Portal, these changes will be indicated 

within the workspace, for the sake of argument, let’s assume that OB00001 and 

UT38151 have been changed, the Workspace will now have the following appearance: 

 

Figure 5.10 Synchronising the Workspace 

Point 1 is indicating that a difference exists at a lower level within the Program blocks 

folder. Point 2 shows that OB1 has been changed in TIA Portal (c.f. Table 5.1); the 

Project version is newer than the Workspace version (the star is on the left in the sym-

bol). Points 3 and 4 show similar changes for the UT38151 data type. 



92-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

By using the drop down in the ACTION box next to each modified block, it is possible 

to select an action individually for each block. 

Alternatively, the menu bar at the top of the left window: 

 

allows the action for all the modified blocks to be selected in one go, clicking the  

icon (Export changes to Workspace) changes the ACTION  for the two blocks to . 

Nothing has happened at this point; the desired action has simple been selected (but 

not yet implemented). 

To make the changes, the Synchronize button  must be clicked. This carries out the 

selected actions on the modified blocks. 

Note: Only complied blocks can be synchronised with the Workspace, if the blocks have 

not been compiled within TIA Portal, the user will be prompted to compile them 

as part of the synchronisation process. 

 Generally, it is better to compile the blocks first and separately to the synchroni-

sation process, this allows any errors to be more easily addressed. 

Knowhow and write protection 

Simatic blocks can be protected in two ways, knowhow protect (an older form of access 

protection) and write protection (the current form of access protection). 

Blocks with knowhow protection cannot be synchronised with the Workspace. 

However, blocks with Write Protection can be synchronised; some blocks within the 

PAL require protection (see the Validation Plan [Ref. 001] Appendices for an explana-

tion), where this is used, the protection will be Write Protection rather than knowhow 

protection. 

  



Doc: PS2001-5-2302-011 Rev: R02.00 93-129 

 

Common actions 

In the previous example, the  icon (Export changes to Workspace) was used to se-

lect the required action, the other symbols are as follows: 

SYMBOL MEANING DESCRIPTION 

 Import changes to Project 
Import changes from the Workspace to the Project  

(Workspace has the newer version) 

 
Export changes to 

Workspace 

Export changes from the Project to the Workspace  

(Project has newer version) 

 Import all 

Where an object differs in the Project and Workspace, 

overwrite the object in the Project with the one from the 

Workspace (even if the Project holds the newer version) 

 Export all 

Where an object differs in the Project and Workspace, 

overwrite the object in the Workspace with the one from 

the Project (even if the Workspace holds the newer version) 

 Discard all actions 
Discard any actions that may have been applied (set 

everything back to “do nothing”) 

 Synchronise Implements the selected action 

Table 5.3 Action toolbar commands 

Note: Actions can only be applied to an object when there is a difference between the 

object in the Project and the object in the Workspace 

The difference between IMPORT/EXPORT CHANGES and IMPORT/EXPORT ALL is subtle. 

If a block has been changed in the Project (left-hand side) then of the IMPORT/EXPORT 

CHANGES buttons only the EXPORT CHANGES  will work, the IMPORT CHANGES will 

leave the action set at do nothing. The reason for this is that there has been no change 

to the Workspace object, so you cannot import it. 

There has, however, been a change to the Project object so it can be exported as a 

change. 

Conversely, the IMPORT ALL button will work, this allows the modified object in the 

Project to be overwritten by the unmodified (and older) object in the Workspace. The 

IMPORT/EXPORT ALL buttons will always work on any two objects that are different. 



94-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

A note about new objects in the Project 

There is a problem (Author: I’m not sure if this is a problem or if it is intentional, it is 

however peculiar) when creating a new block in TIA Portal (or indeed, creating a new 

block in the Workspace); if a new block were created in the Project (Block_1 for ex-

ample, shown below): 

 

Figure 5.11 A new block in the Project 

The new block (Block_1) is present in the Project Window, but the STATUS and 

ACTION columns are empty, pressing any of the action buttons or trying to assign an 

action directly will not work, it won’t do anything. 

The reason for this is that the object has not been “linked” to the Workspace. The way 

to link the object is to drag it from the Project side to the Workspace side (some care is 

needed; the block must be copied to the correct folder in the Workspace). 

Once this is done, the Block_1 STATUS will display the green dot, indicating the two 

files are synchronised and are the same. 

(Author: It would seem better to me if the new block were treated as a modified block and it 

automatically gave the Project object modified status and it could just be synchronised, rather 

than having to actually drag it to a specific folder in the Workspace.) 

  



Doc: PS2001-5-2302-011 Rev: R02.00 95-129 

 

5.2.5 Understanding the Workspace as a local repository 

Section 5.2.3 established that the Workspace was also a local Git repository; this 

means that when files are synchronised between the Project and the Workspace, any 

changes are logged by the Git VCS. At some point, these changes will be committed to 

the repository and permanently stored there. At the same time an archive copy of the 

TIA Project will also be made (see § 5.2.6). 

The Workspace is configured using the Siemens Git add-in, this is installed and acti-

vated using TIA Portal (again the instructions for doing this are given in the ES/WDP 

Configuration Manual [Ref. 006]). The Git add-in has very limited functionality com-

pared with the Visual Studio Code functionality and is not actually used directly to 

maintain the Workspace repository. It is installed purely, so that TIA Portal recognises 

the Workspace is a repository and hides the .git folder, preventing it from being vis-

ible and from being inadvertently modified. 

