Practical Series

PRACTICAL SERIES AUTOMATION LIBRARY
SOFTWARE CONTROL MECHANISM

AUTHOR: MICHAEL GLEDHILL

ol

AUTOMATION LIBRARY

Published By: Practical Series of Publications
Published in the United Kingdom
mg@practicalseries.com

Copyright 2021 Michael Gledhill

Document No.: PS2001-5-2302-011
Document Template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto)

LICENCE This document and associated software are made available under the MIT License:

The MIT License (MIT)
Copyright © 2021 Michael Gledhill

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

2-129

DOCUMENT AUTHORISATION

NAME POSITION SIGNATURE DATE
Michael . i
Author Gledhill Lead Engineer N\)kh \\\ B 24 May 2022

The signature of the author confirms that the document has been prepared in accordance with an
approved document management process, that all content is technically complete and that all relevant
material has been included.

Frank Project

Reviewed by Greenwood Manager

(24 May 2022

z ’/;_9{35"'/

The signature of the reviewer indicates that the document has been checked for technical content and
that it complies with the technical standards, specifications and conventions.

Christopher Quality 7 P
Approved by Wish Manager { {/}/ 24 May 2022
A i

The signature of the Approver indicates that the document has been checked for compliance with the
quality management Procedures.

REVISION

REVISION DATE REVISED BY DESCRIPTION
. . Properties standardised across all documents
R02.00 24 May 2022 Michael Gledhill
Changes to interrupt and functional group names
RO1.00 21 Mar 2021 Michael Gledhill First release for use

4-129

CONTENTS

3.8.1

1. INtrodUCLiONcoeeeeeneeeeerieeccrennneeeeieeesssenaneeteeesssssssssnnsseesssssssssssnsssaessssssssnes
1.1 Software Control Mechanism requirements........cccccccuuuueeeee
1.1.1 Module revision numbering mechanismccceeeevceerenceneneescnsesceseunenes
1.1.2 A VErsion CONLrol SYSTEM.......cc.ceuecureueeecureeereeneceesseeesesseaeesesseaeasessessssesseaes
1.2 Scope and purpose of this document............uuueeeeeeeecccsnnnnnnee
1.3 Ownership, status & relationship to other documents
1.3.1 Ownership of the dOCUMENTt........c.cceerueeurerencrreererrecereeeeesseeeeaeeeseeaene
1.3.2 The status of this dOCUMENT........ccverueeererercrrerererereeeneseesesesesseseeseeaene
1.3.3 Relationship to other documents
1.34 Users of this dOCUMENTccceerereurerneererreinetsereeseseeeesesesssessessessesssssessesns

2. Approach to version CONtroleeeeeeennnnennnniisiissssssssssssssssssssssssssssssnnes
2.1 Version control requirements of the SCM

3. The software revision numbering mechanism..........eeeeeeeecccisnnnnneeeeecens
3.1 Workflow arrangements
3.2 Master branch revision states.........cceeivvueiieisineiiiisineiicssnnnnn
3.3 Development branch Names......cccceeeeeeeeieeeieeeneceeeeeeneeeeeeeneeeeeens
34 Development branch commit tags.....ccccceeevuennneeeeeccccssnnnnnenee
3.5 Merging a development branch..............uuuueeeereccciinnnnnneeenneen.
3.6 Individual module revision nuUMbeFrsuuueeeeeeeciinnnnneeeeenene.
3.6.1 Recording revision numbers within a programmable block..................
3.6.2 Recording revision numbers within a data block
3.6.3 Recording revision numbers within a User Data Type (UDT).............
3.64 Software Module Register (SMR)........oovveninrnerienereereeeeeeeeeenenene
3.7 OBI| module revision NUMDbEFrS.......ccccueeercrineercssnnerncssnneencens
3.8 Commiit points and filenames.........uuueeeeeeecciinnnneeeerccccssnnnnnnee

OB | and fil@NamES.........oeeueeeeerereeercrceeeeeeteree e se s s s sesens

21
22
23
24
26
27

29
30

... 34

37

6-129

3.9 Parallel development branches...............uuuuueeeeeeecciisnnnnneeecenens 43
3.10 OB | and the Merging of branches.............uuuueeeireeeiinnnnnnnes 45
3.10.1 Merging a single branch or the first branch to merge........cccccceevuveuncene 46
3.10.2 Merging additional parallel branches..........ccceeereneresenennerneenerseererneenee 50
3.11 Nested branches.......uueeeieeeecnnnnnneeiiiiicciinnnnneeeeeeeccssssnnnneeeeenes 56
3.12 A note on COMMIt MESSAZES...ccceeerreisrrnnneeeeeessssssnnsaseneesssssnnns 57
The website revision numbering mechanism..........ccouuuueeeeeeeecccisinnneeecceen 63
4.1 WOrkflow arrangementseeeeeeeecccsnnenneeeecccsssssnnssssecscccsssnnns 63
4.2 Master branch revision statescccoeceuuuuneeeereecciissnnneeeennnns 64
4.3 Development branch Namescceeeeeeeeeeeiieennieeeeeeieeeeeeeeeeeeeeeene 65
4.4 Development branch commit tags......cccceeevunnnnneeeeccccssnnnnnneee 67
4.5 Merging of development branchesuuuueeeeeiccciennnnneeeencen. 67
4.6 Individual page and file revision numbers..........cccceeeiviiisnnnne. 68
4.6.1 Recording revision numbers within web page files.........ccccooruveurenuncunenne 71
Software storage and folder StrUCLUFESuueeeeeeeccinnnnneeeeecccssssnnneeeeeeccsssenns 75
5.1 An overview of the Project structure.........ccccceuuuuueeeeerccccnnne 76
5.2 Engineering stations........cccciiiiiiiiiiiiiiiniiiiiiiisisssssssssssssssssssssssnnes 78
5.2.1 ES SOftWare folders ...t sensessenaes 80
522 Software development area (1000 Software Projects)......... 82
523 The Workspace and local repository (2500 Git Projects)........ 85
524 Understanding the Simatic Workspace..........cocceeveeeneereseneeseeesenseeenennes 87
525 Understanding the Workspace as a local repository.........ccccocceevevcucnnee 95
5.2.6 CoOMMIL POINT ArCRIVES.....cuceececececceeieeeieeeeseseeasessessessessessesseseasessesesaen 96
527 Maser ES — local repository backup to NAS.........ccccovrnrnenencenenne 96
528 REMOLE FEPOSILONYccueueueuerenerreriireiseesetseseese e sssesesssessessessessesessssscens 100
53 Web development platforms........ccccceeceenneeeeeecccccsinnnneeeencees 102
5.3.1 WDP software folders..........icnincrncrnererenerseenensessessessessense 104
53.2 Understanding the website StrUCTUre..........cccveureveereureveerernereereneeesennenes 105
533 LOCAl FEPOSITONYuceueueueueneuerrestesetsessesseaseese e sssenesssesssasessessessessssssssens 112
5.34 Master WDP — local repository backup to NASccccoeoveeenenennee 112
53.5 REMOLE IrEPOSILOrY.....ccueuicerenricerearieerensiessestessesese et ssessesesseasasesssasens 14
5.3.6 The liVe WEDSITEceueericccctccreenneseessesessesesensenens 15

54 NAS based Project documentationeeeeeeeccisnnnneeeeeccens 17
54.1 Understanding the Project folder structure.........ccccoeeeveeencencurencrnenncn. 119
542 ProJECE FEZISTIY ...ccueuceerereceiureceeareereaseeaseaseessese et ssessessssesstsssensensssennens 123
543 D OCUMENT VEFSIONS ...oucunrerernrererneeereenerenseeenseeseesseseessessesessesessessessessesscssens 124
References and gloSSaryccccviiiiiiiiiiiiiiiiiiiniiiiiisisssnssssssssssssssssssssssssssssssnnnns 127
6.1 Document references 127
6.2 Glossary of terms .. 128

BLANK PAGE

8-129 Doc: PS2001-5-2302-01 1 Rev: R02.00

1 Introduction

This document is the Soffware Control Mechanism (SCM) and is applicable to all Si-
matic Controller software developed for the Practical Series Automation Library of soft-
ware modules (the PAL).

The Practical Series Automation Library (PAL) is a library of software modules and
templates that have been made available for the Siemens Simatic S7-1500 range of
controllers (and to a lesser extent the S7-1200 range).

The PAL software is configured and deployed using the Siemens Simatic TIA Portal
programming environment.

The library is freely available under the MIT Open-source licence (see page 2 of this
document).

This document, the Software Control Mechanism, has been produced by Michael
Gledhill, under his authority as the lead engineer of the Practical Series Automation
Library of software modules project.

1.1 Software Control Mechanism
requirements

There are two principal requirements for the PAL Software Control Mechanism:

() Establish a mechanism for numbering and storing the various
software module versions throughout the development, test and
qualification phases of the Project

(@ Establish a mechanism for the storage and tracking of software
module revisions within a formal Version Control System (VCS)

Expanding on these subjects:

1.1.1 Module revision numbering mechanism

The Validation Plan (VP) [Ref. 001], established that software version control was a
necessary requirement for the project and that all software modules within the Project
must have individual revision and status information that covers all phases of the soft-
ware development:

o Software development (system build)

o Testing (at both a modular and integrated level)
o Qualification

. Release for use

The revision system must also be applicable to the TTA Projects as a whole (rather than
just the individual modules within the projects); to clarify, the software modules do
not exist within their own right, each software module is stored in TIA Portal project
that expands as each new software module is developed.

These TIA Portal projects are backed up and multiple revisions may be in used at the
same time, all of these TIA Projects must also be part of the Software Control Mecha-
nism).

10-129

1.1.2 A version control system

A version control system (VCS) is a mechanism for recording changes made to any
files within a software project. It records all the changes, what files were affected by
each change and a reason explaining why those changes were made. It also records
who made the change and the time and date of the change.

The VCS keeps a record of every change made within the project and allows any file
that has been modified to be reverted back to a previous state. It means that if a soft-
ware module is changed, the original module can always be recovered by the VCS.

Version control systems generally have other facilities too, they are able to show the
differences between two different versions of the software (even down to lines within
a file), they allow multiple people to work on the project at the same time—even to
work on the same file at the same time, and they provide mechanisms for resolving
conflicts (where two different people have modified the same section of a file).

Version control systems can be applied to any kind of project; it can be a website, a
documentation project, a software application, engineering control system—anything
at all, as long as it’s a collection of files that can be stored on computer.

The version control system does not itself edit or modify any of the files within the
project; it simply records the changes and, where it recognises a file type, is able to
display those changes that have occurred to it.

The version control system does not care what software application is used to modify
files within the project, it can be anything: text editor, word processor, file manager,
graphics editor, specialist programming application &c. It cares only, that a file under
its control has been modified and why the modification was made.

Version control systems simply record any change made within a collection of files
(the project), who made it, when it was made and the reason why. That is all.

A VCS could be applied to TIA Portal projects, these are stored as archived files (es-
sentially zip files); however, these types of files are proprietary and are not directly
accessible to the VCS. The VCS could, under these conditions, store each archived file,
it would not, however, be able to access the internal components of the file to deter-
mine what changes have been made to any particular part of it (i.e. it could not identify
a particular change to a particular module).

With the advent of TIA Portal V16, Siemens introduced the concept of Workspaces,
these are environments (essentially, just Windows folders) into which the programma-
ble aspects of a TIA Project (blocks, data types and tags) can be exported (or imported)
as XML 'files.

This is a new concept, previous versions of TIA Portal did not offer the facility of ex-
porting software modules in a widely accessible (text based) format, the software could
only be read by the proprietary TIA Portal package itself.

The benefit of this new Workspace facility is that the exported files are stored as XML
files, and XML files are an ideal format for version control systems (VCSs), version
control systems can read every aspect of an XML file and identify any changes that
have been made, and, just as importantly, keep track of all these changes. Additionally,
each block, data type and tag table is exported as its own XML file and as such allows
the tracking of each individual element within the software library. It would for exam-
ple, be possible to identify all the changes made to a particular Function (e.g. FC01001)
and determine at which point in the revision history each change was made.

This was the purpose of Siemens adding this Workspace facility to TIA Portal, it al-
lows proper version control of the software being developed in a TIA Portal project. It
also does not require a proprietary Siemens VCS, any and all VCS systems can track
text-based files (it is fundamentally, what they were designed to do).

To make things easier, Siemens also allow third-party “add-ins” to be created that can
interface with these new Workspaces. One such add-in (created by Siemens) provides
an interface to the version control system Git and its online partner GitHub.

The Git add-in allows TIA Portal to interface with a Git controlled Workspace, Git
also supports various graphical user interfaces, in particular, Git can be controlled and
managed from within the Visual Studio Code (VSC) text editor, VSC is widely used
within the PSP and will be the preferred solution for providing a VCS interface for the
PAL software.

XML or eXtensible Mark-up Language files are text files that are both machine and human
readable; very similar to HTML (HyperText mark-up Language) and widely used to store
documents in a manageable and readable format; it contains both content and structure.

12-129

https://git-scm.com/
https://github.com/

1.2 Scope and purpose of this document

This document is applicable to all software modules developed as part of the PAL, it
explains the mechanisms used to document and control the different versions of each
software module as it progresses through the various project phases. It also details the
Git version control system and its application within the Project to track all software
changes and provide regression mechanisms to access earlier software versions.

Broadly, this document covers the following:

(O Software revision numbering system

. Software development (system build)

. Testing

. Deployment (commissioning) & Qualification
. Release

(@ Git Version Control System

. Purpose of

. A tracking and development philosophy
® GitHub Online repository

. Purpose

. Accessing and control

1.3 Ownership, status & relationship to other
documents

This document is an ancillary document for the Project, the ownership of the docu-
ment (those whom control it and are able to modify it), its status within the Project
and its relationship to all other primary documents are important factors and are ex-
plained below:

1.3.1 Ownership of the document

This document has been produced, and is controlled and maintained by the Practical
Series of Publications (PSP).

This document and all the documents that it references are subject to the change con-
trol management procedures for this project.

1.3.2 The status of this document

This document is an internal PSP document and is not a deliverable item under the
terms of the project.

1.3.3 Relationship to other documents

This document expands on the software revision tracking and control and revision
numbering mechanisms discussed in the Functional Specification (FS) /Ref. 002, § 4.5]
and the Software Design Specification (SDS) [Ref. 003, § 5.2.4].

Its place in the document structure for the Project is shown in Figure 1.1.

1.3.4 Users of this document

This document is technical in nature and users of it should be familiar with the TTA
Portal, Git and GitHub version control systems and the terminology common to those
applications.

14-129

TRACING REPORTING DOCUMENTATION

-l
-
>
r4
z
g e z
Validation Plan o Test Plan oy
VP Ll TP
-
m
0
_ User Requirements c
< Specification E
m
z
=
]
. e Software Control
< (il Soasiite iz Mechanism | THIS DOCUMENT A
< FS
SCM
o
o
=+
a >
P (-] Hardware Design Proof of Concept
« ~m Specification POC
2 HDS
ES
£
Software Desil o
oftware Design . m
o« Specification S?ylesgmde v
SDS (1)
z
Software Module
« Design
Specification SMDS
Design Review
Report DRR v
=
2 ©
= c
8 =
§ o
s
@
= Hardware Factory Hardware Factory y A
= o Acceptance Test Acceptance Test
2 Report H-FATR H-FAT
s
5 v
=z Software Module
8 Test Report]
=b SMTR -
> m
wv
=
Software Integrated Source
Integration Test T Integration Test Code Review ﬁ
Report SITR Specification SITS SCR

Software Factory Software Factory y
Acceptance Test 2 Acceptance Test B
Report S-FATR S-FAT

DEPLOYMENT

1LN3IWAOId3a

HARDWARE KEY

2 ONINOISSIWWOD

COMMISSIONING
|
Installation Installafion o]
e e SOFTWARE

Qualification Qualification <
Report IQR 10 COMMISSIONING r):
Optional E
" (gl
Operational >
Qualification =
0Q Project activiies, o
primary flow path(s) z

Documented evidence,

System Acceptance = reports and credentials

Report for validation
SAR

VALIDATED SYSTEM — RELEASED FOR USE

Figure 1.1 Project Documentation

<=
EEAEREL

Doc: PS2001-5-2302-011 Rev: R02.00 15-129

BLANK PAGE

16-129 Doc: PS$2001-5-2302-01 | Rev: R02.00

Approach to version control

The SCM detailed here must primarily work within the confines of the Git (and
GitHub) version control systems. It must, in addition, provide a navigable set of revi-
sion numbers, both for each module within the PAL and for each revision of the TIA
Portal project that contains those modules.

The revision numbering mechanism must be clear, readable (by humans) and explain
the current status of the software (i.e. under development, under test, in qualification
or released for use).

Git and GitHub use commit numbers derived from the checksum of files being added
to the repository. These appear at best to be seemingly random seven-digit' hexadeci-
mal numbers. They do not represent a meaningful number that is useful for team mem-
bers trying to identify a revision path.

| These commit numbers are of course not random numbers. They are a checksum carried
out of all the files in a commit, plus a header that contains other information (the commit
numbers that immediately preceded this commit, plus some information about directory
structures &c.).

A checksum is basically a function applied to the binary value of every byte in a file that gives
a reproducible figure that can be used to check to see if two files are the same or to identify
data corruption within a file.

The commit number used by Git is a checksum encoded by using the SHA-1 algorithm
(Secure Hash Algorithm 1). This produces a 20-byte (40 digit) hexadecimal number that
uniquely identifies a commit. The commit number shown is just the first seven digits of the
full commit number. This is usually enough to uniquely identify a commit (even on very large
projects).

The first seven digits of a commit number gives 268 million unique values, the full 20-byte
number has 1.5%1048 unique values (a similar number to the quantity of atoms that make up
the Earth); these values also only apply within a repository (two different repositories can
have the same commit number, they don’t interact with each other).

The chance of a duplicate 20 byte commit number is vanishingly small, and is generally not
a consideration, even on every large projects.

Git and GitHub do however, allow any commit point to have an associated tag, this is
entirely at the discretion of the user and (other than the requirement of being unique) can
be anything at all.

This allows each commit point to be tagged with a more meaningful (sernantic) version
number. Something that makes sense to humans.

This sematic version numbering scheme (used to tag each commit point) will provide
a unique number that identifies the current revision of the software module and also
provide status information about which of the phases of software development the soft-
ware is currently in:

o Software development (system build)
J Under test

. Commissioning and qualification

. Released for use

The software version numbering scheme will be incremental in nature (the revision
numbers will only go up), this provides a traceable approach to the software, it will
always be possible to distinguish between earlier and later versions of the software,
simply by examining the version numbers.

To complicate matters, the individual software modules do not exist within their own
right, each software module is stored in TIA Portal project that expands as each new
software module is developed. These TTIA Portal projects exist on multiple develop-
ment branches (see section 3) within the VCS (Git and GitHub) repositories, these TIA
Projects must also form part of the Software Control Mechanism(SCM).

The testing of individual software modules (software module testing) and the testing
of multiple modules (software integration testing) is carried out at specific intervals
throughout the course of the Project, each such test must have its own TIA Portal
“test” project as a record of the test (allowing the test to be repeated if required). Again,
the SCM must provide a mechanism for recording and storing each test revision of the
software.

18-129

2.1 Version control requirements of the SCM

There are seven components that are necessary and required by the SCM in terms of

version control and management:

Q)

@

®
@

Version tracking of individual modules within a TIA Project or
files within a website

Version tracking of the TIA Projects containing the individual
modules

Filename allocation to the various TIA Projects

Workflow arrangements for the VCS, including branching and
merging procedures

Local storage locations of TIA Projects and VCS repositories
Remote storage of the VCS repositories (GitHub)

Internal (PSP) backup mechanism for TTA Projects

Each of these components is addressed in the remainder of this document.

BLANK PAGE

20-129 Doc: PS$2001-5-2302-01 | Rev: R02.00

The software revision
numbering mechanism

This section describes a revision numbering strategy for the PAL software under the
control of the Git and GitHub version control systems.

As stated previously, Git and GitHub use commit numbers to identify individual sub-
missions to the repository, these are commonly referred to as 4ash or sha (pronounced
shar to thyme with bar) numbers. These are unique seven-digit hexadecimal numbers,
and while they identify exactly, a particular revision within the repository, they do not
do so in a way that can be easily interpreted by humans trying to understand the work-
flow of the project (given two commit numbers: [af25d47] and [9cf63bl], it would
not be possible to say, just by looking at them, which came first), commit numbers can
be considered completely random, but non-repeating numbers.

Git and GitHub both have the facility to fag any commit point, this tag must be unique,
but it is entirely at the discretion of the user and can contain up to 25 characters.

The SCM numbering mechanism will use these commit tags to identify the particular
revision of both a software module and a TIA Project.

The tags will also from the basis for naming the TIA Portal project at each commit
point.

3.1 Workflow arrangements

The workflow within the Git repository consists of a single main branch, the master
branch.

The master branch (after some initial development work to establish it) will, gener-
ally, only contain either finished (released) modules, software that has passed some
level of testing or qualification or software that has been released for use.

Released modules are modules that have undergone a software module test (SMT) and
have passed that test (i.e. a module that is deployable) —it does not indicate that all
software modules are finished, just that the module in question is complete, tested and
deployable.

When the software as a whole (all modules), has completed module testing, integration
testing, has been commissioned and qualified, then the software as a whole will be
released for use.

Development work can take place at any time and will always take place on a separate
branch. Development branches always spur from some definite commit point on the
master branch.

A development branch must have a very restricted scope. I.e. a single module or group
of related modules.

Generally, a development branch will contain all the things associated with that mod-
ule (i.e. the function, any data types, data blocks &c.).

When the module development is complete and tested, it will be merged back to the
master branch, the merge point will be given a five-character tag (Figure 3.1):

@ Degea i Daeal il Do2a2 [d] Dooe3
master O O > > master

Commit Commit Commit Commit

nitial commit Development build Development build FCO1001 at rev 001.000
Repasitory created Hardware added Basic structure added FCO1001 RELEASED

DOea2A-008.181 D@8e2A-868.861 Dega2A-801.0e0

DODO2A-FC01001 oY

-
Commi t Commi t Commi t
FCO1001 at rew 000101 FCO1001 st rev 000.801 FCO1001 at rev 001.000
Incremental build Testing Past test — Released for

use

Figure 3.1 master branch workflow (typical)

22-129

3.2 Master branch revision states

The project progresses through various different states along the master branch. Each
state is a commit point and this in turn has a tag with five characters. Each such com-

mit point is referred to as a primary commit.