The Workspace is maintained from within TIA Portal, all changes made to the soft-

ware are synchronised with the Workspace in the manner described in § 5.2.4. 

The repository aspect of the Workspace is maintained via the Visual Studio Code ar-

rangement (again the instructions for installing Visual Studio Code are given in the 

ES/WDP Configuration Manual [Ref. 006]). The Visual Studio Code text editor pro-

vides a graphical user interface to the Git repository allowing development branches 

to be created and used with the Workspace. 

All repository actions are carried out using the Visual Studio Code application. This 

includes committing changes to the local repository, creating and managing develop-

ment branches and the bidirectional synchronisation of the local repository with the 

remote GitHub repository. 

  



96-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.2.6 Commit point archives 

Whenever a commit is made to the repository, the TIA Project is saved and archived 

at that point, the archived version of the software is given the name: 

 PS2001-PAL-<commit tag>  

The commit tag being the identifying tag given to the commit point (see § 3.8) 

The archived copy of the software is stored in the Project folder  

D:/1000 Software Projects/PS2001-PAL-Build-SW/81 SW Archive/31 TIA PAL Archive 

All commit points (both primary and secondary, see §§ 3.2 and 3.4) are stored as ar-

chive (.zap16) files in this directory. 

5.2.7 Maser ES — local repository backup to NAS 

There can be any number of engineering stations (ESs), generally, each software de-

velopment engineer will have one. 

There is however, only one Master Engineering Station (MES), this is usually the engi-

neering station given to the lead software engineer on the Project. 

All ESs have a local repository (the Workspace) and are constantly being synchronised 

with the remote repository on the GitHub servers, whenever a commit is made to a 

local repository, on any ES, that ES must first be synchronised with the remote repos-

itory (ensuring that any changes made by the local commit do not create a conflict with 

the any other changes that have been stored within the remote repository). 

The remote repository is essentially, the master repository and it is this repository that 

holds all the commits made by any ES. 

The GitHub servers are a third party facility (ultimately owned by Microsoft), and 

while they are considered secure by the Practical Series of Publications, it is felt that 

GitHub cannot be the sole storage location for the master repository (Microsoft may, 

for example, close down the site, make it prohibitively expensive, or indeed may sell it 

to some other party that the Practical Series of Publications does not trust). 



Doc: PS2001-5-2302-011 Rev: R02.00 97-129 

 

To this end, the Master Engineering Station, each time it is synchronised with the 

master repository on GitHub, makes a complete copy of the repository on the PSP 

network accessible storage (NAS) drives.  

The MES should be synchronised at least once a week with the remote repository. 

This is done purely as an additional backup, the PSP does not think that the GitHub 

website will change dramatically in the future, or be sold to the Russians — however, 

there is the old engineering maxim: “better to not need a backup you have, rather than 

need a backup that you do not have”, or to put it another way “better safe than sorry”. 

Repository backup mechanism 

The Master ES repository backup mechanism is slightly convoluted. This is because 

the Git repositories, and in particular the .git folder with the repository are managed 

(ultimately) by the Git application and this is by-and-large, a Unix based application; 

and while this is not a problem and the application runs perfectly well on a Windows 

machine, some of the filenames it uses have a Unix feel to them.  

An example being the .git folder itself. To some extent, Windows, and certainly 

some Windows application do not like files that start with a full stop, they expect there 

to be something before the full stop and everything after it is the extension (.pdf or 

.jpeg for example). 

This is a problem with the PSP NAS drives, these NAS drives are all supplied by Syn-

olgy (this is the PSP standard for NAS drives). 

Synology NAS drives are all equipped with an application called Cloud Station Drive 

and this allows any folder on any PC to by synchronised in real time with any corre-

sponding folder on the NAS drive itself. The link, once created, automatically keeps 

the folders in sync whilever the machine is connected to the internet. It is exceptionally 

easy to use and just works. 

The problem with this arrangement is that certain files are not synchronised (tempo-

rary files for example or files with particular extensions) and this is the problem with 

the .git folder, Cloud Station Drive ignores certain files that Git considers essential 

and this leads to a corrupted copy of the repository on the NAS drive. 



98-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

To overcome this problem, a slightly different approach is taken. On the Master ES, 

the 2500 Git Project folder is, itself, stored within a live Dropbox folder: 

 

Figure 5.12 Backing up a repository to the NAS drive 

The Dropbox account (in this instance) is the PSP Dropbox account, this synchronises 

the entire 2500 Git Projects folder and all its content with the Dropbox cloud 

servers. 

Synology NAS drives are equipped with a Cloud Sync package that allows a folder 

within a Dropbox account to synchronise with a partner folder on the NAS drive. In 

this case it is setup as follows: 



Doc: PS2001-5-2302-011 Rev: R02.00 99-129 

 

 

Figure 5.13 Backing up a repository to the NAS drive 

The Local Path, point 1, is a directory on the Synology NAS drive, the Remote Path, 

point 2 is the Dropbox folder. It is possible to synchronise individual folders within 

the 2500 Git Projects folder if required. 

This process does not suffer from the restrictions of the Cloud Station Drive application 

and will correctly synchronise all files within the repository without exception. 

Application to access to the PSP Dropbox account should be made to: 

 ACCOUNT MANAGER :  Michael Gledhill 

 ACCOUNT DETAILS :  PSP Dropbox 

 CONTACT DETAILS :  mg@practicalseries.com 

 Table 5.4 PSP Dropbox account manager details 

 

 

  



100-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.2.8 Remote repository 

All ESs work with a remote repository that contains the current copy of all committed 

changes made on any of the ES machines. The remote repository is the master repos-

itory, it holds all the development branches (created by any ES) and the most up to 

date master branch. 

Any development work that takes place on a development branch on an ES, will at 

some point be committed to the local repository (on the ES), before this can happen, 

the Visual Studio Code application making the commit will require that any changes 

that exist within the remote repository, but are not present on the local ES (i.e. changes 

that have been made by other users on other ESs) are pulled from the remote repository, 

before the local ES changes can be pushed back to the remote repository. This Pull 

before Push approach ensures that the user must resolve any conflicts between the 

user’s local repository on the local ES and the remote repository before pushing the 

resolved changes back to the remote. 

There is an explanation of this process (and indeed the whole, Git and GitHub ap-

proach to version control) on the PracticalSeries website at the following address: 

https://practicalseries.com/1002-vcs/08-00-remotes.html 

To use the remote repository from a local ES, the two must be linked via a secure shell 

key link (SSH link), the process for doing this is explained in the ES/WDP Configura-

tion Manual [Ref. 006], and again, on the website here: 

https://www.practicalseries.com/1002 -vcs/04-00-linking.html 

To make this link, the user of the ES must have their own GitHub account and this 

account must be given contributor access to the remote PSP repository. 

The remote repository is public repository (one that anyone with a GitHub account 

can read and copy) and is part of the GitHub PracticalSeries organisation. The organ-

isation is available here: 

https://github.com/practicalseries  

The remote repository itself is available here: 

https://github.com/practicalseries/PS2001-pal-software 

https://practicalseries.com/1002-vcs/08-00-remotes.html
https://www.practicalseries.com/1002-vcs/04-00-linking.html
https://github.com/practicalseries
https://github.com/practicalseries/PS2001-pal-software


Doc: PS2001-5-2302-011 Rev: R02.00 101-129 

 

Read access to the organisation and all of the repositories it contains, is available to 

anyone with a GitHub account.  

Access for contributors requires permission from the organisation owner, applications 

for such access should be made to: 

 G ITHUB ORGANISATION :  https://github.com/pract icalser ies  

 REPOSITORY NAME :  PS2001-pal-software  

 ORGANISATION OWNER :  Michael Gledhill 

 CONTACT DETAILS :  mg@practicalseries.com 

 Table 5.5 PracticalSeries GitHub organisation details 

At the time of writing, the remote repository was in a preliminary state and had the 

following appearance: 

 

Figure 5.14 The remote PAL repository 

https://github.com/practicalseries


102-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.3 Web development platforms 

Web development platforms (WDP) are used to develop the website that supports the 

PAL software Project. 

Web development platforms are similar to engineering stations and have a similar 

specification: generally high-powered machines with at least 512 GB of hard drive stor-

age and 16 GB of RAM. Typically with a 10th or 11th generation i7 processor or equiv-

alent (such as an AMD Ryzen 7). 

WDPs should be equipped with dual 27" QHD (quad high definition) screens (these 

have a resolution of 2560 × 1440 pixels). 

Unlike ESs, WDP machines do not need a fixed IP address and need not have TIA 

Portal installed. 

Note: It is perfectly possible to use an Engineering Station as a Web Development Plat-

form and indeed, it is quite common to do so (in which case it will be referred to 

as an ES). 

The configuration of a WDP, including drive allocation, device naming, software 

package installation &c. is explained in the ES/WDP Configuration Manual 

[Ref. 006]. 

In summary, it is assumed that the WDP has been configured in line with the above 

document. In short it is equipped as follows: 

The WDP, like an ES is equipped with three hard drive partitions (as a minimum): 

 C: OpSys Operating system and application files 

 D: Projects PSP web project files 

 E: Licences Storage area for licences &c.  

 

The C: drive (OpSys) holds the operating system and any installed programmes and 

applications. The C: drive should be at least 200 GB in size. 



Doc: PS2001-5-2302-011 Rev: R02.00 103-129 

 

The D: drive (Projects) holds the website project developed for the PAL. Broadly, 

this is all the HTML, CSS, JS, jQuery and image files needed by a website. 

The E: drive (Licences) holds is generally not used on a WDP machine, but is in-

cluded to give a consistent approach to configuring both WDPs and ESs. 

The E: drive is generally very small, it need only be a few megabytes in size (in prac-

tice, a 1 GB is more than adequate). 

The software applications and configurations required by a WDP are as follows: 

 1. A GitHub user account has been setup 

 • The account has been added to the PracticalSeries organisation 

 2. Git SCM has been installed 

 • Notepad++ is installed as the Git default editor 

 • An SSH key link has been established between Git and GitHub 

 3. The Visual Studio Code text editor has been installed 

 • The standard set of Visual Studio Code extensions have been installed 

  

The packages above are listed in the order in which they should have been installed on 

the WDP. The exact details for installing and configuring the above application is 

given in the ES/WDP Configuration Manual [Ref. 006]. 