Each primary commit tag is given a letter that represents the condition of a particular

commit point.

STATE EXAMPLE MEANING

D Do126 Development
P Poool Proving (test)
Q Qooo1l Qualification
R RO00O1 Released
Table 3.1 master branch commit point tags

DESCRIPTION
The software as a whole is in the build phase and has
not been fully tested.
Certain modules may have undergone module testing

and are released for use. This is on a module-by-module
basis.

The software is released for integration testing. All
modules within the software have undergone module
testing and have been released for use.

The software is deployed for commissioning, installation
qualification (IQ) and operational qualification (OQ).

The software is released for use.

The master branch commit tags have the following format:

Where S is the state letter (Table 3.1):

D—Development

SNNNN

. P—Proving (testing)
. Q—~Qualification
° R—Released

NNNN is a number; this starts at 9901 (there is a special case for the first commit to the
repository, this has value ©000) for each particular state and is incremented by one for
each subsequent issue.

E.g. D000l — D0002 — D0003 — P00OI — P0002 — RO00OI — R0O002 &c.

3.3 Development branch names

Generally, development never takes place along the master branch. The only excep-
tion to this is at the start of the project when the repository is created. The initial com-
mit typically takes place on the master branch (this is always tagged D0000), and
there may be subsequent commits on the master branch to establish the repository
structure: folders, configuration files (e.g. .gitignore and .gitkeep files &c.) and
other common repository files (README . md, LICENCE .md &c.).

Such development can take place along the master branch until some suitable point
is reached; this point is usually where module development begins; after this, only mi-
nor changes will take place on the master branch, such changes will be to address any
conflicts that occur when merging multiple development branches back to the master
branch (see § 3.9), or to update some ancillary file information (e.g.README . md).

At this point, no significant development work can take place on the master branch.
Development work always takes place on a separate development branch.

A development branch must have a very restricted scope. I.e. a single module or group
of related modules.

Each development branch is taken from the latest primary commit point on the
master branch (generally referred to as the HEAD). The name given to a develop-
ment branch is always in the format:

SNNNNb-MMYYYYY

Where SNNNN is the commit point tag on the master branch from which the develop-
ment branch diverges.

24-129

The b character is an ordinal character identifying multiple branches that start from
the same master branch commit point, the first branch receives character A, the sec-
ond B, the third C &c.

The remainder of the branch name refers to the object being developed; these are gen-
erally software modules. MMYYYYY specifies the object under development, for ex-
ample FCO 00 . It could equally apply to just a data type e.g. UT01000.

Here, MM refers to the type of module (OB, FB, FC, DB, UT &c.) and YYYYY to the
module number (these are always numerical, five-digit numbers with leading zeros
where necessary)®.

This arrangement can be seen below:

Deea2B-200.161

Second branch
d [DUDDZB*FCOZO(H)
Commit

FC02001 at rev 000.101

master - primary commit paint Incremental build

DooRR § Doeal [@ Deoe: |
o~ P '
\ %4 2\ 4
Commit Commit Commit

master

Initial commit Development build Develapment build
Repository created Hardware added Basic structure added

DO0a2A-000.101 DBaa2A-680 . 801
ILDDDDZA-F(D'I 001
First branch

Commit Commit

FCO1007 at rev 000.101 FCO1001 at rev 000.801
Incremental build Testing

Figure 3.2 Multiple development branches from a master branch primary commit point

Here, two development branches diverge from the latest commit point on the master
branch, point (). The first branch is used to develop module FC0 100 |, the second to
develop module FC02001.

The first branch name takes the master branch commit point (D0002), followed by
the ordinal character, since this is the first branch the ordinal character is A. Giving
DO0002A. This is followed by a dash (-) and the module number, in this case
FCOI00I.

2 Where some other type of change is being made, for example, standardising an arrangement
of comment information across multiple blocks, the MMYYYYY format can be replaced with
some more meaningful name e.g. UNIFICATION &c.

The final branch name is thus DO002A-FCO0100|. Point @) in Figure 3.2.

The second branch is also attached to the master branch commit point D0002, but
in this case it is the second branch, giving an ordinal character of B. In this case the
module being developed is FC0200 1| .

This gives a final branch name for the second branch of: D0002B-FC02001|. Point
(3 in Figure 3.2.

3.4 Development branch commit tags

All development work takes place on the development branch. There will be many
such branches through the course of the Project.

Each development branch will consist of multiple commits, these commits are referred
to as secondary commits (c.f. primary commits made on the master branch). These sec-
ondary commits will mostly be incremental builds (an incremental build is just a point
at which the work was committed to preserve the software at a particular point, these
incremental builds occur often, allowing the software to be recovered if necessary. The
reasons behind an incremental build are at the discretion of the developer, it may be a
significant point in the development of the software, alternatively, it may be just a
commit because it was the end of the day).

Each secondary commit on a development branch is tagged, in the form:
SNNNNb-nnn.amm

Where SNNNND is the first part of the branch name (before the dash), see § 3.3. This is
the originating master branch commit point and the branch ordinal character.

The remaining characters (nnn. amm) are all numerical and reflect the current revision
of the module under development, the details of this format are explained in § 3.6.

The development branch will be complete when the module being developed on that
branch has successfully undergone its software module test and the module is at a re-
lease revision, at this point the development branch can be merged back onto the
master branch.

26-129

3.5 Merging a development branch

When all the work on a development branch is complete, that branch can be merged
back onto the master branch.

Consider the following example:

] Deeee [Deee1] Deea2
oY o
- -
Commit Commit Commit

master

wnitial commit Development build Development build
Repository created Hardware added Basic structure added

D2ee2A-a88-101 Dege2A-008-182 Dees2A-a88-801
oY

DO002A-FCO1001 %_
-

Commit Commit Commit

FCO1001 atrev000.102 FCO1001 at rev 000.80
Inc iid esting

Figure 3.3 Example development branch

Here a development branch (DO002A-FCO 100 |) was initiated from master branch
commit point D0002.

There have been three commits on the development branch: D0002A-000.101,
D0002A-000.102 and DO002A-000.801; the first two were incremental builds and
the last was a software module test. Let us assume that the module passed its module
test and is now finished (released for use).

There will now be an additional (and final) commit on the development branch to
reflect the released revision of the module:

7] Deeed (] Deesl [] Dees2
oY

master

Deee2A-eee-101 | Deee2A-eee-102 || Deee2a-oee-sel || Dee2A-eel-eéee
o ™\ ™\

- - -
Commit Commit Commit Commit

FCO1001 atrev 000.101 FCO1001 at rev 000102 FCO1001 atrev 000801 FCO1001 at rev 001.00
ncremental build incremental build Testing RELEASED FOR USE

DO002ZA-FC01001

Figure 3.4 Example development branch, final commit
The development branch can now be merged back to the master branch, following

the merge, a new primary commit point must be created on the master branch. This
will have a revised revision data for OB1 (see § 3.7) and will have the format SNNNN.

This new commit point must be given the next, logical tag for the master branch. In
this case, the last primary commit tag on the master branch was D0002, the next,
logical primary tag is thus D0O003 (an increment of one on the last master branch tag).

Note: Here, there is a transition from one development tag to the next (D0002 ¢o
DO0003). It would be perfectly possible for this to be a transition to a different
state, i.e. it could be going from development (D) to proving (P), in which case
the numbering restarts at 000 |

Diagrammatically, this is:

a Daaee B Dage1 8 Dage3
master empomniC) O O Fo S
Commit

Initial comm # build De

ammit Development oy
Repasitory created Hardware added

Basic st

Commit Commit Conn: t t t +
| | | |
| | | |

| | |

d Fco1001
e added RELEASED FOR USE

|
D62024-806-101 [Daea2A-aea-162 | Dee82A-808-801 W DaoE2A-201-808
DO002A-FC01001 oY oY

- -
Commit Commit Commit Commit

FCO1007 ot rev 000,101 FCDT001 at rev 000102 FCOT00T at rev 000,601 FCO1007 at rev 001,00
Incremental buikd Incremental buiid Testing RELEASED FOR USE

Figure 3.5 Example development branch, merge to master

Once the merge has taken place, all the secondary commits made on the development
branch will become part of the master branch, thus:

a Deees [Degel G Deee2 Deaa2A-eee-181 DeeazA-eee-182 D2ea2A-eee-8e1 DegezA-eel-e08 M Deea3
™ S F o F oY ra%

O H master
£ b Lk L Lk L

Commit Commit Commit Commi t Commit Commit Commit Commit

nitial commit Development build Development build FCO1001 atrev 000.101 FCOI001 atrev 000102 FCOT001 atrev 000.801 FCO1001 at rev 001.00 FCO1001
Repasitory created Hardware added Basic structure added incremental build Incremental build Testing RELEASED FOR USE RELEASED FOR USE

Figure 3.6 ~ The master branch after the merge

Although the master branch now contains all the secondary commit point made on
the development branch, none of them were made on the master branch itself (all this
work happened on the development branch).

This arrangement is correct; ultimately, when the project is finished, there will only be
the master branch left and this will contain every commit made within the project.

To more clearly understand the master branch, only the primary commit points (with
just five characters) need be considered:

@ oese
F oY o F .Y

master 0, 0 master
Commit Commit

28-129

3.6 Individual module revision numbers

Every module within the PAL software has its own individual revision number, this
was briefly referred to in § 3.4, when discussing the tags of a secondary commit. Each
secondary commit on a development branch has a tag in the form:

SNNNNb-nnn.amm

Where SNNNNDb is the first part of the branch name (before the dash), see § 3.3. This is
the originating master branch primary commit point (the SNNNN) from which the de-
velopment branch diverges and the branch ordinal character, b, (this will be A for the
first, B for the second &c.).

The remaining characters (nnn . amm) reflect the individual revision number of the mod-
ule being developed. The six digits are all decimal numerals.

The numbering of the revision nnn.amm is an incremental numbering system. In this
system nnn reflects the current version of the software; typically, the first properly re-
leased software will be ©91. Previous development versions will be ©00.

The numbers after the decimal point (amm) reflect development and test modification
to the current revision (for software modifications), in this system a reflects the current
status of the software as follows:

FIRST DIGIT (a) MEANING DESCRIPTION

0 Released

Code is released at version nnn (i.e. nnn.000)
mm will be 00

Code is under development and has not been

1-7 Development
tested
8 Proving Proving (test) revisions of the software
Software is deployed to site and is bein
9 Qualification ,P. Y . g
commissioned or qualified
Table 3.2 Software revision number (first digit)

The remaining numbers (mm), are incremental build numbers for the current revision
(this allows development tracking).

Note: A release version of the software will have revision ©01.000, 002 .000,
003.000 &c. Le. the numbers after the decimal point are all zero. The first
development of the sofiware at release 003 would have revision 093 . 101.

3.6.1 Recording revision numbers within a programmable block

All programmable blocks (with the exception of OB1, see § 3.7) have the current revi-
sion number stored in the first non-empty network (usually network 2, sometimes net-
work 3 for blocks with a large, textual block descriptions) of the block.

The revision number is both hardcoded in the block and is stored (with additional in-
formation) within the network comments of that network.

Hardcoded module revision data

The hardcoded information is stored internally within the temporary area of the block
as variable revInfo, this is of the user data type: UT@1000_St_SysRevision:

DATA STRUCTURE UTe1000_St_SysRevision

SIGNAL TYPE FUNCTION

REV_BLOCK String[7] Block number (of this block)

REV_NUMBER String[20] Revision status and by revision number (for this block)
REV_DATE String[10] Revision date in format YYYY-MM-DD

REV_AUTHOR String[20] Revision author (initial and surname) or username

Table 3.3 Data structure: UT01000_St_SysRevision

The purpose of this is to hardcode in a recoverable format the basic, necessary revision
data of the particular module (hardcoded information will always be present and re-
coverable from the Controller, even if the code comments are lost):

o Block ID (the unique number of the block in question)
o Revision number (incorporating status information)

o Revision date

o Revision author

30-129

An example of this is shown below:

¥ Network 2: Curentrevisicn and medification history

»
#5Y5_SIGNALS._False S_MOVE
it EN e
FCOI00T' — iy OUT — #revinia REV_BLOCK
S_MOVE
EN —_—
'001.000'— N OUT — #revinfe.REV_NUMBER
S_MOVE
EN —_—
'2020.1108'— Iy OUT — #revinia REV_DATE
5_MOVE
EN —_—
‘M. Gledhill' — 1y OUT — #revinfe.REV_AUTHOR

Figure 3.8 Block hardcoded revision information

The temporary variable revInfo is part of the block interface and is common to all
PAL software modules (it must be defined and be present for all blocks within the
PAL), an example is shown below:

001-GIT-D0127 » CON100 [CPU 1515-2 PN] » Program blocks » FC01001_StdSysGlobalData [FC100

Wi FF L, ER R8s S Bl sd (= 'z% MGaet &°7 8 =
FC01001_StdSysGlobalData
Neme Data type Defaultvalue Comment
1@~ input
2 = CLOCK_MEM Byte The clack memory byte (within the PAL this is always MB10)
3 4@ v output i
4 @ 5YS_SIGNAL_TAGS Int The system logic and timing signals for direct access
5 <@ v Inout
6 4@ = b SYS_SIGNALS *UT21000_Dy_SysSignals” The system logic and timing signals for parametric access
7 4@ = » SYS_DATA *UT21001_Dy_SysData” The system data storage structure interface, holds the cycle & RTC data
& 4@ ¥ Temp
8 <mf= = revinfo “UT01000_5t_SysRevision” Revision information for this block
10 4@ = REV_BLOCK String[7]
11 4@ = REV_NUMBER String[20]
12 4@ = REV.DATE String[10]
13 4@\ = REV_AUTHOR String[20] Revisior
14@e b licnfo “UT01001_5t_SysLicence” Licence informatien for this block
15 4@ = » S|_ProgramCycle SI_ProgramCycle Used by RD_SINFO, holds infarmation for the current OB
1640 = » S| Startp S|_Startup Used by RD_SINFO, holds information for the last startup OB
17 @= wrkint Int Wiorking storage (integer)
18 @ u wrkDint Dint Wiorking storage (double integer)
19 4@ = wrkReal Real Working storage (real)
20 4@ = wrklTime LTime Working storage (Long Time)
21 @= » wikDTL DL Wiorking storage (DateTimeLong)
22 4@ v Constant
23 = Add ne
24 @ ¥ Return
25 4 = FCO1001_StdSysGlobalData Void
Al i >
e o

Figure 3.9 Hardcoded module revision storage variable

Network comment module revision data

The network comments contain considerably more information about the revision and
its point in the software development workflow, under the control of the VCS.

Figure 3.10 show an example of the network revision comments. These comments
represent the example shown in § 3.5, reproduce in Figure 3.11 below.

= Network 3: Current revision and modification history

-

IMODIFICATION HISTORY
This is a complete summary of all software modifications made to this block. The current
revision is at the top of the list

The current revision, author and the date of the revision are hardceded into the Controllerin
this network (allowing revision data to be obtained directly from the Controller),

The revision data shown here, in the network cormments, contains additional information
reflecting the software development workflow, under the version control system (VCS).

The VCS inuse is the GITSource Code Management system in conjunction with the GitHub enline
hosting system. The software in its entiretyis available in the GitHub remote repository:

https:figithub.cormimgledhilliP2001-pal-software

This repositoryis public and can be freely cloned and used under the MT Licence.
The MIT Licence is reproduced in full in the last network of this software module.

— FCO1001
REVISICOHN MASTER BRANCH DEV
DATE (nnn.amm} COMMITTAG (Base —= Merge} BRANCH AUTHOR
2020.11.09 001.000 Doooz Dooo2 DOooo2 Mone L. Gledhill
FCO1001 — RELEASED FORUSE
Merge back to master branch
2020.11.09 001.000 DO002A-001.000 DOO0OZ MIA DO002A M. Gledhill
FCO1001 — Posttest RELEASED FOR USE
2020.11.08 000.801 DO002A-000.801 DOOOZ MIA DO002A M. Gledhill
FCO1001 — Released for (SMT}
Software module testing
2020.11.04 000102 DO002A000.102 DOOOZ MNIA Do0ozA M. Gledhill
FC01001 — Incremental build
Software based on tested pre VCS version
2020.11.03 000101 DO002A-000.101 DOOOZ MIA DO002A M. Gledhill
FCO1001 — Block created
Where: nnn = Major revision

a = Type (17 Development, &Proving, 9 Qualification, 0 Release)
mm = Minorrevision (mustbe 00ifa =0)
Block properties version number should be setto nn.a (only cne decimal place)

Figure 3.10 Network comment revision information

@ Deeee @ Doeol G Doea3s
oY Fa o
master ® 0 7 master
Commi t Commi.t t t t t Commit
Inital commit sevelopment build ! ! ! ! Fco1001
epository created ed | I | I RELEASED FOR USE
| | | I

D88B2A-288-181 Dase2A-8ea8-182 DBBB2A-88-881 DaBa2A-8a1-288
o F o Y

DO0D2A-FCO1001

- -
Commi t Commit Commi t Commit
FCOT001 at rew 000107 FCO1001 & atrev 000801 FCO1001 at rev 001,00
Incremental buikd Increment, RELEASED FOR USE

Figure 3.11 Example development branch, merge to master

32-129

Examining the network comments in more detail:

—

(8)

B (5 REVISION (5) MASTER BRANCH DEV @)
:, DATE “~(nnn.amm} COMMTTAG {Base —= Merge} BRANCH AUTHOR
A(202D.1 1.09 001.000 Doo03 Doo02 DOO03 Mone M. Gledhill)
FCO1001 — RELEASED FORUSE
B Merge back to master branch
c 2020.11.09 001.000 DO002A-001.000 DOOOZ MiA DO002A M. Gledhill
FCO1001 — Posttest RELEASED FOR USE

Figure 3.12 Network comment revision information details

Point (1) is the start of the revision table

The information given in point 2) to (4) is identical to the information hardcoded into

the module:
. Revision number (incorporating status information)
. Revision date
. Revision author

Point (5) is the commit tag given to the commit when the software is added to the
repository.

Point (6) identifies the development branch upon which the changes were made, only
the first six characters are required (everything before the dash) to uniquely identify the
branch.

Point (7), the MASTER BRANCH contains two entries: BASE and MERGE.

The BASE entry records the commit point on the main branch from which the devel-
opment branch spurs away, in this example it is at the commit point with tag
D0002:

a DO8R2

Commit

Development build
Basic structure added

DO0002A-FC01001

Figure 3.13 Base commit point (where a branch diverges)

The MERGE entry records the commit point tag at which the branch re-joins (merges)
with the master branch. In this case it is at commit tag D000 3:

[Deee3

master
Commit
FCO1001
RELEASED FOR USE
DO002A-FC01001

Figure 3.14 Merge commit point (where a branch merges)

The BASE/MERGE entries are complete in Figure 3.12 for the final entry in the revision
list (entry A), but the MERGE entry reads N/A (not applicable) in the preceding entries
(entry C for example). The reason for this is that while the software is being developed
on the DO002A branch, further developments may be taking placed on other branches
(see § 3.9 for an explanation of this), and these branches may merge back to the mas-
ter branch before this one (effectively occupying the next commit point tag).

It is not until the development branch is complete, and ready to be merged back to
the master branch, that the final MERGE commit point tag will be known.

3.6.2 Recording revision numbers within a data block

Data blocks, both static and dynamic, like programmable blocks, have the revision in-
formation both hardcoded in the block and stored (with additional information) within
the header comment area of the data block.

If the data block is being developed as part of the development of a software module,
the development branch will have a label associated with the programmable block ra-
ther be directly associated with the data block (in the previous example, the branch
was called DO002A-FCO100, labelled for the software module being developed:
FCo1001).

Data blocks are to some extent independent of the standard blocks with which they are
associated, a new device may be added to a project and the associated data blocks will
be modified (and their revisions changed) to accommodate it. The standard module
within which the data blocks are used will not change.

If the data block were the sole focus of the development branch it would be permissible
to label the branch for the data block in question (e.g. DO002A-DB21001).

34-129

Hardcoded data block revision data

The hardcoded information is stored as the first non-header variable of the data block.
As with programmable blocks, the variable is called revInfo, and is again of the user
data type: UT910060 St _SysRevision; this being the same data type used for pro-
grammable modules (see Table 3.3).

An example of this is shown below:

2 @ W, B = °7 Keepoctualvalues g Snapshot ™% ™, Copysnapshots tostartvalues g & " =
DB22001_Dy_InstAnalogRead
Name Dats type Start value Comment
1 40 > Static
2 @)= » _DB_Header Array[0.79] of Bool STANDARD ANALOGUE INSTRUMENT READ
3 as 0000_0 Bool false
i 0000_1 Bool false W— DB CURRENTREVISION
= ~ revinfo 1'u1mnnn_:z_;y,ky-mmn'

4
5 4@

6 REV_BLOCK String[7] 'DB22001"
7 @ = REV_NUMBER String[20] '001.000" revision number
& l@ = REVDAE string[10] '2020-11-05"
9 @l = REV.AUTHOR String[20] ‘M. Gledhill
0lan 0010_0 | Bool false
1@ 0010_1 Bool false — ANALOGUE INSTRUMENTS
12 @ = » FCION *UT22001_Dy_InstAnalogRead” Filter 1 outlet flow

Figure 3.15 Hardcoded data block revision storage variable

Header comment data block revision data

The network comments for a DB contain the same type of information (and in the
same format) as programmable blocks (see § 3.6.1).

Data blocks do not have the facility for network comments that is available to pro-
grammable blocks; however, all PAL data blocks are configured with a header array
with variable name DB_Header, this is an array of 80 Boolean values and is used purely
as a comment area for the data block. The revision information is contained within the
comment area of this DB_Header array.

Figure 3.16 show an example of the data block header revision comments.

PS2001-GIT-D0127 » CON100 [CPU 1515-2 PN] + Pre

#F BB E T ceepocualvalies (g snapshot S B Copysmapshots tosmnvalues B @ Load startvalues as acoual values) By =]
DB22001_Dy_InstAnalogRead
Detm type Startvalue Comment
@ s ~

2 eray{0.79] of Bool 'STANDARD ANALOGUE INSTRUMENT READ

3 8oal

4 o8| 1] Beal

s _DB_Header2] 8ool L THE: STANDARD ANALOGUE INSTRUMENT READ (SCALE 8 ALARM MONITORING)
6 _DB_Header[3] ool

7 e, 4] Boal

s e, 5] Bool . TEE: DvhemC
s _DE_Header[s] 8aal

1 _oe_tieaderl7] sool

1 _DE_Headerls] Bool This is the dynamic data block assaciated with the standard analogue instrument read

2 _DB_Hesder(s] Boal a black: -
3 Db_teaderl10] Bool ® FC02001_Stdinstansiog

" _DB_Header[11] Boal

15 _DE_tesder{12] ool Y The dynamic dats holds the current scaled value of the insument, along with

18 anyalarms, mamings or fults

"

15

e instrument.

— ewevwy —

MODIFICATION HISTORY

éanaeaaaeaaaceaeeaaacrjaeeeaaaaaoaaanaeﬂnaeaaaceaecea

7 Thisis 8 summary of the recent sofware modifcations made to this block (mest recent at top)
=

» — pazz00m

2 REVSION WASTER BRANCH DEV

51 DaTe (namm) COMATHG (Base —>beme) ERANCH AUTHOR
n 20201105 001000 00003 00002 DOOOY Hone M Gledhil
- RELEASED FOR USE

s Verge back 1o master branch

” _DB_Hesder(3:] Baal 2001108 001000 000024001000 DOG02 WA DOOGIA M Gledhil
» _D_Hesger(3s] ool : RELEASED FOR UsE

_DB_Header[36] Bool
al 20201104 000102 DOOD2A000.102 DOGK
ner

D0aza M Gledhill

build

4 ot 39] Boal based on tested pre VCS version
43 _DE_Hesder[<0] 2ol

“ ol 20201103 000101 DOD02AD00101 _ DOGOZ WA DO0G2A_ M Gledhil

45 D822001 Biock created

4

Where: nan = Major e
ot 8Prouing. 9 Qualfication. D Releaze)
be 00 ifa =0}

uld be set ta nn.a (only ane decimal place)

I B EEE 0 EEE N

@ i 51] Boal
ssl@ _DE_teaderls2] ool
56 @ _DB_teader|53] Bool v

Figure 3.16 Header comment revision information

The header comments are applied in exactly the same way as the network comments
of a programmable block (see page 33).

The DB_Header array is of a finite size and cannot accommodate unlimited comment
information (unlike a programmable block), where the revision information becomes
longer than the available space, the oldest revisions will be removed from the list (the
revision information will still be recoverable from earlier commit points affecting that
particular block).

36-129

3.6.3 Recording revision numbers within a User Data Type (UDT)

UDTs, both static and dynamic, have only hardcoded revision information and this
holds only the current revision information, identical to the hardcoded data in a data
block.

The hardcoded information is stored as a variable of the UDT. As with data blocks,
the variable is called revInfo, and is again of the user data type:
UTo1000_St_SysRevision; this being the same data type used for data blocks and
programmable modules (see Table 3.3).

An example of this is shown below:

PS2001-GIT-D0127 » CON100 [CPU 1515-2 PN] » PLC data types » UT22001_Dy_InstAnalogRead

¥ @B E E

UT22001_Dy_InstAnalogRead
Name Data type Default value | Comment

1@~ revinfo *UTD1000_5t_SysRevision" Revision information

2 la REV_BLOCK swingl7] “uT22001" o T

3 |a REV_NUNBER string[20] 001.000° A d by revision number

1 a REV_DATE String[10] 20201105 &

5 dmls REV_AUMOR String[20] "M Gledhill R or

6 la 00100 Int 0

7| 0010_1 It 0 W— STATUS (FOR BLOCK ICON AND SYMBOL)

8 4@ status_ConfigEmor Bool 2 Block is configured incorrectly

9 @ status Am_H Bool High alarm is active (1 = alarm active, 0 =no alarm)

10 |a Bool Low alarm is active (1 = alarm active, 8= no alarm)

1 la Bool STATUS — High waming is active (1 = warming active, 0= no warning)

i2|a Eool Low warning s active (1 =warning active, 0 = no warning)

5 |a Bool High alarm is masked (1= alarm masked, 0 = normal)

“|a Bool Low alarm is masked (1 = alarm masked, 0 = normal)

15 |a Bool s High waming is masked (1 = warning masked, 0= normal)

16 @ Bool STATUS — Low warning is masked (1 = warning masked, 0 = normal)

7 |a Eool High alarm iz disabled (1 =alarm disabled, 0= narmal)

18 |a Bool Low alarm is disabled (1 = alarm disabled, 0 = normal)

19 | L Bool High waming is disabled (1 =waming disabled, 0 = normal)

30 @ status_Wm L Bool Low warning is disabled (1 = warming disabled, 0 = normal)

21 @ status_Fault Bool STATUS — Instrument is in fault (1 =fault present, 0 = healthy)

2@ swmtus_simon Bool Instrument is in simulation mode (1 = simulation mode on, 0= nermal)

23 40 status_RemoteOn Bool Instrument is in remote mode (1= remote mode, 0 = remote mode off)

2440 status_Localon Bool s STATUS — Instrument is in local mode (1= local mode, 0 = local mode off &
[<] I [>]

Figure 3.17 Hardcoded UDT revision storage variable

UDTs are closely associated with a standard module, and any change to a UDT will
cause a subsequent revision change within the associated module (after all, only the
module can do something with the variables in the UDT). It is however, possible, and
indeed common, for a change to the software module to have no effect on the UDTs
associated with it.

For consistency, whenever there is a change to a UDT or to the standard module that
uses that UDT, the UDT revision will be changed to match the released version of the
standard module (even if there has been no change to the UDT). For example, if a
standard module is changed in some way and released at revision 902 .000, all the
UDTs that are associated with it will also be released at revision 002 . 000.

In short, the released UDT revision should always match the revision of its parent
software module.

3.6.4 Software Module Register (SMR)

A full list of all software modules is maintained in the Software Module Register
(SMR) [Ref. 007].

This register contains the current revision of each module and the current revision of
all its associated data blocks and UDTs.

3.7 OB1 module revision numbers

Each development branch concentrates (typically) on a single software module (usu-
ally a standard module that will form part of the PAL) with its associated data blocks
and UDTs.

For development purposes, all these blocks are modifiable on a single development
branch and are unlikely to be modified by work on other development (or any other)
branch. In essence, the development takes place in isolation on its own branch.

The revision of the software module under development, its data blocks and UDTs are
all recorded individually in each of the various blocks.

In addition to the module being developed, the main programme organisation block.
OB 1 (more formally identified in the PAL as 0B60001_IntINrmMainProgram), will
also be modified, specifically to call the module under development.

OB 1 is considered a special block in the Practical Series Automation Library (and in
terms of most Siemens Controller software). It is the block that executes all the rest of
the controller software.

As such it contains information about the whole project rather than just a software
module. The revision data is also project specific (not module specific).

OB 1 Network 2 contains the current revision of the whole soffware project (rather than
of a particular block). In this regard the revision information contained in OB 1 does
not follow the nnn.amm format specified for other programmable blocks; it simply

38-129

adopts the commit tag at the time of the commit, consider the previous example. In its

final stage (at the point of merging the development back to the master branch), it

had the following series of commit tags:

@ Deees @ Dagel G Deges

master

- master

7
i t t t t Commit
id ! ! ! ! Fco1001
e added | I | I RELEASED FOR USE
| | | I
Do662A-860-161 Jl D6202A-080-162 | Do002A-006-301 | De0G2A-801-608

DO0D2A-FCO1001 S S
A4 ~

Commit Commit Commit
000101 FCOD01 at rev D0DA02 FCOT0D1 atrev 000801 FCD001 at rev 00100
Incremental build Testing RELEASED FOR USE

Figure 3.18 Example development branch, merge to master

At each commit point on the development branch, the OB 1 network comments would

have recorded each commit, this can be seen below:

-

Network 2: Current revision and madification history

-
MODIFICATION HISTORY (GITHUB VERSION CONTROL SYSTEM)

This is a8 complete summaryofall primary software modifications {commit points) made to this
TA Portal project (the latest commit tag is at the top of the list).

The latest cormmit tag, auther and the date of the revision are hardcoded into the Controller in
this netwaork (allowing revision data to be obtained directly from the Controller).

The development of the software projectis stored and manages within the GITSource Code

Management system (a version control system or VCS) in conjunction with the GitHub online

hosting system. The software in its entiretyis available in the GitHub remote repository:
https:figithub.comimgledhilliPS2001-palsoftware

This repositoryis public and can be freely cloned and used under the MIT Licence.
The MIT Licence is reproduced in full in the previous network

DATE COMMITTAG AUTHOR REASON FOR MODIFICATION

2020.11.09 DO002A-001.000 M. Gledhill FCO1001 — Posttest RELEASE

2020.11.08 D0O002A-000.801 M. Gledhill FCO1001 — Released for (SMT)

2020.11.04 DO002A-000.102 M. Gledhill FCO1001 — Incremental build

2020.11.03 D0002A-000.101 M Gledhill FCO1007 — Block created
Secondary commit points

2020.11.02 DODO2 M. Gledhill Basic software strucure build

2020.11.02 DOOO1 M. Gledhill Hardware build

2020.11.01 o000 M. Gledhill Initial commit repository created

Figure 3.19 OB 1 revision history on the development branch

Here, it can be seen that the comments reflect the secondary commit points made on
the development branch.

Each revision should be restricted to just one line in OB1.

Once the development branch has been merged back to the master branch, there will
be an additional primary commit to reflect this; at this point, the secondary commits
will be removed from OB 1.

The revision history contained in OB 1 at each primary commit point only shows the

primary commit information. In this case the primary commit is D0003 and the OB1
revision history is as follows:

-

Network 2: Current revision and maodification history

MODIFICATION HISTORY (GITHUB VERSION CONTROL SYSTEM)
This is a complete summaryof all primary software modifications (commit points) made to this
TA Portal project (the latest commit tag is at the top of the list)

The latest commit tag, author and the date of the revision are hardcoded into the Controllerin
this network {allowing revision data to be obtained directly from the Controller).

The development of the software project is stored and manages within the GITSource Code
Management system (a version control system or VCS) in conjunction with the GitHub online
hosting systern. The software in its entiretyis available in the GitHub remote repository:

https:iigithub.cem/mgledhilliP52001-pal-software

This repository is public and can be freely cloned and used under the MIT Licence.
The MIT Licence is reproduced in full in the previous network

DATE COMMIT TAG AUTHOR REASOM FOR MODIFICATION
2020.11.09 Dooo3 M. Gledhill FCO1001 — RELEASED FOR USE
2020.11.02 DOOO2 M. Gledhill Basic software strucure build
20201102 DOOO1 1. Gledhill Hardware build

2020.11.01 DOoooo M. Gledhill Initial commit repository created

Figure 3.20 OB 1 revision history at a primary commit point

The OB 1 revision history is hardcoded in network 2, this is similar to the mechanism
used for all other programmable blocks (see § 3.6.1), the difference is that the revision
information is stored in a data block (all other programmable blocks store the revision
information for the block in temporary storage within the block).

This can be seen here:

¥ Network2: cCurrent revision and modification history

3

0.0
*_False® S_MOVE
i EN
PS2001'— IN Ut —{ "DB21001_Dy_SysGlobalData” projRevinfo REV_BLOCK
S_MoOVE
EN
00002 — I *DE21001_Dy_SysGlobalData” projRevinfs REV_NUNBER
S_MOVE
En
020.11.09'— N *DB21001_Dy_SysGlobalData” projRevinto REV_DATE
S_MOVE

EN
M. Gledhill'— v

*DB21001_Dy_ SysGlobalData" projRevinfo.REV_AUTHOR

Figure 3.21 OB 1 hardcoded revision information

The block number is replaced with the project number (PS2001 in this case), and the
S_MOVE outputs are all passed to variables within data block DB21001.

40-129

OB 1 comments are slightly more complicated when multiple development branches
exist, see § 3.10.2.

Note: Where a commit is made directly on the master branch (for minor modification
or to change ancillary files, see § 3.3), the revision of OBI and the filename of the
project must also change to reflect the new commit point tag.

3.8 Commit points and filenames

The TIA Portal project, is saved at each commit point (both primary and secondary);
the project is saved under a new filename at each commit point.

The filename is of the following format:
PS2001-PAL-<commit tag>

For example, a primary commit filename might be PS2001-PAL-D0002 and a second-
ary commit file name PS2001-PAL-D0002A-000-101.

Note: In the filename, any full stops (.) present in the commit tag field are replaced
with dashes (-).

The following shows the individual filenames for each of the commit points shown in
the example of Figure 3.18, the filenames are shown in green:

PS2001-PAL-De8e3
_ Deee3
" .-

-

Commit

i
FC01001
adde« " - 0 1 " x RELEASED FOR USE
DBBB2A-000.101 | DB@B2A-808.102 DB82A-000.801 || DOGA2A-001.800
DO0002A-FC01001 o ol
- -

Commit Commit Commit Commit

Figure 3.22 éommit poin’g ﬁlenameg
The project is saved at each commit point under the its new file name (see above), the
project is also be archived at this point, using the archive facility within TIA Portal
(PROJECT — ARCHIVE), this will produce a .zap16 file with the same filename as the

TIA Project. This is a compressed (zipped) file that can be used to recover the entire
project. These .zapl6 files are all stored as archives on the Practical Series of

Publications network accessible storage (NAS) drives (section 5 explains the various
folder structures and storage locations used by the Project).

3.8.1

OB 1 and filenames

The project filename is stored in network 1 of OB 1. This must be updated prior to
each commit being made (in much the same way as the project revision, see § 3.7).

An example of the OB 1 network 1 project name is shown below:

42-129

Network 1: Project description

TITLE: P52001 — PRACTICAL SERIES AUTOMATION LIBRARY

COPYRIGHT:

© 2020 Michael Gledhill

Part of the Practical Series of Publications
Fublished in the United Kingdom
mg@practicalseries.com
https:iipracticalseries.com

CUSTOMER: Fractical Series (internal development)
FPROJECT: Practical Series Autornation Library (PAL)
FROJECTNO.: F52001

CONTROLLER: CPU 1515-2PNIDP

CONTROLLER MAME:

IF ADDRESS:

CONTOO

192.168.001.100

TA PROJECT NAME :

{ P52001-PAL-D0022-001-000)

DEVELOPMENT

FROTECTION:

To minirmise the risk of inadvertent medification to
tested modules, certain blocks will be released for
use with “protected access” (referred to a “write
protection” in Siemens terminclogy), this allows the
block to be used normally, but prevents the block
being accidentally modified.

This iz in accerdance with the risk assessment given
in the Validation Flant (VF), Appendix A [Ref. 002].

1
THE WRITE FROTECTIOM PASSWORD I5: P52001
]

Figure 3.23 Project filename storage in OB 1

3.9 Parallel development branches

It is perfectly possible to have two (or more) simultaneous development branches:

D6018-601. 099
Commit Commit
FCO2001 at rcw 000,801 FCO2001 ot rev 00100
g RELEASED FOR USE
| I
Doese @ Deeel I @ Dege2 4 eee1s-merce [FINETTIES
™\ ra
master —|_< : master
A4 e
i t 1 Commit Commit Commit
o ! ! £c01001 Merge paint Fcoz001
b I i seLehems Mo st Merge pole aeLeAsen on se
1

I
D8e1A-B888. 381 D@B1A-881.688

DO001A-FCO1001

Commit Commit

FOBTO0N at rev OOOBOT (01001 af rev 00100
Testing RELEASED FOR USE

Figure 3.24 Parallel development branches

This type of arrangement can appear slightly confusing when all the branches are
merged back onto the master branch:

"] Dogee [DBea1 Daa1A-60.501 & |l DoelA-0e1.600 NI D@82 [EGCEETNCEN @ DoeelB-MERGE [Daee3
ra" 4™ ra rat F o o™ ra" ra"

master master
~ 7 A - 7 ~ 7 -~
Commit Commit Commit Commit Commit Commit Commit Commit
i Basaline Build FCOI001 at rev 000801 FCDZ001 ot rev DO0.103 FCDI001 at rew D000 Feo1001 02001 at rev 001.00 WMarge paint Fco2001
Rey Basic project stucture Testing ncrementl buid RELEASED FOR USE RELEASED FOR USE RELEASED FOR USE Adustment RELEASED FOR USE

Figure 3.25 Merged parallel development branches

All the commits are listed in order of the time they were applied.

Things are simplified if only the primary commits are considered:

@ oacen
F oY F oY ™~

master master
- - - -
Commit Commit Commit Commit
Initial commit Baseline Build FCO1001 FC02001
Repository created Basic project structure RELEASED FOR USE RELEASED FOR USE

Figure 3.26 Merged parallel development branches, primary commits

From a workflow point of view, this is how the Project software should be viewed, a
series of primary commits at which some part of the software was released for use.

Note: The secondary commits are always present and can be recovered, however it is the
primary commits that denote milestones in the software development.

With parallel branches, it does not matter what order the branches are made or what
order they merge back to the master branch. In the previous example, DO00IA is
created first, and is merged back to the master branch first. The following shows a
similar arrangement with the first branch merging last:

| pee1s-aee.se1 W Dec1s-oe1.088

Commit Commit
FCO2001 al1ev 000201 FCO2001 ot rev 00100
Testing RELEASED FOR USE
| I
Deese } + D8ap2-HERGE
master o) O Ot mosir
Commit Commi t t Commit t Commit Commit
Initial commit Baseline Build } Fc02001 | Merge point FCo1001
Repository created Basic project structure: \ RELEASED FOR USE : Adjustment RELEASED FOR USE
DO0OTA-FCO1001
Commit Commit
FC01001 at rev 000801 FCO1001 at rev 001.00
Testing RELEASED FOR USE

Figure 3.27 Parallel development branches with different merge order

Here, the second branch D000 B is created after D000 | A but merges back before it;
in this case the merged result would be:

@ oeeee veor Dos15-5o1-200 CGESCNCIN 6 veesa-ueRse | ENNEEEE
”~n F o r o N N F o N F oY 5
master mast
- - - - - - - - -
Commit Commit Commit Commit Commit Commit Commit Commit Commit
tial commit Baseline Build FCO1001 at rev DOD.BD1 FCO2001 at rev DOD.103 FCOZ001 at rev DO1.0D FC02001 FCO1001 at rev 0O01.00 Merge point FCO1001
Repasitory created Basic project structure Testing Incremental build RELEASED FOR USE RELEASED FOR USE RELEASED FOR USE Adjustment RELEASED FOR USE

Figure 3.28 Alternative Merged parallel development branches
And with just the primary commits:

@ Degee] Daeel @ Daee2 @ D@3

master —p-o—p—o—p—o—’_o—p— master

Commit Commit Commit Commit
nitial commit Baseline Build FC02001 FC01001
Repository created Basic project structure RELEASED FOR USE RELEASED FOR USE

Figure 3.29 Alternative Merged parallel development branches, primary commits

44-129

3.10 OB 1 and the Merging of branches

Where software development takes place on individual development branches, this
will generally involve modules that have no relation to each other, in the example of
Figure 3.24, the first branch develops a particular function (FC01001) and the second
branch a completely different module (FC62001), these two modules (and their asso-
ciated data blocks and UDTs) could be merged back to the master branch without
issue, all the modules developed on the first branch have no connection with the mod-
ules on the second branch and vice versa; indeed, each branch has no knowledge of
the modules being developed on the other branch.

This complete independence of modules on the different development branches means
that there is generally, no conflict when the branches are merged, all the modules of
the first branch can be merged to the master branch, and when the second branch is
merged, it has a completely separate set of modules that can also be merged without
conflict.

There is however, one problem with this: OB 1. OB 1 contains revision information
for the whole project (see § 3.7) and both branches will have a modified OB1 and both
OB 1s will be different; this will not cause a problem when the first branch is merged
back to the master branch, all the changes were on the development branch and will
merge back to the master without any conflict (referred to as a fast forward merge in
Git terminology). However, when the second branch is merged back, there will be a
conflict with OB 1 (because it has been changed on both branches) and there needs to
be some mechanism for reconciling the differences.

To accommodate this, the following section describe how branches should be merged
together and how the primary commits are generated.

There are two types of merge, the first is where the first (or a single) development
branch is merged back to the master branch, this is the easier merge because there will
be no conflict. The second type is where additional branches are merged back, this will
cause a conflict with earlier merges and this is handled slightly differently.

Examining each in turn:

3.10.1 Merging a single branch or the first branch to merge

Consider the following example from the previous section:

Commit Commit
FCO2001 2t rev 000,801 FCO2001 ot rev 001.00
Tesing | RELEASED FOR USE
1 1
oeeee : i ep—
master —|_c c c master
Commit Commit t t Commit Commit Commit
! | Merge polnt
! i ReLeASEn roR USE p ReLEASD FoR use

|
DBe1A-088 . 881 Dee1A-001.080

D0001A-FCO1001

Commit Commit

CO001 & rey ONOBOT FCOIG1 at rew 001.00
Testing RELEASED FOR USE

Figure 3.30 Parallel development branches

For the moment, consider only the first development branch to merge back to the mas-
ter branch: D000 A-FCO01001:

At the merge point, the last commit to have been made on the D000 IA-FCO0I1001
branch was DOGO1A-001.000, at this point OB 1 had the following revision comments
in it:

¥ Network 2: Currentrevision and medification history

-

MODIFICATION HISTORY
The revision data shown here, in the network comments, contains additional information
reflecting the software development workflow under the version control system (VC5) employed

to track all software changes.

The VCS in use is the Git Scurce Code Management system in conjunction with the GitHub enline
hosting system. The software in its entiretyis available in the GitHub remote repository:

https :figithub.comipracticalseries/P52001-palsoftware

The repositoryis public and can be freely copied (forked in GitHub terminclegy) and used
under the MITlicence.