 

  



104-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.3.1 WDP software folders 

The WDP website project is stored on the D: drive (Projects) 

The D: drive a holds single primary folder that contains the WDP website Git reposi-

tory: 

 2500 Git Projects Git Workspace folder 

 

The underlying structure is: 

 

Figure 5.15 The website folder structure 

This structure is examined further in the following section: 

  



Doc: PS2001-5-2302-011 Rev: R02.00 105-129 

 

5.3.2 Understanding the website structure 

The website structure of Figure 5.15 (everything below the PS2001-pal-website, 

excepting the .git folder) is the actual website, the offline version. Everything in these 

folders is copied to the live website server and can be seen at the following address: 

https://practicalseries.com/2001-pal/ 

The relationship between the offline and online folders is as follows: 

 

Figure 5.16 The website folder in relation to the live website 

The contents of the folders (00-comres, 01-admin, 11-web, 21-protect, 31-git, 81-

binary and 91-userdocs) and the root folder are copied to the live website servers 

using a file transfer protocol (FTP) package, this is a one-way sync from the WDP to the 

website servers. The synchronisation is made manually whenever the WDP website is 

updated. 

  

https://practicalseries.com/2001-pal/


106-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The website has several folders within it: 

 00-comres Common resources 

 01-admin Various administration pages  

 11-web The main website containing the  PAL user guides and information 

 21-project Holds all the documentation associated with the Project (validation documents) 

 31-git Contains information used by the GitHub repositories 

 81-binary Contains binary files (the TIA Project archive files &c.) 

 91-userdocs The online version of the User Documentation files embedded in the TIA Project 

   

The contents of these folders are shown in the Figure 5.17 and Figure 5.18 below: 

 

Figure 5.17 The website folder structure in detail (part 1) 

 



Doc: PS2001-5-2302-011 Rev: R02.00 107-129 

 

 

 

Figure 5.18 The website folder structure in detail (part 2) 



108-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The website has two primary components: 

1 A user guide explaining how to download and use the PAL soft-

ware (contained in the 11-web directory) 

2 A comprehensive guide to validated projects and all the docu-

mentation associated with the PAL project in its entirety (con-

tained in the 21-project directory) 

The remaining folders are secondary and are used to support the primary sections. A 

brief description of all the folders is given below: 

The PAL documentation (11-web directory) 

This contains a full, on-line description and operating guide for the PAL software. It 

explains exactly how to use the PAL software, how to configure it and gives very de-

tailed, real-world examples of how to use it. 

This directory also contains individual module documentation (in an online format) 

that explains exactly how each module is configured, the requirements and options for 

that module and examples of how to use the module. 

This part of the website is directly accessed at the following url: 

http://practicalseries.com/2001-pal/11-web/ 

The Project documentation (21-project directory) 

The PAL software is designed for use within pharmaceutical environments and as such 

is a “validated” project (see the Validation Plan [Ref. 001] for a detailed description of 

validated projects and their requirements).  

Validation is the process of making sure a computerised system (such as a PLC and its 

software) does precisely what it was designed to do; specifically, it is the exercise of 

correctly and traceably documenting every requirement of the system and making sure 

that that requirement is formally and exhaustively tested.  

The fact that the Project is validated, and the associated documents required by such 

projects have been deemed to be useful in their own right. This part of the website gives 

http://practicalseries.com/2001-pal/11-web/


Doc: PS2001-5-2302-011 Rev: R02.00 109-129 

 

a practical approach to validating a control system, it explains the “life cycle” process 

and the phases necessary to progressing from a requirement specification to a fully 

validated and deployed system. 

This part of the website provides examples of all the documentation required to by a 

validated system and explains how they should be used. This documentation is all 

made available in pdf and Microsoft Office formats (Word, Excel, Visio and Projects); 

the documents are complete and can be downloaded and reused as a template by any-

one to whom they may be useful; again under the MIT licence (see page 2) 

The project documentation also includes copies of the completed test and qualification 

documents needed to demonstrate the PAL software has been validated 

This part of the website is directly accessed at the following url: 

http://practicalseries.com/2001-pal/21-project/ 

Common resources (00-comres directory) 

The common resources are those components needed by every page within the web-

site. It contains things such as the common cascading style sheets (CSS), the JavaScript 

(JS) files used within each page, common images and the common font-files needed to 

correctly render the web pages. 

The 00-comres directory is broadly split into two further directories: 

 11-resources Contains CSS, JS and jQuery files written and produced by the PSP 

 21-global Contains third party components needed by the website 

   

The 11-resources folder contains files associated with the website that have been 

written and developed by the PSP engineers (i.e. these are files that belong to the PSP). 

They fall into three categories: CSS files (to manage the appearance of the webpages), 

images (such as logos &c.) and JavaScript files that handle the dynamic navigation 

used on the web pages. 

  

http://practicalseries.com/2001-pal/21-project/


110-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The 21-global is primarily used to hold third party applications that are used within 

the website. These are categorised as follows: 

 woff files These contain the fonts used by the website and were purchased by the PSP 

 normalise.css A third-party file use to standardise how different browsers render a website 

 lightbox.js Used to display images in a larger, overlay arrangement 

 Waypoints.js Used to create dynamic navigation bars 

 Hyphenator.js Used to correctly and dynamically hyphenate the website text  

 MathJax.js Used to render equations on the website where required 

 Google-prettify.js Allows sections of software (code fragments) to be displayed on the website 

   

Administration files (01-admin directory) 

The administration area is used internally by the PSP web development team, it con-

tains various files that are necessary for the website management (such as revision data, 

workflow diagrams, change requests &c.) 

The 01-admin directory is not directly accessible by users of the website, but the con-

tents of it can be accessed by other webpages within the website to display or reference 

particular information. 

Git repository webpages (31-git directory) 

The Git repositories created as part of this Project are all public repositories available 

to anyone with a GitHub account. These repositories all contain documentation of 

some form or another, usually as README.md files, that explain the purpose of the re-

pository and how to use the repository. 