The MITlicence is reproduced in full in the last network of this software module

DATE COMMITTAG AUTHOR REASON FOR MODIFICATION
2021.02.20 D0001A-001.000 M. Gledhill FCO1001-Post test RELEP.SE|
2021.02.20 D0001A-000.801 . Gledhill FCO1001-Released for SMT
2021.02.20 Dooo1 . Gledhill BASELIME Build

2021.02.20 DOOOO M. Gledhill Initial Cornmit — Repository Created

Figure 3.31 First branch merge OB 1 revision data

And the hardcoded revision was:

46-129

— &

" OUT — "0821001_Dy_SysGlobalData® projfevinta REV_BLOCK

En —_
™ OUT— "DB21001_Dy_SysGlabsiDsta® projfevinis REV_NUMBER

S_MOVE
EN —_—
w OUT — "DB21001_Dy Sy:GlabsiData® projRevinks REV_DATE

&N _—
" OUT— "D821001_Dy_5y2GlobalData” projfevinks AEV_AUTHOR

Figure 3.32 First branch merge OB 1 revision hard coded data

The merge will take place in Visual Studio Code (VSC) and will be made as a ‘fast
Sforward” merge (this is the standard arrangement with VSC), this does not create a
merge commit, it simple leaves the head at the last commit on the development branch.

After the merge, the master branch would be as follows:

o] Deeee @ Deeol DeelA-0ee. 801 Dee1A-001.000

master W master

Commit Commit Commit Commit
Initial commit Baseline Build FC01001 at rev 000.801 FC01001 at rev 001.00
Repository created Basic project structure Testing RELEASED FOR USE

Figure 3.33 master branch after first merge

As yet there is no final D0002 primary commit. This commit is made directly on the
master branch after the merge.

This may seem to contradict the “no development work on the master branch” rule (see
§ 3.3); however, adding this primary commit point is simply updating the revision sta-
tus of OB 1 and cannot be considered development work.

There are three changes to be made to OB 1, the first two are changes to the revision
information (both hardcoded and in the network comments), the third is to the file
name (see § 3.8.1).

The changes to the hardcoded OB 1 revision (in network 2) are to update the revision
to the primary commit tag (in this case D0002), as follows:

0.0
holie’ S_MOVE
E— N
w OUT — "DB21001_Dy._ Sy:GlobalData” projRevinio REV
S_MOVE
e
™ sta” projievinto REV_NUMEER
s_MovE
e —
w OUT— "DB21001_Dy_SyzGlabelDats" projRevinko REV_DATE
S_MOVE
e J—
™ OUT — "DB21001_Dy_SyzGlobelData" projRevinio REV_AUTHOR

Figure 3.34 Primary commit point hardcoded update

The update to the network comment requires the removal of the secondary commit
information and the addition of the primary commit revision:

i Network 2: Current revision and modification history

-

MODIFICATION HISTORY
The revision data shown here, in the network comments, contains additional information
reflecting the software development workflow under the version control system (WCS) employed

to track all software changes.

The VCS in use is the Git Source Code Management system in cenjunctien with the GitHub enline
hesting system. The software in its entirety is available in the GitHub remote repositony:

https:figithub.comipracticalseriesiPS2001-pal-software

The repositery is public and can be freely copied (forked in GitHub terminclogy) and used
under the MITlicence.

The MITlicence is repreduced in full in the last network of this software module

DATE COMMITTAG AUTHOR REASON FOR MODIFICATION
(2021.02.20 Doooz . Gledhill FCOT001-RELEASED FOR USE)

2021.02.20 Dooo1 . Gledhill BASELINE Build

2021.02.20 DOOOO . Gledhill Initial Cornmit— Repository Created

Figure 3.35 Primary commit point network comment update

48-129

The final change is to the TTA Portal project name in network 1 of OB 1:

¥ Network 1: Project description

-

TTLE: F52001 — PRACTICAL SERIES AUTOMATION LIBRARY

COPYRIGHT: © 2020 Michael Gledhill
Fart of the Practical Series of Fublications
Published in the United Kingdom
mg@practicalseries.com
httpsiipracticalseries.com

CUSTOMER: Practical Series (internal development)

FROJECT: Practical Series Automation Library (PAL)

FROJECTNO.: P52001

COMTROLLER: CPU 1515-2PMIDP

COMTROLLER MAME: CONTOO

IF ADDRESS:

192.168.001.100

TAPROJECTNAME: (PS2001-PAL-DOOZ

STATUS:

DEVELOFMENT

FROTECTION:

To minimise the risk of inadvertent medification to
tested modules, certain blocks will be released for
use with *protected access” (referred to a “write
pretection” in Siemens terminclogy), this allows the
block to be used normally, but prevents the block
being accidentally modified.

This is in accordance with the risk assessment given
in the Validation Plant (WP}, Appendix A [Ref. 002].

THE WRITE FROTECTION PASSWORD I5: PS2001

Figure 3.36 Primary commit point project filename

Section 3.8 gives details of TTIA Portal project names and their association with commit

points.

3.10.2 Merging additional parallel branches
Again, consider the example given in the previous section:

DB31B-881. 888

Commit Commit

FC02001 at e 000,801 FLO2001 at rev 001,00
Tesing | RELEASED FOR USE
| |
vosse ' ' begs1s-HERSE
mastr e O O aster
Commit Commit Commit

| Merge point
I RELEASED FOR USE cstent RELEASED FOR USE

—_———

D0001A-FCO1001

Commit Commit

FCOI001 ot rev DNOBOT FCOIGO1 af rew 001.00
Testin RELEASED FOR USE

Figure 3.37 Parallel development branches

In the previous section, the first branch D000 I A-FC01001 was merged back to the
master branch, leaving the overall workflow in the following state:

DeeolB-001. 000

Commit Commit

FC02001 at rev 000.801 FC02001 at rev 001.00
Testing RELEASED FOR USE

@ Deeel DeBa1A-86e. 861 DBeA1A-801.060 M@ Deee2

master -w > 4 >) o
Commit Commit Commit Commit
Baseline Build FCO1001 at rev 000.801 FCO1001 at rev 001.00 FCO1001
Basic project structure Testing RELEASED FOR USE RELEASED FOR USE

Figure 3.38 Parallel development after first branch merge

This is the point at which the second branch (D000IB-FC02001) is to be merged
back to the master.

At this point, the last commit to have been made on the D000 IB-FC02001| branch
was DO001B-001.000. Figure 3.39 shows the OB 1 revision comments at this point.

It should be noted at this point that the OB 1 comments do not contain any information
about the secondary commits on the D000 I A-FCO01001 branch or the D0O003 pri-
mary commit point, this is because all those commits took place on other branches
(either the D000 I A-FCOI00I branch or the master branch) and are at this stage
unknow to the D000 I B-FC02001 development branch.

50-129

¥ Network 2: Current revision and modification history

-

MODIFICATION HISTORY
The revision data shown here, in the network comments, contains additional information
reflecting the software development workflow under the version control system (VCS) employed

to track all software changes.

The VCS in use is the Git Source Code Management system in conjunction with the GitHub enline
hosting system. The software in its entiretyis available in the GitHub remote repository:

https:figithub.com/ipracticalseries/PS2001-pal-software

The repasitory is public and can be freely copied i(forked in GitHub terminclogy) and used
under the MITlicence.

The MiITlicence is reproduced in full in the last network of this software module

DATE COMMITTAG AUTHOR REASON FOR MODIFICATION

(2021.02.20 CO001E-001.000 M. Gledhill FCO2001 -Released for USE)
2021.02.20 DOO0O1E-000.801 M. Gledhill FCO2001 - Released for SMT
2021.02.20 DOOO1 1. Gledhill Migrated Software in Workspace
2021.02.20 DOOOO . Gledhill Migrated Software

Figure 3.39 Second branch merge OB 1 revision data

With the hardcoded revision:

0.0
" _False” 5_MOVE
11 EN
=200 IN out “DB21001_Dy_SysGlobalData®.projRevinfo.REV_ELOCK
S_MOVE
EN
'DO0OIE-001.000 IN out "DB21001_Dy SysGlobalData” projRevinfo.REV_MUMBER
s_MOVE
EN
2021.02.20 IN out "DB21001_Dy_SysGlobalData™ projRevinfo REV_DATE
5_MOVE
EN
M. Gledhill IN out "DB21001_Dy_SysGlobalData” projRevinfo.REV_AUTHOR

Figure 3.40 Second branch merge OB 1 revision hard coded data

Again, the merge will take place in VSC and will again be made as a fast forward
merge.

This will do two things, it will merge FC92001 on to the master branch with commit
tag DOVO1B-001.000.

Secondly, it will indicate a conflict in OB 1, this is because OB 1 has been modified
both on the DO00IA-FCOI1001 branch (now merged to the master branch) and on
the D000 B-FC02001 branch.

This can be seen in the SOURCE CONTROL state of Visual Studio Code (VSC):

e>Totally Integ
on>V16 Update

TIA Portal Versit
on>V16 Update 2<
>

TIA Portal Op
V16 Update

P 7 Profes
V16 Update

e>WinCC Profess
V16 Update

1: GitLens . + O @ -

oft Corporation. All rights reserved.

cross-platform Powershell https://aka.ms/pscores
them before committing, & x

> cd
ge-test> git branch DB@A1 master s) Open it Log

merge-test> [|

Pmaster ® ®@o0AO0 Q You, 20210322 Ln135,Col1 Spaces:4 UTF-8 CRLF Markdown & (2

Figure 3.41 VSC merge conflict indication

The commit hasn’t been made at this stage; this is because there is a conflict in one of
the files.

This can be seen in point (1) in Figure 3.41, the affected files are listed under MERGE
CHANGES point (2), here it is just OB 1 that has a conflict (conflicted files are indicated
by the red exclamation mark).

All the conflict free files (the ones that will merge without any issues) are showing as
STAGED CHANGES.

52-129

To allow the commit to take place, the OB 1 modifications will be discarded, this is
done by right clicking the OB 1 file in MERGE CHANGES point (2) in Figure 3.41 and
selecting ACCEPT ALL CURRENT in the dropdown menu (the current being the current
or, in this case the master branch).

The merge can now be committed, in this case with commit message D000 IB-
MERGE.

This will commit all the changes from the D000 I B-FC0200 | branch, but leave OB 1
as it was at the D0002 commit point, the list of commits on the master branch is
shown below.

All the commits are there from both branches, the master branch has the following:

] Deeal Dee1A-ee0.801 Dee1B-ee1.eee [] D882 Dee1A-8e1.888 Deee2-MERGE
oY F oY F o oY "

o F o

master

v A\ 4 A4 A\ 4 4 A4 A\ 4 master

Commit Commit Commi t Commit Commit Commit Commit

Baseline Build FCO1001 at rev 000801 FCO2001 at rev000.103 FCD2001 at rev 001.00 FC02001 FCO1001 at rev 001.00 Merge point
Basic project structure Testing Incremental build RELEASED FOR USE RELEASED FOR USE RELEASED FOR USE Adjustment

Figure 3.42 Merge intermediate commit
However, another primary commit now needs to be made on the master branch, this
will be D0003, and this must include the updates made to OB 1, in the last commit on
the D000 IB-FC02001 branch.

This is similar to the changes made to OB 1 for commit D0002 (see § 3.10.1); it should
be noted at this point that OB 1 is currently in the same state as it was at D0002, the
last primary commit on the master branch

Again, there are three changes to be made to OB 1, the first two are changes to the
revision information (both hardcoded and in the network comments), the third is to
the file name (see § 3.8.1).

The changes to the hardcoded OB 1 revision (in network 2) are to update the revision
to the primary commit tag (in this case D0003), as follows:

S_MOVE

e

m OUT — "5821001_Dy. SyslobalData” projfevinta REV_BLOCK
5_MOVE

e —_

e OUT— "DB21001_Dy. SysGlobaiData” projfevints REV_NUMBER
S_MovE

e _—

N OUT— “DB21001_Dy Sy=GlobaiDats® projevins REV_DATE
s_MOVE

e _—

w OUT — "DB21001_Dy_SyzGlobaIDats" projRevinks REV_AUTHOR

Figure 3.43 DO0003 primary commit point hardcoded update

The update to the network comment requires the removal of the secondary commit
information and the addition of the primary commit revision:

* Network 2: Currentrevision and medification history

-
MODIFICATION HISTORY
The revision data shown here, in the netwark comments, contains additional information
reflecting the software development workflow under the version control systermn (VCS) employed
to track all software changes.

The VCS in use is the Git Source Code Management system in conjunction with the GitHub online
hosting system. The software in its entiretyis available in the GitHub remote repository:

https:figithub.comipracticalseries/PS2001-pal-software

The repository is public and can be freely copied (forked in GitHub terminclogy) and used
under the MTlicence.

The MITlicence is reproduced in full in the last network of this software module

DATE COMMITTAG AUTHOR REASOM FOR MODIFICATION

(2021.02.20 Dooos . Gledhill FCO2001 -RELEASED FOR USE)
2021.02.20 Doooz . Gledhill FCOT007 - RELEASED FOR USE
2021.0220 DOOO1 M. Gledhill Migrated Software in Workspace
2021.02.20 DOOOO M. Gledhill Migrated Software

Figure 3.44 DO0003 primary commit point network comment update

Finally, the TTIA Portal project name in network 1 of OB 1:

54-129

¥ Network 1: Projectdescription

-

TITLE: P52001 — PRACTICAL SERIES AUTOMATION LIERARY

COPYRIGHT: ® 2020 Michael Gledhill
Part of the Practical Series of Publications
Publizhed in the United Kingdom
mg@practicalseries.com
https:iipracticalseries.com

CUSTOMER: Practical Series of Publications (PSF)

PROJECT: Practical Series Automnation Library (PAL)

PROJECTNO.: F52001

CONTROLLER: CPU 1515-2PNIDP

CONTROLLER MAME: CON100

IP ADDRESS: 192.168.001.100

TIA PROJECT NAME:

S5TATUS: DEVELOPMENT

PROTECTION: To minimize the risk of inadvertent modification to

tested modules, certain blocks will be released for
use with “protected access” (referred to a “write
protection” in Siemens terminclogy), this allows the
block to be used normally, but prevents the block
being accidentally modified.

This is in accordance with the risk assessment given
in the Validation Plant (VP), Appendix A [Ref. 002].

THE WRITE PROTECTION PASSWORD |5: PS2001

Figure 3.45 DO0003 primary commit point project filename

Other changes to OB 1 may be required, if additional information is stored (such as a
summary of completed modules &c.).

3.11 Nested branches

It is possible to have a development branch from another development branch (referred
to as nesting). Nested branches always merge back onto their parent branch:

] D2es2] 08823

master

master

Commit

FC01001
RELEASED FOR USE

D8e82A-800.181 DOBO2A-080.102 Deo02A-000.801 il Dees2A-001.080
o >
-

Commit Commit

FEO1001 at rev 000801 FCOT001 at rev 007.00
Testing RELEASED FOR USE

Figure 3.46 Nested development branches

The nested development branch name has an extra character before the dash, this is
another ordinal number, identifying the number of the nested branch. The rest of the
branch name is as § 3.3:

SNNNNbX-MMYYYYY

The extra character (X) starts at 1 for the first nested branch and incremented by 1 for
each additional nested branch.

Each commit on the nested branch has the format:
SNNNNbX-nnn.amm

I.e. identical to the those of § 3.4, with the addition of the (X) character. Generally, the
a value should be incremented by 1 to identify a separate development state.

56-129

3.12 A note on commit messages

Commit messages should have a short (less than 50 characters) first line. In Visual
Studio Code (VCS), extended commits are possible (these are commits where more
than one line can be entered), and the Commit Message Editor extension makes the
configuration of commit messages into a standardised form-based format.

The Commit Message Editor settings should be adjusted to match the following set-
tings:

settings.json

"commit-message-editor.tokens": [

{
"label": "Type",
"name" type",
"type": "enum",
"options":

{
"label": "PS (Mas) - Dev",
"description”: "PS master branch development”

"label": "PS - Merge",

"description”: " master branch - merge point adjustment”

"label": "PS - Prove",

"description”: " master branch proving (test)"

"label": "PS - Qual"”,

"description”: " master branch qualification”

"label": "PS - Release",

"description”: " master branch released for use"

"label": "PS - Dev",

"description”: " development branch - development"

"label": "PS (Dev) - Merge",

"description”: "PS development branch - merge point adjustment"

"label": "PS (Dev) - Prove",
"description”: "PS development branch proving (test)"

"label": "PS (Dev) - Qual",

"description”: "PS development branch qualification”

"label": "PS (Dev) - Release",
"description”: "PS development branch released for use"

"label": "PS (Gen) - Rev",

"description”: "PS development revision update"

"label": "PS (Gen) - Type",
"description”: "PS development branch - typographical changes only"
¥
1,

"description": "Type of changes"

¥

"label": "Commit Tag",

"name": "scope",

"description": "The commit tag that will be applied to this commit (e.g. D0O002B-0
"type": "text",

"multiline": false,

"prefix": "[",

"suffix": "]"

"label": "Commit Title",

"name": "description”,

"description": "Commit title line text",
"type": "text",

"multiline": false

"label": "Body",
"name": "body",
"description": "Optional body",
"type": "text",

"multiline": true,

"lines":

58-129

"maxLines": 100

1,
"commit-message-editor.view.defaultView": "form",
"commit-message-editor.dynamicTemplate": [

"{scope} — {description}",

>

"Those aspects of the PAL project that have been migrated to the GitHub",

"Version Control System (VCS) are operating under the Software Control",
"Mechanism (SCM) specified in document PS2001-5-2302-011:",
https://practicalseries.com/2001-pal/31-git/11-00-scm.html"

Code 3.1 Visual Studio Code — Commit Message Editor settings

This arrangement gives a common form that can be used to enter and edit a commit
message before making the commit. It has the following appearance:

£ Edit commit message X

Edit as text Edit as form

hanges

as) - Dev

Dev
Merge
Prove
Qual

- Dev
- Merge
- Prove
- Qual

PS {Gen) - Type

Commit Tag
The commit

DO0002

Commit Title
Commit title line text

Baseline Build

Body
Optional body

This is the formal BASELINE build of the PAL software,

The baseline build can be used to import any of the
It is equipped with the following:

Program blo
- OB0O0001_IntNMainProgram
- FC61000_DocGenExample

PLC data typ

- UT01000.
- UTo1001

Note; README.md version information updated

Figure 3.47 Visual Studio Code — Commit Message Editor form

The TYPE field is a dropdown selection that indicates the type of commit being made,
those beginning PS(MAS) are commits directly on the master branch, those beginning
PS(DEV) are on a development branch, those beginning PS(GEN) are of a general na-
ture (not generally applicable to the software itself — e.g. a change to a README file
or some file that is external to the Controller software).

The entry following the dash indicates the phase of the software as follows:

60-129

ENTRY MEANING

Dev Development commit (incremental build &c.)

Merge Branch merge point

Prove Proving (the software is at a test commit)

Qual Qualification (the software is at a qualifying commit)
Release Software (or module) is released for use

Rev Revision change only

Type Typographical corrections

Table 3.4 Commit message type field

The COMMIT TAG is the commit tag that will be applied to the commit.

COMMIT TITLE is the first line of the commit, the first line is always shown in bold to
indicate that it is a title.

The BODY field contains the description of the changes being made at this commit
point.

The completed commit has the following appearance:

PS {Mas) - Dev

he formal BASELINE build of the PAL software.

The ine build can d to import any of the
PAL software versions. uipped with the following:

Program blo
- OB00001_IntNMainProgram
- FC61000_DocGenExample

PLC data types
- UT01000_St_SysRevision
- UT01001_St_SysLicence

PLC tags
- Default tag table

- PAL_SystemTags

Note: README.md version information updated

Tho! f the PAL that have been migrated to the GitHub

Version Contr w e operating under the Software Control

Mechal spe d in document PS200 -011:
https://practicalseries.com/2001-p 00-scm.html

Figure 3.48 Visual Studio Code — Actual commit message

Where:

Is the COMMIT TAG

Is the COMMIT TITLE

Is the TYPE

Is the BoDy

©@ ® 0 O O

A common footer attached to all commit messages

62-129

The website revision
numbering mechanism

The revision numbering mechanism and version control systems discussed in the pre-
vious sections was associated with the PAL software developed for the Siemens Con-
trollers using TIA Portal and stored in the PS2001-pal-software GitHub repository
(see § 5.2).

In addition to this repository, there is a second repository PS2001-pal-website that
stores the website pages that are published in association with the PAL software (see
§ 5.3 for details of the website and associated GitHub repository).

This website is also developed using the same revision numbering mechanism detailed
in the previous section, there are however, some minor differences, particularly in the
naming of branches. These differences are discussed in the following sections.

4.1 Workflow arrangements

The website Git repository, like the software Git repository consists of a single main,
master branch and various development branches.

The master branch (after some initial development work to establish the repository)
will, generally, only contain released web pages

Released web pages are pages that have been built, tested and are complete and ready
for live use on the website server.

As with the PAL software, development work can take place at any time and will al-
ways take place on a separate development branch and each development branch will
spur from some definite commit point on the master branch.

With the website, each development branch has a very limited scope, usually the de-
velopment of a single web page or series of webpages that are linked together (a section
of the website for example). The branch may also be concerned with developing a
background element of the website such as a particular JavaScript, jQuery or CSS file.

4.2 Master branch revision states

The website development progresses through various different states along the master
branch in the same way as the PAL software (see § 3.2), where each state is a primary
commit point. There are however, fewer states that can be applied to the website:

STATE EXAMPLE MEANING DESCRIPTION

The website as a whole is in the build phase and has not
been fully tested.

D D0126 Development
Certain web pages may have been developed and tested
and released for use. This is on a page-by-page basis
The website is published for testing. All web pages

ithin the sof , and the si hol

p PO00 | Published th |.n the software zfre presgnt and t e.srce as a whole
is being tested on a live website for consistency checks,
final proof reading and link integrity.

R ROO0O | Released The website is released for use

Table 4.1 master branch commit point tags

The master branch commit tags have the same format as the PAL software:

SNNNN

Where S is the state letter (Table 4.1):
o D—Development
. P—Published
o R—Released

NNNN is a number; this starts at 9901 (there is a special case for the first commit to the
repository, this has value ©000) for each particular state and is incremented by one for
each subsequent issue.

E.g. D000l — D0002 — D0003 — P00OI — P0002 — RO0OI — R0O002 &c.

64-129

4.3 Development branch names

The main difference between the website workflow and the PAL software workflow is
in the naming of development branches.

The website development like the PAL software development branches will always
diverge from the latest primary commit point on the master branch. The difference is
the name, the website development branch name is in the format:

SNNNNb -WW-PageName

Where SNNNN is the commit point tag on the master branch from which the develop-
ment branch diverges and b is the ordinal character identifying multiple branches (this
is identical to the PAL software in § 3.3.

The remainder of the branch name refers to the section of the website and the web page
being developed. WW refers to the number main folder of the website (see § 5.3.2):

00-comres Common resources

01-admin Various administration pages

11-web The main website containing the PAL user guides and information

21-project Holds all the documentation associated with the Project (validation documents)
31-git Contains information used by the GitHub repositories

81-binary Contains binary files (the TIA Project archive files &c.)

91-userdocs The online version of the User Documentation files embedded in the TIA Project

Le. WW will be 00, 01, 11, 21, 31, 81 or 91.
The PageName is the name of the HTML file for the particular page, an example being:
11-00-scm.html

This file (11-00-scm.html) is part of the 31-git folder of the website, hence the
WW-PageName part of the branch name would be (don’t include the file extension):

31-11-00-scm

The PageName consists of a pair of number (11-00 in the above example) followed by
a short description indicating the purpose of the web page (scm in the example). The
number pair is always in the format cc-ss where cc is the ‘“chapter” number of the
web page and ss is the “section”. The web pages are assigned chapter and section num-
bers like a document (e.g. this part of this document is chapter 4, section 3; its web
page equivalent would thus be 04-03).

The development branch is generally associated with a particular web page, and is
named accordingly, however, the development branch will include all the files associ-
ated with, and required by that web page (i.e. the development branch will include the
various CSS, JavaScript, jQuery, image files and binary files needed for the web page
to work properly).

The index.html file associated with each of the main folders does not have any lead-
ing numbers in its file name (it is just called index.html), however, for the sake of
consistency, such index files are given the number 00 -00 in the branch name. E.g.:

31-00-00-index

Where the development branch is associated with a section (multiple pages) of the
website, the branch name will use the chapter number only (just the cc part), for ex-
ample, if a branch were developing the introduction pages of the website in the 11-web
folder, its branch name would be:

11-01-intro

Where the development branch is for a particular file, rather than a web page (this is
usually where a common file that affects the whole website is being change or created)
then the branch name will have the format:

SNNNNb-00-FileName

The common files are always stored in the 80 -comres folder (hence WW will always be
00), the file name is the name of the file being modified (without the extension) for
example, if the main style.css file were being modified, the branch name would be:

SNNNNb-00-style

66-129

4.4 Development branch commit tags

Development branch commit tags (secondary commits) are identical to those of the
software development branches (§ 3.4); where each secondary commit is tagged and
the tag has the format:

SNNNNb-nnn.amm

Where SNNNNDb is the first part of the branch name (before the dash), see § 4.3. This is
the originating master branch commit point and the branch ordinal character.

The remaining characters (nnn.amm) are all numerical and reflect the current revision
of the web page (or file) under development, the format of this revision number is sim-
ilar to that of the PAL software and is explained in § 3.6.

4.5 Merging of development branches

The merging of development branches is generally a simplified arrangement of that
used for the PAL software (see §§ 3.4 and 3.5).

Development branches within the website are usually mutually exclusive and have no
impact on each other (this is different to the PAL software where multiple branches
usually have some degree of commonality, particularly with OB 1). This exclusiveness
means that multiple branches can be merged without any conflict and the approach
taken in § 3.5 for merging a single development branch or the first of multiple devel-
opment branches can be adopted for all development branches within the website re-
pository.

Exceptions exist where common table of contents (TOC) are being modified (and pos-
sibly where two simultaneous branches exist to modify a common file).

To minimise such conflicts, it is generally better to manage the workflow such that
simultaneous (parallel) branches do not target common resources. Better to manage
common files and common TOC:s in a single development branch.

4.6 Individual page and file revision numbers

All the files associated with a web page (HTML, CSS, JavaScript and jQuery) have
their own revision number. The current file revisions for all components of a web page
are displayed at the top right of all web pages:

A% PAL| And finally.. x |+ - = E3
& C | & Notsecure | www.practicalseries.com/2001-pal/11-web/80-00-finally.htm#js--800100) G vs
®
FAYZYS YN finally ...
Contents
Contact MG Colophon
Acknowledgements Legal & Privacy
Contact MG
You can reach me by email. [invite questions, corrections, constructive criti-
cism and complaints (polite ones) with the following caveats:
@ I do have a day job (surprising isn’t it), I will respond to all po-
lite emails but not necessarily instantly.
@ I can’t offer detailed engineering advice about specific prob-
lems (e.g. why does that valve blow all the fuses when I try to open
it), but I will offer pearls of wisdom about less specific software
issues.

Figure 4.1 ‘Web page component revisions

This can be seen in more detail below:

68-129

()

Figure 4.2 Web page component revisions (detail)

The Page revision data, point (1), shows the current revision of all the files associated
with the particular web page.

The Common resources, point (2), shows the revision of the standard files that are
common to all web pages.

Finally, the Global resources, point (3), shows the revision of all third-party files (these
are normalised revision generated within the project, i.e. project revision 001 of
normailse.css reflects the actual file build of 8.0.1, the association between the
normalised project build and the actual third-party build is listed in the revision table
at the start of each file).

The numbering of the webpage (or file) revision nnn. amm is an incremental numbering
system. In this system nnn reflects the current version of the software; typically, the
first properly released software will be ©91. Previous development versions will be ©00.

The numbers after the decimal point (amm) reflect development and test modification
to the current revision (for software modifications), in this system a reflects the current
status of the software as follows:

FIRST DIGIT (a) MEANING DESCRIPTION
0 Released Pageffile is released at version nnn
mm will be 00 (i.e. NNn . 000)
1.7 development Pageffile is under development and has not been
tested
8 Publication Page/file has been published (on the webserver)

for live testing

Table 4.2 Web page/file revision number (first digit)

The remaining numbers (mm), are incremental build numbers for the current revision
(this allows development tracking).

Note: A release version of a page or file will have revision ©01.000, ©62. 000,
003.000 &c. Le. the numbers after the decimal point are all zero. The first
development of the software at release 003 would have revision 093 . 101.

The Global resources revisions, point (3), in Figure 4.2 only have the first three digits
(nnn), third party software is always at a released version.

70-129

4.6.1 Recording revision numbers within web page files

All HTML, CSS, JavaScript and jQuery files have a modification history at the start
of the file; an example for style.css is shown below:

Figure 4.3 Modification history shown in file header

In addition, the revision information is also hardcoded into each file:

rafter {

content:

Figure 4.4

Hardcoded revision information (for style.css)

The various revisions for each file type are displayed by the HTML as multiple rows
in a revision table, the following shows the format of each entry:

Code 4.1

="table-rev">

"leading"
"table-cent"
“"table-left"

"table-right"

Revision data displayed on a web page

The NAME and ID NAME are as follows:

NAME

Page
scroll.js
codelines.css
script.js
style.css
style-pal.css
grid.css
ps-fonts.css
normalise.css
lightbox.css
waypoints.css
hyphenator.css
ionicons.css
prettify.css
prettify.js

72-129

ID_NAME
rev-doc

rev-scroll
rev-codelines
rev-script
rev-style
rev-style-pal
rev-grid
rev-ps-fonts
rev-normalise
rev-lightbox
rev-waypoints
rev-hyphenator
rev-ionicons
rev-prettify

rev-run-prettify

="height:

lem

="width:

="width:

="width:

ID_NAME
ID_NAME
ID_NAME

ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i
ID_NAME i

is
is

[z

7

7

7

7

7

7

7

7

7

7

7

td>

NAME:-:,r’td>

_-ID_NAME-

Web page .html file

></td>

DESCRIPTION

Hardcoded revision of the web page

replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision
replaced by revision

replaced by revision

number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file
number in NAME file

Each file listed in the NAME column appends its own revision number to the ID NAME
ID, in the case of style.css, the code is:

style.css

trev-style:after { content: "000.102"; }

Code 4.2 Revision information for style.css

In the case of a . js file, it has the following appearance (this is for script.js)

script.js

$("#rev-script').append (
"<p>000.101</p>"
)

Code 4.3 Revision information for script.js

The actual HTML file has the data hardcoded in the HTML table after the rev-doc
ID (000. 101 in this case):

Web page .html file

"leading" style="height: lem"></td>
"table-cent" style="width: 30%"></td>

table-left" style="width: 40%">Page:</td>

Code 4.4 Revision data for the HTML file

BLANK PAGE

74-129 Doc: PS$2001-5-2302-01 | Rev: R02.00

Software storage and folder
structures

There are several aspects to the PAL storage locations: there are the software files (the
modules that form the PAL itself), there are the Git and GitHub repositories that hold
those modules within the version control system. There are the Project directories that
hold all the project documentation, there is a website that makes the Project documen-
tation and PAL software available to those to whom it is of interest and finally, there
is the backup storage locations for all of it.

Broadly, the software and folder structures cover the following:

() Project software storage on an Engineering Station
Project document storage and the Project directories
Website folder structure and Web Development Platform
Local (Visual Studio Code) machine repositories

Remote (GitHub) repositories

@ © ® © ©

Cloud based storage (Dropbox)
(@ Network storage and backup facilities

This section covers each of these areas in detail.

5.1 An overview of the Project structure

Figure 5.1 shows the entire Project structure and all its components.
Physically, there are three main components:

@ Engineering Stations (ES) for the development of the PAL soft-
ware

©) Web Development Platform (WDP) for the configuration of the
web sites that accompany the Project

(® Network accessible storage (NAS) that holds all the Project doc-
umentation, drawings, schedules &c.

In addition there are remote, cloud-based storage facilities that hold the version control
repositories associated with the project.

There is also “offsite” mirror storage of the NAS and all files and folders therein.

In terms of physical machines, there can be any number of Engineering Stations (ESs),
each will have a copy of the PAL software repository. Each engineer working on the
PAL software development will have a fully equipped Engineering Station

There can also be any number of Web Development Platforms (WDP) each with a
copy of the website repository. In practice there will be a limited number of such ma-
chines.

The Project documentation is stored on the NAS drive and is accessible to all Project
personnel. There is no special requirement for machines that can access the Project
documentation (any standard office machine is suitable).

In addition to the remote repositories, cloud-based synchronisation is carried out be-
tween the NAS drive and all master engineering stations and all master web develop-
ment platforms, this provides up to date repository backups on the NAS drive as well
in the remote repositories.

76-129

Kioysodal 3o ajy sanpae diz
dIZ’aa NWIN"AAAA foad-jed-100zsd

dIZ'aa ININ”AAAA gem-1ed-100ZSd

Kiopsods yo sjy saydie diz

Kiopsodas jo sjy snyre diz
dIZ’ad ININAAAA Ms-jed-1.00ZSd

Kioysodas yo ajy sanpae diz

dIZ'ad INWAAAA ER-Jed-100ZSd

1

4

[1

sauopsodsy — ANHLID SUsHO

ﬁ

ausqam-jed-100zsd a1emyyos-jed-100Zsd
(S¥N 03) dmpeq Kiepuoses (SYN o3) dmpeq Aiepuosss (SVN ©3) dmypeq Aiepuodes (s¥N ©3) dmyjpeq Kiepuodag
7 2UAS pup diZ Jpnupiy
INa/ysnd B9
sufis projn
il v
k] Aieuig-1g pefoud-1z uwpe-10
g | Py M8 . sajy dmypeq Arewpd sy Koysodes 3o sajy dmypeq Arewpd syN Kioysodas uo ausqep Tvd — sejy Buppiom Kioysodas 1 sajy Buppom fuoysoda 3o
S
2 ﬂ
A 6 - - - 6
.m. 4 $20pIaSN-16 1B-1¢ qem-1] | saiwes-00 Aeug-1g pafoid-1z unupe-1o = 01 freug-ig wafoid-Lz - uipe-10 = 01
e mlE|m = T 7
r4
& sadf1 ezep O1d 0|q weiboy, sadf1 ezep O1d p0|q weiboy
= ﬂ s>0pIasn- 16 u6-1¢ gem-1] | seiwod-0o pola 4 So0piasn-16 u6-1g qam-LL | s2iwod-00 s}ojq d
swawn0g 29sqEM ﬂ ﬂ ﬂ O ﬂ ﬂ ﬂ = 22001 220ds1uop
MS salany Yoy arempiey
Bunsey Ly pling pe ubysaq sz ubisaq zz swsweunbay || eale abeiols
ﬂ Pafoid VIL
guon® g2 2SI Saejos 5 mb.,_ﬂ_c B Td VILMS LE
upuea) 1L PIIng 6€ ubisag 6z ubisag pz ubisaqg |1z ujuuelg 1o 5 m s m 5 ﬂ s m =
[

uonensuIwpy 0

(fo1d Sd 24 0EZ6/2AURIV e LT) 2AIUDIY-10025d
o1 sy diz se (f1sunus 11syr ul) dn paxoeq |1y

(s02fo1d Sd 0ETe/siely ed fo1d-1vd-10025d

(s193f014 1D 00SZ/MUDIV BY ausgam-led- 100754

(s103f01d 19 00SZ/MPIY Bd 31emyos-jed-1002Sd

spafoud alemyos 0ooL/5123/01d/:A WA) MS-PIINg-1vd-1002Sd
“s|eAIIUI Je[NBa) 1e A|[enuew apew si s1apjo} ay) 40 dmypeq A1epuoaas i
‘S1ON

Bunsauibug ¢

fo1g-1vd-100z5d

s13[01d Sd 0E7Z

sineyed 10

219 uoneUsWINI0Q — 56eI01S 195f01d — SYN L0 SIued

2usqam-1ed-10025d n

asemyos-fed-100zsd (L] ausqam-fed-100zSd

dmypeg Arewnd L1ousodsy — SYN 10 SI¥ed

(SVN) aBeio1s 3]qIssa2y J40MIBN — L0 SI¥Ed

spafold 1D 0052 <

anyIved L

s1afod U9 0052

P xoqdoid

N sufs propy F

asenyos-fed-100zsd (L]

spafoid 1D 0057

xoqdoiq

ms-ping-1va-tooesd [T

5103014 81eMIYOS 000L nU

swefoid/:q

uuope|d uswdopasg — aling GIM

Sulls prop

swefoiara [

Pling |exod Vi1 — (S3) NOILVLS ONI¥IINIONI

4

The full project folder structure

Figure 5.1

77-129

Rev: R02.00

PS2001-5-2302-01 |

Doc:

5.2 Engineering stations

Engineering stations (ES) are used to develop the PAL software, they are generally
high-powered machines with at least 512 GB of hard drive storage and 16 GB of RAM.
Typically with a 10® or 11™ generation i7 processor or equivalent (such as an AMD
Ryzen 7).

Engineering stations should be equipped with dual 27" QHD (quad high definition)
screens (these have a resolution of 2560 x 1440 pixels).

The configuration of an ES, including drive allocation, device naming, software pack-
age installation &c. is explained in the ES/WDP Configuration Manual /Ref. 006].

In summary, it is assumed that the ES has been configured in line with the above doc-
ument and is equipped as follows:

The ES is equipped with three hard drive partitions (as a minimum):

C: OpSys Operating system and application files
D: Projects PSP project files
E: Licences Storage area for licences &c.

The C: drive (OpSys) holds the operating system and any installed programmes and
applications (the Siemens application software and any office applications will be in-
stalled on this drive). The C: drive should be at least 200 GB in size.

The D: drive (Projects) holds any Controller, HMI and SCADA projects developed
using TIA Portal. This consists of the source code, archives, graphical images, runtime
configurations and any other files needed to develop the control system software. The
D: drive should fill the remainder of the hard drive, excepting 1 GB that should be
reserved for the E: drive. The D: drive should be at least 200 GB in size.

The E: drive (Licences) holds all the licences needed to activate the Siemens TIA
Portal software and its installed options.

78-129

The E: drive is generally very small, it need only be a few megabytes in size (in prac-
tice, a 1 GB partition is more than adequate).

The software applications and configuration below are required on an ES:

l. TIA Portal has been installed
e The TIA Portal settings have been set to the PAL configuration

e The TIA Portal Git add-in has been installed and enabled

2. A GitHub user account has been setup

e The account has been added as a contributor to the PracticalSeries organisation

3. Git SCM has been installed
e Notepad++ is installed as the Git default editor

e An SSH key link has been established between Git and GitHub

4. The Visual Studio Code text editor has been installed

e The standard set of Visual Studio Code extensions have been installed

The packages above are listed in the order in which they should have been installed on
the engineering station. The exact details for installing and configuring the above ap-
plication is given in the ES/WDP Configuration Manual /Ref' 006].

5.2.1 ES software folders

All the Controller software for the PAL is stored on the D: drive (Projects).
The D: drive has two primary folders:

1000 Software Projects TIA Portal Projects folder

2500 Git Projects Git Workspace folder

The underlying structure is:

ENGINEERING STATION (ES) — TIA Portal Build

? D:/Projects

1000 Software Projects 2500 Git Projects
PS2001-PAL-Build-SW PS2001-pal-software
- P
41 SW TIA PoC
')
&3 81 SW Archive
31 SW TIA PAL
TIA PI’OjECt (CON100

storage area
31 TIA PAL 41 TIA PoC

Archive Archive ! !
S

TIA Project
archive area Program blocks PLC data types

TIA Portal

Workspace Interface ’ L PLC tags

Git repository working files

Figure 5.2 ES Project folder structure

80-129

The software projects folder:
1000 Software Projects

is used to store the individual Controller projects that are opened and developed using
TIA Portal. All such projects (within the PAL) are named as follows (see § 3.8):

PS2001-PAL-<commit tag>
The alternate branch on the D: drive is:
2500 Git Projects

This is used to store the Git repository that is used to store the TIA Portal Project
Workspace.

These two folders:

1000 Software Projects TIA Portal Projects folder

2500 Git Projects Git Workspace folder

are examined further in the following sections.

5.2.2 Software development area (1000 Software Projects)

There may be multiple projects under the
1000 Software Projects

Each project is identified by its project number (PSnnnn) followed by the name and
some brief description of the project. In the case of the PAL software the project num-
ber is (PS2001) and the full project folder is (PS2001-PAL-Build-SW).

The PS2001-PAL-Build-SW folder holds all the TIA projects, these are the projects
that can be downloaded via TIA Portal into a Controller.

The entire software development takes place in TIA Portal and is stored as a TTA pro-
ject locally on the engineering station.

All TTA Projects are stored in the folder 31 SW TIA PAL:

I | D:/Projects

1000 Software Projects

| PS2001-PAL-Build-SW

31 SW TIA PAL

TIA Project
storage area

Figure 5.3 PAL local ES TIA Project folder structure

Each TIA Portal project is stored in its own sub-folder under the 31 SW TIA PAL
directory. Each project is named according to its commit point (see § 3.8 for infor-
mation about file names).

82-129

An example is shown below:

I [4 [= | 31SwTAPAL - O *
Home Share View 0
E [TH Preview pane & Extra large icons =] Large icons [F]= [ttem check boxes |7
=ts| Medium icons Small icons - |]i|' File name extensions
N it i P . N — Sort Hid lected Opti
peetile L TR i M = R I LS
Panes Layout Current view Show/hide
« . 4 < 1000 Software Projects » P520071-PAL-Build-SW » 31 SW TIA PAL ~| @ | Search 31 SW TIA PAL P
= Projects (D) A Name v Date modified Type Siz
1000 Software Projects PS52001-PAL-DO003 2021702721 14:41 File folder
_Piox Project Name PS2007-PAL-DOD02A-001-000 2021/02/19 1401 File folder
PS2001-PAL-Build-SW P52001-PAL-DODO2A-000-201 2021/ File folder
31 SW TIA PAL P52001-PAL-DOD0D2 2021/ File folder
41 5W TIA Poc PS2007-PAL-D0ODOT File folder
2 51 SW Archive P52001-PAL-D0O00D File folder
91 Superseded
v € >
Titems 1 item selected =]
Figure 5.4 TIA Projects within the folder structure
The interior of a TIA Project folder has the following appearance:
I [4 | = | Ps2001-PAL-DODOZ - O X
Home Share View 0
E [N Preview pane || Extra large icons [&] Large icons I [F]= [item check boxes
=ts| Medium icons Small icons - i~ File name extensions Bt
N it i P . N — Sort Hid lected Opti
peetle O TR i M VL
Panes Layout Current view Show/hide
« v A < PS2001-PAL-Build-SW > 31SWTIAPAL » PS2001-PAL-D0003 » ~|® | Search PS2001-PAL-DO »
~
- Projects (D:) 2 Name Date modified Type b
1000 Software Projects AdditionalFiles 2021/02/19 13:41 File folder
_Proocc Project Name IM File folder
PS2001-PAL-Build-SW Logs File folder
31 SW TIA PAL System File folder
PS2001-PAL-000.125-Db TP Filefolder
PS2001-PAL-D UserFiles File folder
Vei 419 13:53 File folder
P52001-PAL-D00D1
XRef 2021/02/19 13 File folder
P52001-PAL-D0002 T PS2001-PAL-DD003.ap16 2021/02/19 13:55 Siemens TIA Porta...
P52001-PAL-D0002A-000-801
P52001-PAL-D0002A-001-000
P52001-PAL-DO0003 ol N
Sitems 1 item selected 755 KB =
Figure 5.5 TIA Projects within the folder structure

The . ap16 file (highlighted in blue), if clicked would open the project in TIA Portal.
The folder structure above is all part of the TIA Project and independent modification
of this structure or any files within it may result in the corruption of the project.

The top-level folder of a project (in this case PS2001-PAL-D0003) should be consid-
ered to be the TIA Portal Project in its entirety, everything below this level is best left
alone.

Figure 5.2 shows an additional folder under the PS2001-PAL-Build-SW directory,
thisisthe 41 TIA PocC folder. This also holds TTA Projects; these are not formally part
of the PAL software, they form “proof of concept” projects.

Proof of concept software is used to develop, test or demonstrate that a particular ap-
proach works within the PAL prior to that approach being formally adopted within
the PAL.

Proof of concept projects can be considered a test bed or prototyping area for software.