These files often reference specific websites or pages that offer further explanation of a 

particular point. 

The 31-git directory provides a storage location for such webpages for the PAL re-

positories; this document, for example, is available as an online webpage: 

https://practicalseries.com/2001-pal/31-git/11-00-scm.html 

https://practicalseries.com/2001-pal/31-git/11-00-scm.html


Doc: PS2001-5-2302-011 Rev: R02.00 111-129 

 

Binary file storage (81-binary directory) 

All the downloadable aspects of the website: 

• PDF documents 

• Microsoft Office documents 

• Software archive files 

• Code examples &c. 

are stored in the binary area of the website, such files are all accessed via other 

webpages within the website. 

User Document storage (91-userdocs directory) 

The 91-userdocs directory is a special directory and is structured in the correct for-

mat for the TIA Portal User Documentation facilities (see the Software Design Speci-

fication [Ref. 003], section 13 for details of the User Documentation facilities). 

This is the online version of the User Documentation embedded within the PAL soft-

ware TIA Projects. 

The User Documentation allows additional information about a block within the PAL 

software to be directly accessed from within the TIA Portal environment. 

  



112-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.3.3 Local repository 

The website folder: PS2001-pal-website contains the full website in the folders 

listed in the previous section. This folder is also a Git repository (separate to the 

PS2001-pal-software repository that contains the software being developed for the 

PAL, the Controller software, see § 5.2.3)  

This means that the development of the website is under the control of the Git VCS. 

The website is written and developed using the Visual Studio Code text editor. The 

repository aspect of the website is maintained via the source code control aspects of 

this application (again the instructions for installing Visual Studio Code and the vari-

ous Git extension are given in the ES/WDP Configuration Manual [Ref. 006]).  

All repository actions are carried out using the Visual Studio Code application. This 

includes committing changes to the local repository, creating and managing develop-

ment branches and the bidirectional synchronisation of the local repository with the 

remote GitHub repository. 

5.3.4 Master WDP — local repository backup to NAS 

There can be any number of web development platforms (WDPs), generally, each de-

veloper will have one. 

There is however, only one Master web development platform (MWDP), this usually 

belongs to the lead web developer. 

All WDPs have a local repository and are constantly being synchronised with the re-

mote repository on the GitHub servers, whenever a commit is made to a local reposi-

tory, on any WDP, that WDP must first be synchronised with the remote repository 

(ensuring that any changes made by the local commit do not create a conflict with the 

any other changes that have been stored within the remote repository). 

The remote repository is essentially, the master repository and it is this repository that 

holds all the commits made by any WDP. 

For the same reasons given in § 5.2.7, the web repository is also backed up to the PSP 

NAS drive. 



Doc: PS2001-5-2302-011 Rev: R02.00 113-129 

 

This is done by the Master Web Development Platform; each time the MWDP is syn-

chronised with the master repository on GitHub, it makes a complete copy of the re-

pository on the PSP network accessible storage (NAS) drives.  

The MWDP should be synchronised at least once a week with the remote repository. 

The backup mechanism is the same as that for the Master Engineering Station, it uses 

Dropbox as an intermediary, the full description of how this works is give on page 97. 

The Master Web Development Platform has a slightly different folder structure. Simi-

lar to the Master ES, the 2500 Git Project folder is, stored within a live Dropbox 

folder on the MWDP: 

 

Figure 5.19 MWDP NAS backup structure 

Application to access to the PSP Dropbox account should be made to: 

 ACCOUNT MANAGER :  Michael Gledhill 

 ACCOUNT DETAILS :  PSP Dropbox 

 CONTACT DETAILS :  mg@practicalseries.com 

 Table 5.6 PSP Dropbox account manager details 



114-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

 

5.3.5 Remote repository 

All WDPs work with a remote repository that contains the current copy of all commit-

ted changes made to the website on any of the WDP machines. The remote repository 

is the master repository, it holds all the development branches (created by any WDP) 

and the most up to date master branch. 

Any development work that takes place on a development branch on any WDP, will 

at some point be committed to the local repository (on the WDP), before this can hap-

pen, the Visual Studio Code application making the commit will require that any 

changes that exist within the remote repository, but are not present on the local WDP 

(i.e. changes that have been made by other users) are pulled from the remote repository, 

before the local WDP changes can be pushed back to the remote repository. This Pull 

before Push approach ensures that the user must resolve any conflicts between user’s 

local repository on the local WDP and the remote repository before pushing the re-

solved changes back to the remote. 

To use the remote repository from a local WDP, the two must be linked via a secure 

shell key link (SSH link), the process for doing this is explained in the ES/WDP Con-

figuration Manual [Ref. 006]. 

The remote repository is a public repository (one that anyone with a GitHub account 

can read and copy) and is part of the GitHub PracticalSeries organisation. It is availa-

ble here: 

https://github.com/practicalseries  

The remote repository itself is available here: 

https://github.com/practicalseries/PS2001-pal-website 

Read access to the organisation and all of the repositories it contains, is available to 

anyone with a GitHub account.  

  

https://github.com/practicalseries
https://github.com/practicalseries/PS2001-pal-website


Doc: PS2001-5-2302-011 Rev: R02.00 115-129 

 

Access for contributors requires permission from the organisation owner, applications 

for such access should be made to: 

 G ITHUB ORGANISATION :  https://github.com/pract icalser ies  

 REPOSITORY NAME :  PS2001-pal-website  

 ORGANISATION OWNER :  Michael Gledhill 

 CONTACT DETAILS :  mg@practicalseries.com 

 Table 5.7 PracticalSeries GitHub organisation details 

5.3.6 The live website 

The live Practical Series of Publications website is hosted by Heart Internet  in the 

United Kingdom. 