The final folder under the PS2001-PAL-Build-SW directory is designated 81 SW
Archive; this is used to store “archived” copies of each build of the TIA Project soft-
ware.

Archived copies of a project are produced by TIA Portal, they are essentially zipped
versions of the TTA Project folder with non-essential (or re-buildable) information re-
moved

Archive files are a convenient way of transporting projects (and indeed, each archived
copy of the software is available for download from the website, see below).

Project archive files all have the extension .zap16 (and are universally referred to as
“zap” files), they are indeed zip files, if the extension were change from .zapl6 to
.z1ip, the contents could be extracted by Windows Explorer.

There is an archive file for all commit points (see § 3.8) within the software (both pri-
mary and secondary). These are accessible from the website at the following address:

https://practicalseries.com/2001-pal/31-git/81-00-archive.html

84-129

https://practicalseries.com/2001-pal/31-git/81-00-archive.html

5.2.3 The Workspace and local repository (2500 Git Projects)

The ES stores all its Git repositories in the directory:
2500 Git Projects

Specifically, the PAL repository associated with the Controller software development
is the PS2001-pal-software folder:

D:/Projects
2500 Git Projects
PS2001-pal-software

B o
- -

Program blocks PLC data types

PLC tags

Figure 5.6 ~ PAL local ES repository folder structure

This folder is a Git repository, this can be seen by the hidden . git folder, this contains
all the underlying repository structures required by Git and GitHub to control and
manage the folder.

The .git folder is similar to the TTA Project folders, in that, no changes should ever
be made directly to anything that is in there. The best thing to do is to never open it or
look in it; just leave it alone, it looks after itself.

The remainder of the PS2001-pal-software folder holds the working files for the
TIA Portal Workspace.

The top-level folder (CON100) is the Workspace equivalent of the controller in the TIA
Project, this is also called CON109 (this is in accordance with the Siemens naming con-
ventions discussed in the Software Design Specification /Ref. 003/, § 3.1.4)

The Workspace folder contains the XML versions of the TIA Project exportable ob-
jects, these objects are also stored in (pre-named) folders:

Program blocks Holds the XML versions of Controller blocks: FBs, FCs, OBs and DBs
PLC tags Holds any tag tables configured for the Controller

PLC data types Holds the User Data Type (UDT) structures

The linkage between the controller and the Workspace folder can be seen below:

PS2001-PAL-DO003 » Version control interface » PS2001-pal-software

Shewaloges 7] @ & W £ = o 2 [& [howalobees [7] @ E
Project Workspace path: D:\Dropbox\2500 Git Projects\P52001-pal-sof twarel
Name Status | Action Workspacefile Access path Name Content
= |1 PS2001-PAL-DO003 H)] gitignore
~ [con100 [] 2 LICENCE.md
~ gl Frogram blocks [] =) README.md
48 0BO0001_IntNMainProgram @ 0BO00OT_IntN_.. \CON100\Program blockslo. F]conion
4 FC61000_DocGenExample @ FC61000_DocG... ICON100IProgram blacksIFC. ~ [] Program blocks
= [iz] 18 Std_Subroutines [] [Z] 0B00001_InthMainFrogram.xm| 4 0BO00OT_IntNMainFrogram
= [&2] 100 Timing [] /] FC61000_DocGenExamplexml 4 FC61000_DocGenExample
4 FC18151_StdSubTimeEventRTC e FC18151_5tdS_.. \CON100\Program blocks!18 ~ [} 18 Std_Subroutines
@ DB38151_Dy_SubTimeEventRTC e DB38151_Dy.S... \CON100\Program blocksl18... =[] 100 Timing
» g System blocks ') FC18151_StdSubTimeEventRTCm| 4 FC18151_StdSubTimeEventRTC
~ (& PLctags [= 2 DB38151_Dy_SubTimeEventRTCm| {§ DB38151_Dy_SubTimeEventRTC
24 Default tag table @ 1 Default tag tabl... ICON100IPLC tagsiDefault ta..* » [7] System blocks
5 PAL_SystemTags @ PAL_SystemTag... (CONTOOIPLC tagsIPAL_Syst. ~ []PLCtags
~ [PLC data types []) Default tag tablexm| 5% Default tag table
] UTE1000_St_SysRevision @ UTD1000_5t_Sy... \CONTOOIPLC data typesIUT.] PAL_SystemTags.ml 5 PAL_SystemTags
] UTE1001_St_SysLicence e 1 UTD1001_5_Sy... \CONTOOIPLC data typesIUT. ~ [] PLC data types
= [%] 18 5td_Subroutines [] /5] UTD1000_5t_SysRevision.xm| [UT01000_5t_SysRevision
= [&] 100 Timing [] /5] UTD1001_5t_SysLicencexml [UTo1001_St_SysLicence
] UT38151_Dy_SubTimeEventRTC e 1 UT38151_Dy 5. \CON100IPLC data typesl18 ~ [] 18 Std_Subroutines
= [7] 100 Timing
/) uT38151_Dy_SubTimeEventRTCxm|] UT38151_Dy_SubTimeEventRTC
<] il B [<]]] >

Figure 5.7 Project (left) and Workspace (right) associations

The Workspace only holds the programmable objects from the Controller software
(there is no hardware configuration, watch tables or traces &c.). It can be seen that
each folder and object in the TIA Project (left-hand side) has an equivalent in the
Workspace (right-hand side).

It can also be seen that the Workspace also holds some additional files: .gitinore,
LICENCE.md and README . md; these are all files associated with the Git repository itself
and have no associations within the TIA Project.

These association are explained further in the following section:

86-129

5.24 Understanding the Simatic Workspace

A Workspace is just a Windows folder located somewhere on the ES hard drive. It can
be any folder and can have any name.

The folder can be created directly through Windows or when being define via TTA
Portal.

In TTA Portal terms, a Workspace is simply a folder to which it will export copies of
all the following types of objects (if they exist in the Project):

(1) Code blocks:

o Organisation blocks (OBs)
) Functions (FCs)
) Function blocks (FBs)
o Data blocks (DBs) of any type including instance DBs
@ User (PLC) data types (referred to here, as UDTsS)
® PLC tag tables (referred to here as just tag tables)
TIA Portal exports them as text files, specifically as XML files.

In addition to this, TIA Portal keeps track of the files it has exported and identifies if
differences exist between its internal Project files and those files in the Workspace. If
differences do exist, TIA Portal is able to synchronise those files in either direction (it
can make the Workspace files match the Project files or, it can make the Project files
match the modified Workspace files).

The ES/WDP Configuration Manual /Ref. 006] contains a full description of how to
create and link a Workspace to a TIA Portal Project.

Author’s note — How we got here

This isn’t a new concept for Siemens, although it is new to TIA Portal. The forerunner to
TIA Portal was a PLC programming package called Simatic Manager (or, more commonly,
Step 7), this was used to programme earlier ranges of PLCs called S7-300 and S7-400 (TIA
Portal will also programme these PLCs).

Simatic Manager had the facility to export (or import) programmable blocks in a readable
format, referred to as Source Blocks, all blocks could be converted to Source Blocks and
the resulting Source Blocks were all text files that held a version of the software written in
a Pascal like language (actually called Structured Control Language or SCL).

The Source Files were again very useful, they were text files and so could be stored easily
and could also be incorporated in a version control system — they were also readable (by

humans).

When TIA Portal was introduced and Simatic Manager began to be phased out (you can
still get it, but most people use TIA Portal now), the Source Block functions (or any such

equivalent) was not included in TIA Portal, and this upset a lot of people — virtually

everyone to whom version control was important.

Siemens were reminded of their deficiencies by those people, “of tut deary me” they said,

“you seem to have forgotten this” or its Anglo-Saxon equivalent.

Siemens have now addressed their shortcomings and have added the required features; the
format is different: it exports thing as XML text files (rather than SCL text files), but it can
be used in much the same way. l.e. version control systems can read the files and

determine any changes that have been made. Siemens refer to the whole thing as part of

their “openness” strategy. So, it’s arrived late, but at least it’s here now.

Looking once more at the Workspace in TTA Portal:

PS2001-PAL-DO003 » Version control interface » PS2001-pal-software

~] PS2001-PAL-D0003
~ [contoo
~ gl Frogram blecks
4 0BO00OT_IntNMainProgram
4 FC61000_DocGenExample
~ [%] 18 5td_subroutines

~ [&:] 100 Timing
4 FC18151_StdSubTi.
@ DB38151_Dy SubTi
» [System blocks
~ [3 PLCtags
[Defaulttag table

55 PAL SystemTags.

+ [&:] 18 5td_Subroutines
100 Timing
] UT38151_Dy_SubTi

Status

000000000 000000008

Action

Workspace file

©BOOOOT_INtN...
FC61000_DocG...

FC18151_5tdS...
DB38151_Dy. 5.

Default tag tabl,

PAL_SystemTag

UT01000,

UT8151 Dy S

Access path

\CON1001Program blocks|OB000Q1_Inthiv...
\CON1001Pragram blocks\FC61000_DecGen..

\CON1001Program blocks\18 Std_Subroutin...
\CON1001Program blocks\18 Std_Subroutin...

\CON100PLC t
\CON100IPLC tag:

<IDefault tag table.xml

SystemTags xml

\CON100PLC data types\UTD1000_¢
\CON100IPLC data types\UTD1001_

\CON100PLC data types\18 Std_Subroutine.

[showallobjects — [+] @ & 4 & = & & | & [showolobiecs -] & 2 =
Project Workspace path: D:\Dropbox\2500 Git Projects\PS2001-pal-s..\Program blocks\

Name Content Modified Size

=
[}
(] system blocks
C61000_DocGenExampl... 3k FC61000_DocGenExa

'E] OBOOOO1_IntNMainProgr... 4k OB00001_IntNMainPr...

2021/0219 12:..
2021102119 13:..

21175
2853

<1 n

88-129

Figure 5.8

Workspace viewed in TIA Porta

The CON100 folder (on the right) has been expanded out to show all the objects within
it. On the right, the Program block folder has been opened showing the two blocks
present within it. These are the XML equivalents of the blocks beginning OB00001
and FC61000 on the left.

Opening one of the XML files (in this case OB00001), gives something similar to:

[=] 0B000O1_IntNMainProgram xml E3 I

vers

Figure 5.9 The XML file for OB 1

The XML files, although not instantly comprehensible, can be read by the human eye
and ultimately understood.

Understanding the Workspace symbols

Looking once more at Figure 5.8, in the left pane, there are two columns, STATUS and
ACTION. The STATUS tells us the state of the object in the TIA Project compared with
the state of the object in the Workspace folder. The green dot §§ means the two version
are identical (generally, this is the preferred state).

The STATUS can have the following values:

SYMBOL MEANING DESCRIPTION

The compared versions of the object in the project and the
Workspace are identical.

i No differences
If at a group level, all lower-level elements are identical in the
project and in the Workspace.
. One or more lower-level elements are different in the project
‘J‘ Lower-level differences .
and the Workspace, open the group to see the affected files.
Q Not in workspace The object is only available in the project
The compared versions of the object in the project and the
D Project object modified Worksparfe are different. The TIA ?ortal objéct has b.een .
changed since the last synchronisation operation (Project is
newer)
) The compared versions of the object in the project and the
Workspace object . .
L[4 modified Workspace are different. The Workspace file has been changed
since the last synchronisation operation (Workspace is newer)
The compared versions of the object in the project and the
'Hﬁ Both modified Workspace are different. Both the TIA Portal object and the
oth modifie
Workspace file have been changed since the last
synchronisation operation
a Not known The comparison result is not known
Table 5.1 Status symbols and meaning

90-129

The ACTION allows us to do something with the files, the Action field can have the
following values:

SYMBOL MEANING DESCRIPTION

Blank Not applicable Not applicable to this object (usually folder's of groups, Fhe
folders or group must be expanded to see individual objects)

Il No action No action will be taken (do nothing)

The object will be exported to the Workspace (Workspace

E t to Work
- Xport to ¥Yorispace object will be made identical to Project object)
| rt to Proiect The object will be imported from the Workspace (Project
mport to Projec
- P / object will be made identical to Workspace object)
Table 5.2 Action symbols and meaning

Synchronising the Workspace

If changes have been made to blocks within TTA Portal, these changes will be indicated
within the workspace, for the sake of argument, let’s assume that OB00001 and
UT38151 have been changed, the Workspace will now have the following appearance:

"1 2001-PAL-D00D3 » Version control interface » PS2001-pal-software

[rovctoze [@ & & £ 3 % 2 [A (oot [3 F
Project Workspace path: D:\Dropbox12500 Git Projects\PS2001-pal-s...\Program blocks\
Name Stas | Action Workspace fle Access path Mar Content Modified size
~] PS2001-PALD0003 3. i
~ [conion (] [118 Std_subroutines
= gl Program blacks 0a [system blocks
4 0B0000T_IntNMainFrogram) (2) Il GBO0001_IntN... \CON100IFragram blocksl0B00001_Inthiva %] FC61000_DocGenExampl... 8 FC61000_DocGenExa... 202110219 12: 21175
4 FC61000 DocGentxample @ 1l FC61000_DocG... \CON100IFrogram blocksIFC61000_DocGen... %] 0B00001_IntNMainProgr... 3 OBO00OT_IntNMainPr... 2021102119 13:.. 2853
~ [&] 18 5td_Subroutines []
~ [&] 100 Timing []
& FOIB151 SwsubT. . @ W FC18151_5td5... \CON100IFrogram blocks|18 Std_Subroutin... [{
@ DE3BISI Dy SwbT. @ 1l DE38§151_Dy S... \CON100IFrogram blocks|18 Std_Subroutin... |-
» [System blocks B
~ [@ PLC tags. [[
% Defaulttag table @ Default tag tabl.. \CON100IPLC tagsiDefoult tag table.xml
g PAL_SystemTags @ PAL_SysterTag... \CON100IPLC tagsIPAL_SystemTags xml
~ [PLC data ty [
] u10 f=Revision @ UTD1000_5¢_Sy... \CON100IPLC data types\UT01000_5t_SysRe.
if] UTO1001_S5t_SysLicence @ UTD1001_5¢_Sy... \CON100IPLC data types\UTD1001_St SysLic.
+ [&] 18 5td_Subroutines [1]
~ [&] 100 Timing (116
[i§] UT38151_Dy_SUbT. DO UT38151 Dy 5_.. \CON100IPLC data typesl18 Std_Subroutine
<] [B

Figure 5.10 Synchronising the Workspace

Point (1) is indicating that a difference exists at a lower level within the Program blocks
folder. Point (2) shows that OB1 has been changed in TIA Portal (c.f. Table 5.1); the
Project version is newer than the Workspace version (the star is on the left in the sym-
bol). Points (3 and (4) show similar changes for the UT38151 data type.

By using the drop down in the ACTION box next to each modified block, it is possible
to select an action individually for each block.

Alternatively, the menu bar at the top of the left window:
AR

allows the action for all the modified blocks to be selected in one go, clicking the HI_J',,
icon (Export changes to Workspace) changes the ACTION for the two blocks to =+.
Nothing has happened at this point; the desired action has simple been selected (but
not yet implemented).

To make the changes, the Synchronize button _1:'-ﬂ must be clicked. This carries out the
selected actions on the modified blocks.

Note: Only complied blocks can be synchronised with the Workspace, if the blocks have
not been compiled within TIA Portal, the user will be prompted to compile them
as part of the synchronisation process.

Generally, it is better to compile the blocks first and separately to the synchroni-
sation process, this allows any errors to be more easily addressed.

Knowhow and write protection

Simatic blocks can be protected in two ways, knowhow protect (an older form of access
protection) and write protection (the current form of access protection).

Blocks with knowhow protection cannot be synchronised with the Workspace.

However, blocks with Write Protection can be synchronised; some blocks within the
PAL require protection (see the Validation Plan /Ref. 001] Appendices for an explana-
tion), where this is used, the protection will be Write Protection rather than knowhow
protection.

92-129

Common actions

In the previous example, the lil}',, icon (Export changes to Workspace) was used to se-
lect the required action, the other symbols are as follows:

SYMBOL MEANING DESCRIPTION
. Import changes from the Workspace to the Project
‘._ Import changes to Project .
(Workspace has the newer version)
1 Export changes to Export changes from the Project to the Workspace
= Workspace (Project has newer version)

Where an object differs in the Project and Workspace,
1: Import all overwrite the object in the Project with the one from the
Workspace (even if the Project holds the newer version)

Where an object differs in the Project and Workspace,
:t Export all overwrite the object in the Workspace with the one from
the Project (even if the Workspace holds the newer version)

Discard any actions that may have been applied (set

—* . .
D d all act
x scard all actions everything back to “do nothing”)
_f_ﬂ Synchronise Implements the selected action
Table 5.3 Action toolbar commands
Note: Actions can only be applied to an object when there is a difference between the

object in the Project and the object in the Workspace

The difference between IMPORT/EXPORT CHANGES and IMPORT/EXPORT ALL is subtle.
If a block has been changed in the Project (left-hand side) then of the IMPORT/EXPORT
CHANGES buttons only the EXPORT CHANGES will work, the IMPORT CHANGES will
leave the action set at do nothing. The reason for this is that there has been no change
to the Workspace object, so you cannot import it.

There has, however, been a change to the Project object so it can be exported as a
change.

Conversely, the IMPORT ALL button will work, this allows the modified object in the
Project to be overwritten by the unmodified (and older) object in the Workspace. The
IMPORT/EXPORT ALL buttons will always work on any two objects that are different.

A note about new objects in the Project

There is a problem (Author: I'm not sure if this is a problem or if it is intentional, it is
however peculiar) when creating a new block in TIA Portal (or indeed, creating a new
block in the Workspace); if a new block were created in the Project (BLock 1 for ex-
ample, shown below):

PS2001-PAL-DO003 » Version control interface » PS2001-pal-software

[Shousiiobiers 7] @ & £ =3 B & o[& o 9 @ & =
Project Workspace path: D:\Dropbox12500 Git Projects\P52001-pal-s...\Program blocks\
name Swtus Action Workspace file Access path [Content Modified size
~ T P52001-PALDO0CS i@ e .
~ [contoo [] (]
= Il Frogram blocks [] (]
4 0B0000T IntNMainfrogram @ 1l OBQOOOT_IntN... \CON100IPragram blocks|OBO0COT_IntNi... %] FC61000_DocGenExampl... i FC61000_DocGenExa... | 2021102119 12:. 21175
4 Block 1 [£] 0800001 _IntNMainFrogr... 4 OBOO0DT_IntNMainPr... | 2021102119 13:.. 2853
4 FC61000 DocGenErample @ 1 FC61000_DocG... \CON100IPragram blocksIFC61000_DocGen.
~ [&] 18 5td_Subroutines []
~ [iz] 100 Timing (]]
& FCIB151SwsubT. | @ I FC18151_5tdS... \CON100IProgram blocks\18 Std_Subroutin... |-
@ DB38151_Dy SubTi []] DB38151_Dy 5.. \CON100\Program blocks118 Std_Subroutin >
» [System blocks. [
~ [3 PLCtags (]
[Defaulttag table @ Default tag tabl... \CON100IPLC tagsiDefoult tag table xml
5 PAL_SystemTags @ PAL_SystemTag... \CON100IPLC tags|PAL_SystemTags xml
= g PLC dato types [}
€] uTo1000, @ UTD1000_5¢_Sy... \CON100IPLC data types\UTO1000_St_SysRe.
@ UTD1001_5¢_Sy.. \CON100IPLC data types\UTO1001_St_SysLic
[]
[]
[i#] uT38151_Dy SUbTI @ UT38151_Dy_S.. \CON100IPLC data typesl18 Std_Subroutine. T o Iz

Figure 5.11 A new block in the Project

The new block (BLock 1) is present in the Project Window, but the STATUS and
ACTION columns are empty, pressing any of the action buttons or trying to assign an
action directly will not work, it won’t do anything.

The reason for this is that the object has not been ‘finked” to the Workspace. The way
to link the object is to drag it from the Project side to the Workspace side (some care is
needed; the block must be copied to the correct folder in the Workspace).

Once this is done, the BLock 1 STATUS will display the green dot, indicating the two
files are synchronised and are the same.

(Author: It would seem better to me if the new block were treated as a modified block and it
automatically gave the Project object modified status and it could just be synchronised, rather
than having to actually drag it to a specific folder in the Workspace.)

94-129

5.2.5 Understanding the Workspace as a local repository

Section 5.2.3 established that the Workspace was also a local Git repository; this
means that when files are synchronised between the Project and the Workspace, any
changes are logged by the Git VCS. At some point, these changes will be committed to
the repository and permanently stored there. At the same time an archive copy of the
TIA Project will also be made (see § 5.2.6).

The Workspace is configured using the Siemens Git add-in, this is installed and acti-
vated using TIA Portal (again the instructions for doing this are given in the ES/WDP
Configuration Manual /Ref. 006/). The Git add-in has very limited functionality com-
pared with the Visual Studio Code functionality and is not actually used directly to
maintain the Workspace repository. It is installed purely, so that TIA Portal recognises
the Workspace is a repository and hides the . git folder, preventing it from being vis-
ible and from being inadvertently modified.

The Workspace is maintained from within TIA Portal, all changes made to the soft-
ware are synchronised with the Workspace in the manner described in § 5.2.4.

The repository aspect of the Workspace is maintained via the Visual Studio Code ar-
rangement (again the instructions for installing Visual Studio Code are given in the
ES/WDP Configuration Manual /Ref. 006]). The Visual Studio Code text editor pro-
vides a graphical user interface to the Git repository allowing development branches
to be created and used with the Workspace.

All repository actions are carried out using the Visual Studio Code application. This
includes committing changes to the local repository, creating and managing develop-
ment branches and the bidirectional synchronisation of the local repository with the
remote GitHub repository.

5.2.6 Commit point archives

Whenever a commit is made to the repository, the TIA Project is saved and archived
at that point, the archived version of the software is given the name:

PS2001-PAL-<commit tag>
The commit tag being the identifying tag given to the commit point (see § 3.8)

The archived copy of the software is stored in the Project folder

D:/1000 Software Projects/PS2001-PAL-Build-SW/81 SW Archive/31 TIA PAL Archive

All commit points (both primary and secondary, see §§ 3.2 and 3.4) are stored as ar-
chive (. zap16) files in this directory.

5.2.7 Maser ES — local repository backup to NAS

There can be any number of engineering stations (ESs), generally, each software de-
velopment engineer will have one.

There is however, only one Master Engineering Station (MES), this is usually the engi-
neering station given to the lead software engineer on the Project.

All ESs have a local repository (the Workspace) and are constantly being synchronised
with the remote repository on the GitHub servers, whenever a commit is made to a
local repository, on any ES, that ES must first be synchronised with the remote repos-
itory (ensuring that any changes made by the local commit do not create a conflict with
the any other changes that have been stored within the remote repository).

The remote repository is essentially, the master repository and it is this repository that
holds all the commits made by any ES.

The GitHub servers are a third party facility (ultimately owned by Microsoft), and
while they are considered secure by the Practical Series of Publications, it is felt that
GitHub cannot be the sole storage location for the master repository (Microsoft may,
for example, close down the site, make it prohibitively expensive, or indeed may sell it
to some other party that the Practical Series of Publications does not trust).

96-129

To this end, the Master Engineering Station, each time it is synchronised with the
master repository on GitHub, makes a complete copy of the repository on the PSP
network accessible storage (NAS) drives.

The MES should be synchronised at least once a week with the remote repository.

This is done purely as an additional backup, the PSP does not think that the GitHub
website will change dramatically in the future, or be sold to the Russians — however,
there is the old engineering maxim: “better to not need a backup you have, rather than
need a backup that you do not have”, or to put it another way “better safe than sorry”.

Repository backup mechanism

The Master ES repository backup mechanism is slightly convoluted. This is because
the Git repositories, and in particular the . git folder with the repository are managed
(ultimately) by the Git application and this is by-and-large, a Unix based application;
and while this is not a problem and the application runs perfectly well on a Windows
machine, some of the filenames it uses have a Unix feel to them.

An example being the .git folder itself. To some extent, Windows, and certainly
some Windows application do not like files that start with a full stop, they expect there
to be something before the full stop and everything after it is the extension (. pdf or
. jpeg for example).

This is a problem with the PSP NAS drives, these NAS drives are all supplied by Syn-
olgy (this is the PSP standard for NAS drives).

Synology NAS drives are all equipped with an application called Cloud Station Drive
and this allows any folder on any PC to by synchronised in real time with any corre-
sponding folder on the NAS drive itself. The link, once created, automatically keeps
the folders in sync whilever the machine is connected to the internet. It is exceptionally
easy to use and just works.

The problem with this arrangement is that certain files are not synchronised (tempo-
rary files for example or files with particular extensions) and this is the problem with
the .git folder, Cloud Station Drive ignores certain files that Git considers essential
and this leads to a corrupted copy of the repository on the NAS drive.

To overcome this problem, a slightly different approach is taken. On the Master ES,
the 2500 Git Project folder is, itself, stored within a live Dropbox folder:

ENGINEERING STATION (ES) — TIA Portal Build PaRIS_01 NAS — Repository Primary Backup
D:/Projects 41 Pa_Archive

Cloud Sync . .
2500 Git Projects

v

Dropbox
2500 Git Projects

PS2001-pal-software Ej PS2001-pal-software

L L

CON100

CON100

Program blocks PLC data types Program blocks PLC data types

PLC tags PLC tags

Git repository files Git repository NAS primary backup files
Figure 5.12 Backing up a repository to the NAS drive

The Dropbox account (in this instance) is the PSP Dropbox account, this synchronises
the entire 2500 Git Projects folder and all its content with the Dropbox cloud
servers.

Synology NAS drives are equipped with a Cloud Sync package that allows a folder
within a Dropbox account to synchronise with a partner folder on the NAS drive. In
this case it is setup as follows:

98-129

o Cloud Sync
w o Task List

Up to date

p-to-date

onnection Informatio
Cloud Type: Dropbox
username Echo One

Storage Usage: 25.82 GB (1.26%) of 2053.50 GB used

o Cloud Sync -
“ - averview Task List Schedule Settings fistory
Michael Gledhil
%% Dropbox (-]
archiy

Figure 5.13 Backing up a repository to the NAS drive

The Local Path, point (1), is a directory on the Synology NAS drive, the Remote Path,

point (2) is the Dropbox folder. It is possible to synchronise individual folders within
the 2500 Git Projects folder if required.

This process does not suffer from the restrictions of the Cloud Station Drive application
and will correctly synchronise all files within the repository without exception.

Application to access to the PSP Dropbox account should be made to:

ACCOUNT MANAGER: Michael Gledhill
ACCOUNT DETAILS: PSP Dropbox
CONTACT DETAILS: mg@practicalseries.com

Table 5.4 PSP Dropbox account manager details

5.2.8 Remote repository

All ESs work with a remote repository that contains the current copy of all committed
changes made on any of the ES machines. The remote repository is the master repos-
itory, it holds all the development branches (created by any ES) and the most up to
date master branch.

Any development work that takes place on a development branch on an ES, will at
some point be committed to the local repository (on the ES), before this can happen,
the Visual Studio Code application making the commit will require that any changes
that exist within the remote repository, but are not present on the local ES (i.e. changes
that have been made by other users on other ESs) are pulled from the remote repository,
before the local ES changes can be pushed back to the remote repository. This Pull
before Push approach ensures that the user must resolve any conflicts between the
user’s local repository on the local ES and the remote repository before pushing the
resolved changes back to the remote.

There is an explanation of this process (and indeed the whole, Git and GitHub ap-
proach to version control) on the PracticalSeries website at the following address:

https://practicalseries.com/1002-vcs/08-00-remotes.html

To use the remote repository from a local ES, the two must be linked via a secure shell
key link (SSH link), the process for doing this is explained in the ES/WDP Configura-
tion Manual /Ref 006/, and again, on the website here:

https://www.practicalseries.com/1002-vcs/04-00-linking.html

To make this link, the user of the ES must have their own GitHub account and this
account must be given contributor access to the remote PSP repository.

The remote repository is public repository (one that anyone with a GitHub account
can read and copy) and is part of the GitHub PracticalSeries organisation. The organ-
isation is available here:

https://github.com/practicalseries
The remote repository itself is available here:

https://github.com/practicalseries/PS2001-pal-software

100-129

https://practicalseries.com/1002-vcs/08-00-remotes.html
https://www.practicalseries.com/1002-vcs/04-00-linking.html
https://github.com/practicalseries
https://github.com/practicalseries/PS2001-pal-software

Read access to the organisation and all of the repositories it contains, is available to
anyone with a GitHub account.

Access for contributors requires permission from the organisation owner, applications
for such access should be made to:

GITHUB ORGANISATION: https://github.com/practicalseries
REPOSITORY NAME: PS2001-pal-software
ORGANISATION OWNER: Michael Gledhill

CONTACT DETAILS: mg@practicalseries.com

Table 5.5 PracticalSeries GitHub organisation details

At the time of writing, the remote repository was in a preliminary state and had the
following appearance:

8 practicalseries / PS2001-pal-software @Watch v 0 Trsar 0 | YFak 0

<> Code Issues Pull requests Actions Projects Wiki Security Insights Settings

master + §¥ 1branch Gy 6tags Go to file Add file ~ About @

The Practical Series Automation

mgledhill D0003: FC18151 — Released for use w 853befs 8 daysago O 6 commits Library (PAL) is a library of software
modules and templates that have
CON100 D0003: FC18151 — Released for use 8 days ago been developed for the Siemens

Simatic $7-1500 and 57-1200

gitignore D000O: Initial commit — Repositary Created 9 days ago X
range of PLCs. It provides a
[LCENCEmd D000 Initial commit — Repository Created 9 days ago comprehensive library of modules
. that can be used to control most
m D0002A-000.801: FC18151 — VCS migration — Released for days ago X) .
[READMEmd D0002A-000.801: FC18151 — VCS migrati Released for SMT 8 days ag
standard industrial automation
(control system) applications.
README.md Vi

M Readme

& View license

PracticalSeries Automation Library — PAL

Releases

PRAcﬂ@SERms

&
PAL

AUTOMATION LIBRARY

No packages published
Publish your first package

Published by: Copyright © 2021
The PracticalSeries of Publications Michael Gledhill
Published in the United Kingdom mg@practicalseries.com

httpsi//practicalseries.com

Figure 5.14 The remote PAL repository

https://github.com/practicalseries

5.3 Web development platforms

Web development platforms (WDP) are used to develop the website that supports the
PAL software Project.

Web development platforms are similar to engineering stations and have a similar
specification: generally high-powered machines with at least 512 GB of hard drive stor-
age and 16 GB of RAM. Typically with a 10" or 11™ generation i7 processor or equiv-
alent (such as an AMD Ryzen 7).

WDPs should be equipped with dual 27" QHD (quad high definition) screens (these
have a resolution of 2560 X 1440 pixels).

Unlike ESs, WDP machines do not need a fixed IP address and need not have TTIA
Portal installed.

Note: 1t is perfectly possible to use an Engineering Station as a Web Development Plat-
form and indeed, it is quite common to do so (in which case it will be referred to
as an ES).

The configuration of a WDP, including drive allocation, device naming, software
package installation &c. is explained in the ES/WDP Configuration Manual
[Ref. 006].

In summary, it is assumed that the WDP has been configured in line with the above
document. In short it is equipped as follows:

The WDP, like an ES is equipped with three hard drive partitions (as a minimum):

C: OpSys Operating system and application files
D: Projects PSP web project files
E: Licences Storage area for licences &c.

The C: drive (OpSys) holds the operating system and any installed programmes and
applications. The C: drive should be at least 200 GB in size.

102-129

The D: drive (Projects) holds the website project developed for the PAL. Broadly,
this is all the HTML, CSS, JS, jQuery and image files needed by a website.

The E: drive (Licences) holds is generally not used on a WDP machine, but is in-
cluded to give a consistent approach to configuring both WDPs and ESs.

The E: drive is generally very small, it need only be a few megabytes in size (in prac-
tice, a 1 GB is more than adequate).

The software applications and configurations required by a WDP are as follows:

l. A GitHub user account has been setup

e The account has been added to the PracticalSeries organisation

2. Git SCM has been installed
e Notepad++ is installed as the Git default editor

e An SSH key link has been established between Git and GitHub

3. The Visual Studio Code text editor has been installed

e The standard set of Visual Studio Code extensions have been installed

The packages above are listed in the order in which they should have been installed on
the WDP. The exact details for installing and configuring the above application is
given in the ES/WDP Configuration Manual /Ref. 006].

5.3.1 WDP software folders

The WDP website project is stored on the D: drive (Projects)

The D: drive a holds single primary folder that contains the WDP website Git reposi-
tory:

2500 Git Projects Git Workspace folder

The underlying structure is:

WEB BUILD — Development Platform

|___| D:/Data

[2500 Git Projects

Ej PS2001-pal-website

o
B | &8 | B

00-comres 11-web 81-binary

- -

01-admin 31-git

Git repository working files — PAL Website

Figure 5.15 The website folder structure

This structure is examined further in the following section:

104-129

5.3.2 Understanding the website structure

The website structure of Figure 5.15 (everything below the PS2001-pal-website,
excepting the . git folder) is the actual website, the offline version. Everything in these
folders is copied to the live website server and can be seen at the following address:

https://practicalseries.com/2001-pal/

The relationship between the offline and online folders is as follows:

D:/Projects https://practicalseries.com
https://practicalseries.com/index.html

2500 Git Projects

PS2001-pal-website /2001-pal

https://practicalseries.com/2801-pal/index.html
& .git
31-git 91- fip sync ' 00-comres

00-comres 11-web userdocs 11-web 31-git 91-userdocs

01-admin 21-project 81-binary 01-admin 21-project 81-binary

Git repository working files — PAL Website

Figure 5.16 The website folder in relation to the live website

The contents of the folders (00-comres, @1-admin, 11-web, 21-protect, 31-git, 81-
binary and 91-userdocs) and the root folder are copied to the live website servers
using a file transfer protocol (FTP) package, this is a one-way sync from the WDP to the
website servers. The synchronisation is made manually whenever the WDP website is
updated.

https://practicalseries.com/2001-pal/

The website has several folders within it:

00-comres

0l1l-admin

Common resources

Various administration pages

11-web The main website containing the PAL user guides and information

21-project Holds all the documentation associated with the Project (validation documents)
31-git Contains information used by the GitHub repositories
81-binary Contains binary files (the TIA Project archive files &c.)

91-userdocs The online version of the User Documentation files embedded in the TIA Project

The contents of these folders are shown in the Figure 5.17 and Figure 5.18 below:

\Bl-css-inmges |4—\ end-mark |
@ |

\grid.ess A\ Flourish
00-comres — Comman Resaurces A style.css
P5200L-pal-website | 11-resources N B1-css &\ style-pal.css 4 B1-favicons

' B2-images e Npal-loge-full

A \ pal-Loga-no-text

A A pal- logo-pub-text

\85-75 -\ script. s '\ pal-loge-snall

\ pal- Loga-wip conc-c2/c3/ca/ch-r
cone-13-r
\Bl-css-images canc-t2-r-b-1-b1
\ denicons hcone-t3-r-b-i-bi
hienicons.css conc-td-r-b-1-bi
\lighthox.css canc-t7-r
21-global '\ 81-css l4— A\ normalise.css o Y waff eqty-ca-r-b

M Ypa-fonts.cas aqty-ta-r-b-i-bi

\@2-fonts - Atia-fonts.css 00 trip-t3-r-b-i

A trip-td-r-b-i

AB5-45 e\ [google-prettity | [\prettify.css o0 | ps-icans
\ hyphenator = ta-r-b
\waypoints w0

D1-admin — Adminlstration documents

A Lightbox
ARun-prettify oo |

S e -pees o] Eoelire
% Index. html o Ands o0t
A htm’ 01
\9e-97808-blank-inde: 92-97@@-blank-index 101
1 96-9808-blank-page 001 01 s Serell.js

1908500 typicals

Page
so-g90a-typicals o |

cr-zpage files fevdslines & scroll)

99-0060-git-pal-su pal-sw-irf-601p et et i st fabjiet i parh) — i
Glt-pal-sw-originals oo
11-web — PAL User Guide and Instructions
1-pages % cc-ss-poge ——\Bi-local-cax Y Codeline.css o)
Index.htnl W 8B-Bb-index 01 x
“htal 3 v
B1-8@-pay. html % B1-8a-pay A
97 3 185-local-js % Scroll.js
pag: M Pag: ce-sy-pope fi eiin are bazed o S0-00 — O
50-08-typicals 770N 8B-B0-Eypicals)
21-projest — alidation Project Bocuments
®1-pages cc-5s-page e @1-local-css. Codeline.css ool
Tndax_honl N 8-09-index |
Scroll.js

 F1-git — Git Reparitory Documents

@5-local-Js
E o files feodzings & scrally are hased an 9% 00 (0K

]

@1-pages cc-sa-page - 91-local-css \ Codeline.css wiomi Adenin — Decumant List
Index.html B6-88-index
11-86-5cm, html 11-89-scn
12-88-workspace. html 12-88-workspace
'\ﬂl-ﬂa-arrhi\le.htll E1-@@-archive Scroll.js otliond|
S s Basedan 9800 000 101

Figure 5.17 The website folder structure in detail (part 1)

106-129

#1-binary — All binary files (docs, zop16 i) | ps2081--91-801- document-register xlmx

I

e e e N T

91-userdacs — PAL [affline) User Dacumentation

Index

80-0B-contact:
97-98-blank-Lndex w0
98-00-blank-page 0000
96-98-typicals Ao

Style-pal,css

script. s

lonicons.ces o000

lightbox,css l

Jynormalise, ces 0|

Figure 5.18 The website folder structure in detail (part 2)

Doc: PS2001-5-2302-01 | Rev: R02.00 107-129

The website has two primary components:

Q) A user guide explaining how to download and use the PAL soft-
ware (contained in the 11-web directory)

©) A comprehensive guide to validated projects and all the docu-
mentation associated with the PAL project in its entirety (con-
tained in the 21-project directory)

The remaining folders are secondary and are used to support the primary sections. A
brief description of all the folders is given below:

The PAL documentation (11-web directory)

This contains a full, on-line description and operating guide for the PAL software. It
explains exactly how to use the PAL software, how to configure it and gives very de-
tailed, real-world examples of how to use it.

This directory also contains individual module documentation (in an online format)
that explains exactly how each module is configured, the requirements and options for
that module and examples of how to use the module.

This part of the website is directly accessed at the following url:

http://practicalseries.com/2001-pal/11-web/

The Project documentation (21-project directory)

The PAL software is designed for use within pharmaceutical environments and as such
is a “validated” project (see the Validation Plan /Ref. 001] for a detailed description of
validated projects and their requirements).

Validation is the process of making sure a computerised system (such as a PL.C and its
software) does precisely what it was designed to do; specifically, it is the exercise of
correctly and traceably documenting every requirement of the system and making sure
that that requirement is formally and exhaustively tested.

The fact that the Project is validated, and the associated documents required by such
projects have been deemed to be useful in their own right. This part of the website gives

108-129

http://practicalseries.com/2001-pal/11-web/

a practical approach to validating a control system, it explains the “life cycle” process
and the phases necessary to progressing from a requirement specification to a fully
validated and deployed system.

This part of the website provides examples of all the documentation required to by a
validated system and explains how they should be used. This documentation is all
made available in pdf and Microsoft Office formats (Word, Excel, Visio and Projects);
the documents are complete and can be downloaded and reused as a template by any-
one to whom they may be useful; again under the MIT licence (see page 2)

The project documentation also includes copies of the completed test and qualification
documents needed to demonstrate the PAL software has been validated

This part of the website is directly accessed at the following url:

http://practicalseries.com/2001-pal/21-project/

Common resources (00-comres directory)

The common resources are those components needed by every page within the web-
site. It contains things such as the common cascading style sheets (CSS), the JavaScript
(JS) files used within each page, common images and the common font-files needed to
correctly render the web pages.

The 00-comres directory is broadly split into two further directories:

11-resources Contains CSS, JS and jQuery files written and produced by the PSP

21-global Contains third party components needed by the website

The 11-resources folder contains files associated with the website that have been
written and developed by the PSP engineers (i.e. these are files that belong to the PSP).
They fall into three categories: CSS files (to manage the appearance of the webpages),
images (such as logos &c.) and JavaScript files that handle the dynamic navigation
used on the web pages.

http://practicalseries.com/2001-pal/21-project/

The 21-global is primarily used to hold third party applications that are used within
the website. These are categorised as follows:

woff files These contain the fonts used by the website and were purchased by the PSP
normalise.css A third-party file use to standardise how different browsers render a website
lightbox.js Used to display images in a larger, overlay arrangement

Waypoints.js Used to create dynamic navigation bars

Hyphenator.js Used to correctly and dynamically hyphenate the website text

MathJax.js Used to render equations on the website where required

Google-prettify.js Allows sections of software (code fragments) to be displayed on the website

Administration files (01-admin directory)

The administration area is used internally by the PSP web development team, it con-
tains various files that are necessary for the website management (such as revision data,
workflow diagrams, change requests &c.)

The 01-admin directory is not directly accessible by users of the website, but the con-
tents of it can be accessed by other webpages within the website to display or reference
particular information.

Git repository webpages (31-git directory)

The Git repositories created as part of this Project are all public repositories available
to anyone with a GitHub account. These repositories all contain documentation of
some form or another, usually as README . md files, that explain the purpose of the re-
pository and how to use the repository.

These files often reference specific websites or pages that offer further explanation of a
particular point.

The 31-git directory provides a storage location for such webpages for the PAL re-
positories; this document, for example, is available as an online webpage:

https://practicalseries.com/2001-pal/31-git/11-00-scm.html

110-129

https://practicalseries.com/2001-pal/31-git/11-00-scm.html

Binary file storage (81-binary directory)

All the downloadable aspects of the website:

. PDF documents

. Microsoft Office documents
° Software archive files
. Code examples &c.

are stored in the binary area of the website, such files are all accessed via other
webpages within the website.

User Document storage (91-userdocs directory)

The 91-userdocs directory is a special directory and is structured in the correct for-
mat for the TTIA Portal User Documentation facilities (see the Software Design Speci-
fication /Ref. 003/, section 13 for details of the User Documentation facilities).

This is the online version of the User Documentation embedded within the PAL soft-
ware TTA Projects.

The User Documentation allows additional information about a block within the PAL
software to be directly accessed from within the TIA Portal environment.

5.3.3 Local repository

The website folder: PS2001-pal-website contains the full website in the folders
listed in the previous section. This folder is also a Git repository (separate to the
PS2001-pal-software repository that contains the software being developed for the
PAL, the Controller software, see § 5.2.3)

This means that the development of the website is under the control of the Git VCS.

The website is written and developed using the Visual Studio Code text editor. The
repository aspect of the website is maintained via the source code control aspects of
this application (again the instructions for installing Visual Studio Code and the vari-
ous Git extension are given in the ES/WDP Configuration Manual /Ref 006]).

All repository actions are carried out using the Visual Studio Code application. This
includes committing changes to the local repository, creating and managing develop-
ment branches and the bidirectional synchronisation of the local repository with the
remote GitHub repository.

5.34 Master WDP — local repository backup to NAS

There can be any number of web development platforms (WDPs), generally, each de-
veloper will have one.

There is however, only one Master web development platform (MWDP), this usually
belongs to the lead web developer.

All WDPs have a local repository and are constantly being synchronised with the re-
mote repository on the GitHub servers, whenever a commit is made to a local reposi-
tory, on any WDP, that WDP must first be synchronised with the remote repository
(ensuring that any changes made by the local commit do not create a conflict with the
any other changes that have been stored within the remote repository).

The remote repository is essentially, the master repository and it is this repository that
holds all the commits made by any WDP.

For the same reasons given in § 5.2.7, the web repository is also backed up to the PSP
NAS drive.

112-129

This is done by the Master Web Development Platform; each time the MWDP is syn-
chronised with the master repository on GitHub, it makes a complete copy of the re-
pository on the PSP network accessible storage (NAS) drives.

The MWDP should be synchronised at least once a week with the remote repository.

The backup mechanism is the same as that for the Master Engineering Station, it uses
Dropbox as an intermediary, the full description of how this works is give on page 97.