The website has various publications (of which the PAL website is just one compo-

nent), The landing page for the top level of the website is: 

https://www.practicalseries.com/ 

And the landing page for the PAL website is: 

http://www.practicalseries.com/2001-pal/ 

The Master Web Development Platform (MWDP) is used to maintain the live website. 

The live website is an exact copy of the offline website stored in folder PS2001-pal-

wesite on the D: drive of the MWDP, but without the .git folder. 

The website is uploaded from the MWDP to the Heart Internet servers using the 

WinSCP application, the installation of this application is discussed in the ES/WDP 

Configuration Manual [Ref. 006]. 

Logon information is required to give access to the WinSCP application (this logon 

information is also restricted to having the correct credentials, the website will only 

permit machines with specific IP addresses to upload the data). 

  

https://github.com/practicalseries
https://www.heartinternet.uk/
https://www.practicalseries.com/
http://www.practicalseries.com/2001-pal/
https://winscp.net/eng/index.php


116-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The WinSCP application has two windows, the left-hand side is the offline website on 

the MWDP, the right-hand side is the online website on the Heart Internet servers: 

 

Figure 5.20 WinSCP FTP with the live website 

Those requiring FTP access to the website should apply to the following: 

 S ITE OWNER :  Michael Gledhill 

 ACCOUNT DETAILS :  PSP Website FTP 

 CONTACT DETAILS :  mg@practicalseries.com 

 Table 5.8 PracticalSeries FTP access details 

 

  



Doc: PS2001-5-2302-011 Rev: R02.00 117-129 

 

5.4 NAS based Project documentation 

The PAL Project documentation and administration files are stored on the PSP NAS 

drives, in the common project area. This can be accessed as a network location on any 

office PC as follows: 

\\192.168.1.85\01 Pa_Clavis\2230 PS Projects\PS2001-PAL-Proj 

Within this folder, the Project has six distinct areas: 

0-Administration 
Contains the project register (of all documents) and a set of template 

documents for use within the Project 

3-Project management 
Contains all the project management files: resource management, project 

planning, order placement, security &c. 

4-QHSE 
Quality, health, safety and environment. Contains all risk assessment and 

method statements and handles any health and safety incidents 

5-Engineering 

Contains the bulk of the project documentation, organised according to life 

cycle phases. Holds all documents, spreadsheets, drawings &c. required to 

design and build the Project 

6-Accounting Cost tracking, budget management and invoicing. 

7-Correspondence 
All project correspondence including minutes of meetings, scanned copies of 

paper correspondence and a full email archive 

Table 5.9 Main areas within the Project directory 

The full Project folder structure is shown in Figure 5.21: 

 

 

file://///192


118-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

 

Figure 5.21 The full project folder structure 
 



Doc: PS2001-5-2302-011 Rev: R02.00 119-129 

 

5.4.1 Understanding the Project folder structure 

The Project folder structure is designed to hold all the project information. It is split, 

generally, according to discipline (management, engineering, financial &c.). 

This is a common structure for all PSP projects, this is done to give consistency and 

commonality to all PSP projects.  

The bulk of the information contained within the Project folder structure is documen-

tation, the breakout of the 5-Engineering directory is organised by phase and con-

tains all the documents listed in the Validation Plan [Ref. 003], documents such as: 

1 Quality Manual (QM) and Quality Plan (QP) 

2 Validation plan (VP) 

3 User Requirement Specification (URS) 

4 Requirement Traceability Matric (RTM) 

5 Functional Specification (FS) 

6 Hardware and Software Design Specifications (HDS, SDS) 

7 Design Review (DR) 

8 Test documentation (SMTS, SITS, FAT) 

9 Qualification documentation (IQ, OQ) 

10 Training and use documentation (UG) 

  



120-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The directory also contains secondary documents such as: 

• Design drawings 

• Schedules 

• Equipment lists 

• Certificates (calibration &c.) 

• Manufacturer’s literature 

The directory also holds the data for all aspects of the system including backups of the 

developed software, licence information, copies of any software supplied to the project 

(TIA Portal media &c.) and user configuration information (user names, credentials 

&c.). 

The Project directory contains all the live information for the Project and the entire 

project (including development build information) can be recreated from the infor-

mation contained within this directory. 

Each document within the Project, has its own folder, for example the Functional 

Specification is located in the folder: 

PS2001-PAL-Proj\5-Engineering\21-Design-Functional\01-Functional-Specification 

The document filename reflects this location, in this the example, the FS filename is: 

PS2001-5-2101-001 R01.00 PAL FS.docm 

All documents have this format, it can be broken down as follows: 

PSnnnn-A-BBCCDD-PPP Sxx.yy Name 

Where PSnnnn is the project number (2001 in this case), 

A-BBCCDD is the leading directory numbers in the path to the document from the root 

of the project folder, the A being one of the main project areas (Table 5.9), 5 in this 

case. 

BBCCDD are the remaining folder numbers, the FS is in folder: 



Doc: PS2001-5-2302-011 Rev: R02.00 121-129 

 

5-Engineering\21-Design-Functional\01-Functional-Specification 

Taking the leading number from each folder give 5, 21, 01 (the FS is three folders 

deep), hence the first part of the FS filename is: 

PS2001-5-2101 

The PPP is a three-digit number to ensure the document is uniquely numbered, for a 

single document in a particular folder, this is usually 001 (this is at the discretion of 

the user). 