The Master Web Development Platform has a slightly different folder structure. Simi-
lar to the Master ES, the 2500 Git Project folder is, stored within a live Dropbox
folder on the MWDP:

WEB BUILD — Development Platform PaRIS_01 NAS — Repository Primary Backup
D:/Projects 41 Pa_Archive
Cloud Sync
Dropbox < P 2500 Git Projects

2500 Git Projects

PS2001-pal-website (£ Ps2001-pal-software
e A
o P
00-comres 11-web 31-git 91-userdocs 00-comres 11-web 31-git 91-userdocs
01-admin 21-project 81-binary 01-admin 21-project 81-binary
\ J
Git repository working files — PAL Website Git repository NAS primary backup files

Figure 5.19 MWDP NAS backup structure

Application to access to the PSP Dropbox account should be made to:

ACCOUNT MANAGER: Michael Gledhill
ACCOUNT DETAILS: PSP Dropbox
CONTACT DETAILS: mg@practicalseries.com

Table 5.6 PSP Dropbox account manager details

5.3.5 Remote repository

All WDPs work with a remote repository that contains the current copy of all commit-
ted changes made to the website on any of the WDP machines. The remote repository
is the master repository, it holds all the development branches (created by any WDP)
and the most up to date master branch.

Any development work that takes place on a development branch on any WDP, will
at some point be committed to the local repository (on the WDP), before this can hap-
pen, the Visual Studio Code application making the commit will require that any
changes that exist within the remote repository, but are not present on the local WDP
(i.e. changes that have been made by other users) are pulled from the remote repository,
before the local WDP changes can be pushed back to the remote repository. This Pull
before Push approach ensures that the user must resolve any conflicts between user’s
local repository on the local WDP and the remote repository before pushing the re-
solved changes back to the remote.

To use the remote repository from a local WDP, the two must be linked via a secure
shell key link (SSH link), the process for doing this is explained in the ES/WDP Con-
figuration Manual /Ref. 006].

The remote repository is a public repository (one that anyone with a GitHub account
can read and copy) and is part of the GitHub PracticalSeries organisation. It is availa-
ble here:

https://github.com/practicalseries
The remote repository itself is available here:
https://github.com/practicalseries/PS2001-pal-website

Read access to the organisation and all of the repositories it contains, is available to
anyone with a GitHub account.

114-129

https://github.com/practicalseries
https://github.com/practicalseries/PS2001-pal-website

Access for contributors requires permission from the organisation owner, applications
for such access should be made to:

GITHUB ORGANISATION: https://github.com/practicalseries
REPOSITORY NAME: PS2001-pal-website
ORGANISATION OWNER: Michael Gledhill
CONTACT DETAILS: mg@practicalseries.com
Table 5.7 PracticalSeries GitHub organisation details

5.3.6 The live website

The live Practical Series of Publications website is hosted by Heart Internet in the
United Kingdom.

The website has various publications (of which the PAL website is just one compo-
nent), The landing page for the top level of the website is:

https://www.practicalseries.com/
And the landing page for the PAL website is:
http://www.practicalseries.com/2001-pal/
The Master Web Development Platform (MWDP) is used to maintain the live website.

The live website is an exact copy of the offline website stored in folder PS2001-pal-
wesite onthe D: drive of the MWDP, but without the . git folder.

The website is uploaded from the MWDP to the Heart Internet servers using the
WinSCP application, the installation of this application is discussed in the ES/WDP
Configuration Manual /Ref. 006].

Logon information is required to give access to the WinSCP application (this logon
information is also restricted to having the correct credentials, the website will only
permit machines with specific IP addresses to upload the data).

https://github.com/practicalseries
https://www.heartinternet.uk/
https://www.practicalseries.com/
http://www.practicalseries.com/2001-pal/
https://winscp.net/eng/index.php

The WinSCP application has two windows, the left-hand side is the offline website on
the MWDP, the right-hand side is the online website on the Heart Internet servers:

B public_htm - PracticalSeries - WinSCP - O
Local Mark Files Commands Session Options Remote Help
M &2 3 Synchronize Bl g [F] (@ [Queue - Transfer Settings Default M
[PracticalSeries X é' New Session
= D:Dropbox/2500 ~ [~ [{] - D2 % public htr = (= - [@] - @ & D, FindFiles | T
£ New ~ £ New ~
Dy/Dropbox/2500 Git Projects/PS2001-pal-website /public_html/2001-pal
Name ” Size Type Changed Name ” Size Changed Rights Owner
. Parent directary 26/02/2021 09:21:18 .
00-comres File folder 16/02/2021 10:11:07 00-comres 16/02/2021 10:11:07 merarx 1485771
01-admin File folder 16/02/2021 10:09:47 01-admin 16/02/2021 10:09:47 TWXF-XT-X 1485771
11-web File folder 16/02/2021 10:09:56 11-web 16/02/2021 10:09:56 TWXF-XT-X 1485771
21-project File folder 28/02/2021 16:57:02 21-project 28/02/2021 16:57:02 merarx 1485771
31-git File folder 16/02/2021 10:10:28 31-git 16/02/2021 10:10:28 TWXF-XT-X 1485771
81-binary File folder 16/02/2021 10:10:36 21-binary 16/02/2021 10:10:36 merarx 1485771
91-userdocs File folder 28/02/2021 16:57:11 91-userdocs 28/02/2021 16:57:11 TWXF-XT-X 1485771
|| .gitkeep 2KB GITKEEP File 07/02/2021 16:39:11 2] desktop.ini 1KB 20/02/2021 14:04:34 Wer-r-- 1435771
@ index.html 43KB BraveBeta HTML.. 18/02/2021 10:02:41 @ index.html 3KB 18/02/2021 10:02:41 [1485771
0B of 283 KB in 0 of 13 0B of 287 KB in 0 of 12
FTP 0:03:00

Figure 5.20 WinSCP FTP with the live website

Those requiring FTP access to the website should apply to the following:

SITE OWNER: Michael Gledhill
ACCOUNT DETAILS: PSP Website FTP
CONTACT DETAILS: mg@practicalseries.com
Table 5.8 PracticalSeries FTP access details

116-129

5.4 NAS based Project documentation

The PAL Project documentation and administration files are stored on the PSP NAS
drives, in the common project area. This can be accessed as a network location on any
office PC as follows:

\\192.168.1.85\01 Pa_Clavis\2230 PS Projects\PS2001-PAL-Proj
Within this folder, the Project has six distinct areas:

.. . Contains the project register (of all documents) and a set of template
0-Administration Prol . g ()) P
documents for use within the Project

. Contains all the project management files: resource management, project
3-Project management . .
planning, order placement, security &c.

Quality, health, safety and environment. Contains all risk assessment and

4-QHSE
Q method statements and handles any health and safety incidents
Contains the bulk of the project documentation, organised according to life
5-Engineering cycle phases. Holds all documents, spreadsheets, drawings &c. required to
design and build the Project
6-Accounting Cost tracking, budget management and invoicing.

2-C q All project correspondence including minutes of meetings, scanned copies of
-Correspondence .)
paper correspondence and a full email archive

Table 5.9 Main areas within the Project directory

The full Project folder structure is shown in Figure 5.21:

file://///192

\\PaRIS_81\81 Pa_Clavis

Ps2001-0-01-001-document -register.xlmx

‘Guality, Health, Safety & Emironment

wsxmgmem. Melhod Stalemants

nREANIsEn BY PHASE
REQUIREMENTS

ps2001-5-25-801-TQ-Ragister. xlmx

TEST

DEPLOYMENT

QUALIFICATION

TRAINING & USE

Figure 5.21 The full project folder structure

118-129 Doc: PS$2001-5-2302-011 Rev: R02.00

54.1 Understanding the Project folder structure

The Project folder structure is designed to hold all the project information. It is split,
generally, according to discipline (management, engineering, financial &c.).

This is a common structure for all PSP projects, this is done to give consistency and
commonality to all PSP projects.

The bulk of the information contained within the Project folder structure is documen-
tation, the breakout of the 5-Engineering directory is organised by phase and con-
tains all the documents listed in the Validation Plan /Ref. 003/, documents such as:

@

@ Q@ @ © 6 ® O

® ©

Quality Manual (QM) and Quality Plan (QP)

Validation plan (VP)

User Requirement Specification (URS)

Requirement Traceability Matric (RTM)

Functional Specification (FS)

Hardware and Software Design Specifications (HDS, SDS)
Design Review (DR)

Test documentation (SMTS, SITS, FAT)

Qualification documentation (IQ, OQ)

Training and use documentation (UG)

119-129

The directory also contains secondary documents such as:
o Design drawings

. Schedules

o Equipment lists
) Certificates (calibration &c.)
) Manufacturer’s literature

The directory also holds the data for all aspects of the system including backups of the
developed software, licence information, copies of any software supplied to the project
(TTA Portal media &c.) and user configuration information (user names, credentials
&c)).

The Project directory contains all the live information for the Project and the entire
project (including development build information) can be recreated from the infor-
mation contained within this directory.

Each document within the Project, has its own folder, for example the Functional
Specification is located in the folder:

PS2001-PAL-Proj\5-Engineering\21-Design-Functional\@1-Functional-Specification
The document filename reflects this location, in this the example, the FS filename is:
PS2001-5-2101-001 RO1.00 PAL FS.docm
All documents have this format, it can be broken down as follows:
PSnnnn-A-BBCCDD-PPP Sxx.yy Name
Where PSnnnn is the project number (2001 in this case),

A-BBCCDD is the leading directory numbers in the path to the document from the root
of the project folder, the A being one of the main project areas (Table 5.9), 5 in this
case.

BBCCDD are the remaining folder numbers, the FS is in folder:

120-129

5-Engineering\21-Design-Functional\@1l-Functional-Specification

Taking the leading number from each folder give 5, 21, 91 (the FS is three folders
deep), hence the first part of the FS filename is:

PS2001-5-2101

The PPP is a three-digit number to ensure the document is uniquely numbered, for a
single document in a particular folder, this is usually 001 (this is at the discretion of
the user).

Sxx.yy is the revision status of the document, see § 5.4.3:

The Name is a meaningful name for the document and can be anything (though gener-
ally, shorter is better, the whole thing should be 50 characters or less).

Common document folders

Generally, each PAL document (and drawings, spreadsheets &c.) has its own folder
within the Project folder structure. The document itself will be in the root of this folder,
the document folder will also contain a common set of sub-folders:

‘\ ©1-Functional-Specification-(FS) \ 11-Submitted
\ 21-Review-Comment

\ 51-Figs-images-diag

\ 52-Reference
\ 91-Superseded

Figure 5.22 Document common sub-folders

The purpose of these folders is as follows:

11-submitted Contains the submitted documents (those with a revision status of R)

. Contains the marked-up documents with a P status that have been reviewed
21-Review-Comment . i
and received comments from the concerned parties

. . . Figures, images and diagrams used within the main document (Visio drawings
51-Figs-images-diag N .
are often used, the Visio file has the same number as the main document)

52-Reference Any reference material pertinent to the main document

91-Superseded All superseded versions of the document (including draft documents)

121-129

The following shows an example arrangement for the Functional Specification

Last formally issued document

‘\ @1-Functional-Specification-(FS) \11-Submitted \ PS2001-5-2101-801 RG1.00 PAL FS.docm
‘\ PS2601-5-2101-001 DO1.01 PAL FS.docm \ 21-Review-Comment

\51-Figs-images-diag N\ fig-01-@1.png

N\ fig-01-02.jpeg
Current (working) document N\ PS2001-5-2101-001 R01.00 FS dwg.vsdx
B \ 52-Reference
\ 91-Superseded

Visio drawings associated with the main document

Figure 5.23 Document common sub-folders (example)

Empty folder conventions

The PAL Project folder structure is extensive with a large number of folders, many of
which are pre-configured in the PSP folder template used to create the Project directo-
ries in the first place.

To make navigation around the folder structure easier, empty folders are, by conven-
tion, prefixed with the characters E#, this is the default state for all folders. This can be
seen below:

AO-
Home Share View Q
cut J< I New item ~ ﬂ- Open - [selectall
— 2 Copypath £ Easy access - Edit Select none
Pinto Quitk Copy FPaste Move Copy Delete Rename New Properties
s 7] Paste shorteut 1o o = folder > History 25 invert selection
Clipbaard Organize New Open Select
« « 4 ||« SEngineering > 21 Design Functional » 01 Functional Specification FS ~| @ | Search 01 Functional Specification FS »
PS2001-PAL-Proj A Name Date medified

0 Administration 51 Figs, Images & Diag

3 Project Management. Submitted

Review & Comment
#52|Ref & Support Info
291/iSuperseded

ﬁs P52001-5-2101-001 R01.00 PAL FS.docm

5 Engineering

01 Planning & Quality

11 Requirements

21 Design Functional
01 Functional Specification FS
51 Figs, Images & Diag
£211 Submitted
£221 Review & Comment
£252 Ref & Support Info
E291 (5-2107) Superseded
11 Proof of Concept (PoC)
22 Design Hardware
23 Design Software
24 Design Drawings
25 Design Tech Queries
29 Design Website
33 Build Software
41 Testing
71 Training & Use
81 Reference Material
82 Supplier Information

E# 32 Build Hardware v < >

s =

Figure 5.24 Document common sub-folders (example)

122-129

5.4.2 Project registry

The 0-Adminstration folder contains the Project Registry /Ref 005/, this is a registry
of all the documents produced for the Project

The Project Registry is an Excel spread sheet that lists every document within the Pro-
ject (usually by phase). It has the file name:

PS2001-0-01-001 Rxx.yy Project Register.xlsx
And is located in the following folder
PS2001-PAL-Proj\@-Administration\@1-Project-Register
Any new document created must be entered in this Project Registry.

The following is an example of a page from the Project Registry:

Cells only populate when DOCUMENT TITLE is entered
5-01 - Planning
sus REVISION HISTORY
pocio AREA FOLDERS FOLDER FULL DOC NUMBER DOCUMENT TITLE ISSUE DATE (Top line shows revision, bottom line change control number if any)

ool s o w 20050100001 e —— swyie | oo

001 5 o1 o1 PS2001-5-0101-001 Quality Plan (QP) 02 Jun 20 RO1.00

002 5 o1 21 PS2001-5-0121-002 Validation Plan (VP) 05 Jun 20 RO1.00

003 5 o1 3 PS2001-5-0131-003 Test Plan (TP) 09 Jun 20 RO1.00

004

005

o0s

. a E=

008 l

009 5 o1 n PS2001-5-0111-009 Program Schedule (Full) 04 Jun 20 RO1.00

ole 5 o1 n PS2001-5-0111-010 Program Schedule (Part | - Plan-Des) 04 Jun 20 RO1.00

on 5 o1 n PS2001-5-0111-011 Program Schedule (Part 2 - Build-Test) 04 Jun 20 RO1.00

o s o I Psorsolionn broganScede (a3 DepTm G4z | Aol

o3

o014

o015

0le

o7

o

ors

Figure 5.25 Document common sub-folders (example)

123-129

5.4.3 Document versions

The revision of the document is expressed in the form Sxx.yy, where:
S is the status:
D — Draft/development
P — Published for review
R — Released

The xx.yy numbers are the revision number, xx being the major revision and yy being
a minor revision.

The first formal release of the document will be at 01.00, prior to this the document
will have been is a draft state (e.g. D00.01, DB0.02, D0V .03 &c.) at some point it will
have been published for review (this takes the next logical number, e.g. P00 .04).

Revisions after a document has been released continue with minor revisions from the
released revision, consider a document at release R01.00 that is to be modified and re-
released, its progression would continue as:

R01.00 — DO1.01 — DO1.02 .. PO1.09 — RO2.00

The status letter changes to reflect the document state, the numbers always go up-
wards.

124-129

Document revision in document references

Where documents are referenced from within other documents, e.g.:
Validation Plan (VP) /Ref 003]

The current revision of the document is not quoted, neither is it quoted in the Refer-
ences section of the document, this is to prevent every document having to be changed
if a single document is modified (changing the revision of the SDS would require the
reference section of all documents that referenced it to be change, this in turn would
require all documents that referenced these documents to also be updated &c.).

To prevent this, document references quote the document number only, the latest re-
vision of which is listed in the Project Registry /Ref. 006]. When using the document
reference, the Project Registry must be consulted to ensure the correct revision of the
referenced document is used.

At the end of the Project when no further document changes will take place (i.e. when
all as-built documentation is released) all document references will be updated to in-
clude the as-built revisions of all related documents for clarity.

125-129

BLANK PAGE

126-129 Doc: PS$2001-5-2302-01 | Rev: R02.00

6.1

References and glossary

Document references

The following documents are referenced in this manual:

REF
001

002
003
004
005
006
007

Table 6.1

DOCUMENT NO.
PS2001-5-0121-002

PS2001-5-2101-001
PS2001-5-2311-001
PS2001-5-2302-01 |
PS2001-0-01-001
PS2001-5-234101-001
PS2001-5-2301-001

Table of references

AUTHOR

PSP
PSP
PSP
PSP
PSP
PSP
PSP

TITLE/DESCRIPTION
Validation Plan (VP)

Functional Specification (FS)

Software Design Specification (SDS)

Software Control Mechanism (SCM) THIS DOCUMENT

Project Document Registry
ES/WDP Configuration Manual

Software Module Register

127-129

6.2 Glossary of terms

ABBREVIATION DESCRIPTIONS
AMD Advanced Micro Devices, a company that makes computer processors
CSS Cascading Style Sheet

DB Data Block

DR Design Review

ES Engineering Station

FAT Factory Acceptance Test

FB Function Block

FC Function

FS Functional Specification

FTP File Transfer Protocol

Git A version control system application

GitHub The online version of Git

HDS Hardware Design Specification

HMI Human Machine Interface

HTML Hypertext Mark-up Language

ID Identifier

IP Internet Protocol

1Q Installation Qualification

JS/JavaScript A web-based scripting language

jQuery A library of JavaScript objects, commonly used in web development
MES Master Engineering Station

MIT Massachusetts Institute of Technology (Licence)
MWDP Master Web Development Platform

NAS Network Accessible Storage

OB Organisation Block

oQ Operational qualification

PAL Practical Series Automation Library

PC Personal Computer

PLC Programmable Logic Controller (a Siemens Controller)
PoC Proof of concept

PSP Practical Series of Publications

QHD Quad High Definition

128-129

ABBREVIATION
QM

QP
RAM
RTM
SCADA
SCL
SCM
SDS
SHA-I
SIT

SITS
SMT
SMTS
SSH

TIA
TOC
UT/UDT
UG

URS
VCS

VP
WDP
WinSCP
XML
Zip
Zaplé
Table 6.2

Glossary

DESCRIPTIONS
Quality Manual
Quality Plan
Random Access Memory
Requirements Traceability Matrix
Supervisory Control and Data Acquisition
Structured Control Language (a PLC programming language)
Software Control Mechanism
Software Design Specification
Software Hash Algorithm |
Software Integration Test
Software Integration Test Specification
Software Module Test
Software Module Test specification
Secure Shell, a secure network transfer protocol
Totally Integrated Solutions (TIA Portal, a Siemens programming tool)
Table of contents
User Data Type
User Guide
User Requirements Specification
Version Control System
Validation Plan
Web Development Platform
Windows Secure Copy, a file transfer program
Extensible Mark-up Language
A file extension for compressed files

A file extension for TIA Portal compressed files

129-129

	Title page
	Licence
	Authorisations
	Revision history
	Contents
	1. Introduction
	1.1 Software Control Mechanism requirements
	1.1.1 Module revision numbering mechanism
	1.1.2 A version control system

	1.2 Scope and purpose of this document
	1.3 Ownership, status & relationship to other documents
	1.3.1 Ownership of the document
	1.3.2 The status of this document
	1.3.3 Relationship to other documents
	1.3.4 Users of this document

	2. Approach to version control
	2.1 Version control requirements of the SCM

	3. The software revision numbering mechanism
	3.1 Workflow arrangements
	3.2 Master branch revision states
	3.3 Development branch names
	3.4 Development branch commit tags
	3.5 Merging a development branch
	3.6 Individual module revision numbers
	3.6.1 Recording revision numbers within a programmable block
	Hardcoded module revision data
	Network comment module revision data

	3.6.2 Recording revision numbers within a data block
	Hardcoded data block revision data
	Header comment data block revision data

	3.6.3 Recording revision numbers within a User Data Type (UDT)
	3.6.4 Software Module Register (SMR)

	3.7 OB1 module revision numbers
	3.8 Commit points and filenames
	3.8.1 OB 1 and filenames

	3.9 Parallel development branches
	3.10 OB 1 and the Merging of branches
	3.10.1 Merging a single branch or the first branch to merge
	3.10.2 Merging additional parallel branches

	3.11 Nested branches
	3.12 A note on commit messages

	4. The website revision numbering mechanism
	4.1 Workflow arrangements
	4.2 Master branch revision states
	4.3 Development branch names
	4.4 Development branch commit tags
	4.5 Merging of development branches
	4.6 Individual page and file revision numbers
	4.6.1 Recording revision numbers within web page files

	5. Software storage and folder structures
	5.1 An overview of the Project structure
	5.2 Engineering stations
	5.2.1 ES software folders
	5.2.2 Software development area (1000 Software Projects)
	5.2.3 The Workspace and local repository (2500 Git Projects)
	5.2.4 Understanding the Simatic Workspace
	Understanding the Workspace symbols
	Synchronising the Workspace
	Knowhow and write protection
	Common actions
	A note about new objects in the Project

	5.2.5 Understanding the Workspace as a local repository
	5.2.6 Commit point archives
	5.2.7 Maser ES — local repository backup to NAS
	Repository backup mechanism

	5.2.8 Remote repository

	5.3 Web development platforms
	5.3.1 WDP software folders
	5.3.2 Understanding the website structure
	The PAL documentation (11-web directory)
	The Project documentation (21-project directory)
	Common resources (00-comres directory)
	Administration files (01-admin directory)
	Git repository webpages (31-git directory)
	Binary file storage (81-binary directory)
	User Document storage (91-userdocs directory)

	5.3.3 Local repository
	5.3.4 Master WDP — local repository backup to NAS
	5.3.5 Remote repository
	5.3.6 The live website

	5.4 NAS based Project documentation
	5.4.1 Understanding the Project folder structure
	Common document folders
	Empty folder conventions

	5.4.2 Project registry
	5.4.3 Document versions
	Document revision in document references

	6. References and glossary
	6.1 Document references
	6.2 Glossary of terms