Sxx.yy is the revision status of the document, see § 5.4.3: 

The Name is a meaningful name for the document and can be anything (though gener-

ally, shorter is better, the whole thing should be 50 characters or less). 

Common document folders 

Generally, each PAL document (and drawings, spreadsheets &c.) has its own folder 

within the Project folder structure. The document itself will be in the root of this folder, 

the document folder will also contain a common set of sub-folders: 

 

Figure 5.22 Document common sub-folders 

The purpose of these folders is as follows: 

11-submitted Contains the submitted documents (those with a revision status of R) 

21-Review-Comment 
Contains the marked-up documents with a P status that have been reviewed 

and received comments from the concerned parties 

51-Figs-images-diag 
Figures, images and diagrams used within the main document (Visio drawings 

are often used, the Visio file has the same number as the main document) 

52-Reference Any reference material pertinent to the main document 

91-Superseded All superseded versions of the document (including draft documents) 



122-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

The following shows an example arrangement for the Functional Specification 

 

Figure 5.23 Document common sub-folders (example) 

Empty folder conventions 

The PAL Project folder structure is extensive with a large number of folders, many of 

which are pre-configured in the PSP folder template used to create the Project directo-

ries in the first place.  

To make navigation around the folder structure easier, empty folders are, by conven-

tion, prefixed with the characters E#, this is the default state for all folders. This can be 

seen below: 

 

Figure 5.24 Document common sub-folders (example) 

 



Doc: PS2001-5-2302-011 Rev: R02.00 123-129 

 

5.4.2 Project registry 

The 0-Adminstration folder contains the Project Registry [Ref. 005], this is a registry 

of all the documents produced for the Project  

The Project Registry is an Excel spread sheet that lists every document within the Pro-

ject (usually by phase). It has the file name: 

PS2001-0-01-001 Rxx.yy Project Register.xlsx 

And is located in the following folder 

PS2001-PAL-Proj\0-Administration\01-Project-Register 

Any new document created must be entered in this Project Registry.  

The following is an example of a page from the Project Registry: 

 

Figure 5.25 Document common sub-folders (example) 

  



124-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

5.4.3 Document versions 

The revision of the document is expressed in the form Sxx.yy, where:  

S is the status: 

D – Draft/development 

P – Published for review 

R – Released 

The xx.yy numbers are the revision number, xx being the major revision and yy being 

a minor revision. 

The first formal release of the document will be at 01.00, prior to this the document 

will have been is a draft state (e.g. D00.01, D00.02, D00.03 &c.) at some point it will 

have been published for review (this takes the next logical number, e.g. P00.04). 

Revisions after a document has been released continue with minor revisions from the 

released revision, consider a document at release R01.00 that is to be modified and re-

released, its progression would continue as: 

R01.00 → D01.01 → D01.02 … P01.09 → R02.00 

The status letter changes to reflect the document state, the numbers always go up-

wards. 

  



Doc: PS2001-5-2302-011 Rev: R02.00 125-129 

 

Document revision in document references 

Where documents are referenced from within other documents, e.g.: 

Validation Plan (VP) [Ref. 003] 

The current revision of the document is not quoted, neither is it quoted in the Refer-

ences section of the document, this is to prevent every document having to be changed 

if a single document is modified (changing the revision of the SDS would require the 

reference section of all documents that referenced it to be change, this in turn would 

require all documents that referenced these documents to also be updated &c.). 

To prevent this, document references quote the document number only, the latest re-

vision of which is listed in the Project Registry [Ref. 006]. When using the document 

reference, the Project Registry must be consulted to ensure the correct revision of the 

referenced document is used. 

At the end of the Project when no further document changes will take place (i.e. when 

all as-built documentation is released) all document references will be updated to in-

clude the as-built revisions of all related documents for clarity. 

  



126-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

 

 

 

  

BLANK PAGE 



Doc: PS2001-5-2302-011 Rev: R02.00 127-129 

 

6. References and glossary  

6 References and glossary 

6.1 Document references 

The following documents are referenced in this manual: 

REF DOCUMENT NO. AUTHOR TITLE/DESCRIPTION 

001 PS2001-5-0121-002 PSP Validation Plan (VP) 

002 PS2001-5-2101-001 PSP Functional Specification (FS)  

003 PS2001-5-2311-001 PSP Software Design Specification (SDS)  

004 PS2001-5-2302-011 PSP Software Control Mechanism (SCM) THIS DOCUMENT 

005 PS2001-0-01-001 PSP Project Document Registry 

006 PS2001-5-234101-001 PSP ES/WDP Configuration Manual   

007 PS2001-5-2301-001 PSP Software Module Register 

Table 6.1 Table of references 

 

  



128-129 Doc: PS2001-5-2302-011 Rev: R02.00 

 

6.2 Glossary of terms 

 ABBREVIATION DESCRIPTIONS  

 
AMD Advanced Micro Devices, a company that makes computer processors 

 

 
CSS Cascading Style Sheet 

 

 
DB Data Block 

 

 
DR Design Review 

 

 
ES Engineering Station 

 

 
FAT Factory Acceptance Test 

 

 
FB Function Block 

 

 
FC Function 

 

 
FS Functional Specification 

 

 
FTP File Transfer Protocol 

 

 
Git A version control system application 

 

 
GitHub The online version of Git 

 

 
HDS Hardware Design Specification 

 

 
HMI Human Machine Interface 

 

 
HTML Hypertext Mark-up Language 

 

 
ID Identifier 

 

 
IP Internet Protocol 

 

 
IQ Installation Qualification 

 

 
JS/JavaScript A web-based scripting language 

 

 
jQuery A library of JavaScript objects, commonly used in web development 

 

 
MES Master Engineering Station 

 

 
MIT Massachusetts Institute of Technology (Licence)  

 

 
MWDP Master Web Development Platform 

 

 
NAS Network Accessible Storage 

 

 
OB Organisation Block 

 

 
OQ Operational qualification 

 

 
PAL Practical Series Automation Library 

 

 
PC Personal Computer 

 

 
PLC Programmable Logic Controller (a Siemens Controller) 

 

 
PoC Proof of concept 

 

 
PSP Practical Series of Publications 

 

 
QHD Quad High Definition 

 



Doc: PS2001-5-2302-011 Rev: R02.00 129-129 

 

 ABBREVIATION DESCRIPTIONS  

 
QM Quality Manual 

 

 
QP Quality Plan 

 

 
RAM Random Access Memory 

 

 
RTM Requirements Traceability Matrix 

 

 
SCADA Supervisory Control and Data Acquisition 

 

 
SCL Structured Control Language (a PLC programming language) 

 

 
SCM Software Control Mechanism 

 

 
SDS Software Design Specification 

 

 
SHA-1 Software Hash Algorithm 1 

 

 
SIT Software Integration Test  

 

 
SITS Software Integration Test Specification 

 

 
SMT Software Module Test  

 

 
SMTS Software Module Test specification 

 

 
SSH Secure Shell, a secure network transfer protocol 

 

 
TIA Totally Integrated Solutions (TIA Portal, a Siemens programming tool) 

 

 
TOC Table of contents 

 

 
UT/UDT User Data Type 

 

 
UG User Guide 

 

 
URS User Requirements Specification 

 

 
VCS Version Control System 

 

 
VP Validation Plan 

 

 
WDP Web Development Platform 

 

 
WinSCP Windows Secure Copy, a file transfer program 

 

 
XML Extensible Mark-up Language 

 

 
Zip A file extension for compressed files 

 

 
Zap16 A file extension for TIA Portal compressed files 

 

 Table 6.2 Glossary  

 


	Title page
	Licence
	Authorisations
	Revision history
	Contents
	1. Introduction
	1.1 Software Control Mechanism requirements
	1.1.1 Module revision numbering mechanism
	1.1.2 A version control system

	1.2 Scope and purpose of this document
	1.3 Ownership, status & relationship to other documents
	1.3.1 Ownership of the document
	1.3.2 The status of this document
	1.3.3 Relationship to other documents
	1.3.4 Users of this document


	2. Approach to version control
	2.1 Version control requirements of the SCM

	3. The software revision numbering mechanism
	3.1 Workflow arrangements
	3.2 Master branch revision states
	3.3 Development branch names
	3.4 Development branch commit tags
	3.5 Merging a development branch
	3.6 Individual module revision numbers
	3.6.1 Recording revision numbers within a programmable block
	Hardcoded module revision data
	Network comment module revision data

	3.6.2 Recording revision numbers within a data block
	Hardcoded data block revision data
	Header comment data block revision data

	3.6.3 Recording revision numbers within a User Data Type (UDT)
	3.6.4 Software Module Register (SMR)

	3.7 OB1 module revision numbers
	3.8 Commit points and filenames
	3.8.1 OB 1 and filenames

	3.9 Parallel development branches
	3.10 OB 1 and the Merging of branches
	3.10.1 Merging a single branch or the first branch to merge
	3.10.2 Merging additional parallel branches

	3.11 Nested branches
	3.12 A note on commit messages

	4. The website revision numbering mechanism
	4.1 Workflow arrangements
	4.2 Master branch revision states
	4.3 Development branch names
	4.4 Development branch commit tags
	4.5 Merging of development branches
	4.6 Individual page and file revision numbers
	4.6.1 Recording revision numbers within web page files


	5. Software storage and folder structures
	5.1 An overview of the Project structure
	5.2 Engineering stations
	5.2.1 ES software folders
	5.2.2 Software development area (1000 Software Projects)
	5.2.3 The Workspace and local repository (2500 Git Projects)
	5.2.4 Understanding the Simatic Workspace
	Understanding the Workspace symbols
	Synchronising the Workspace
	Knowhow and write protection
	Common actions
	A note about new objects in the Project

	5.2.5 Understanding the Workspace as a local repository
	5.2.6 Commit point archives
	5.2.7 Maser ES — local repository backup to NAS
	Repository backup mechanism

	5.2.8 Remote repository

	5.3 Web development platforms
	5.3.1 WDP software folders
	5.3.2 Understanding the website structure
	The PAL documentation (11-web directory)
	The Project documentation (21-project directory)
	Common resources (00-comres directory)
	Administration files (01-admin directory)
	Git repository webpages (31-git directory)
	Binary file storage (81-binary directory)
	User Document storage (91-userdocs directory)

	5.3.3 Local repository
	5.3.4 Master WDP — local repository backup to NAS
	5.3.5 Remote repository
	5.3.6 The live website

	5.4 NAS based Project documentation
	5.4.1 Understanding the Project folder structure
	Common document folders
	Empty folder conventions

	5.4.2 Project registry
	5.4.3 Document versions
	Document revision in document references



	6. References and glossary
	6.1 Document references
	6.2 Glossary of terms


