Practical Series

PRACTICAL SERIES AUTOMATION LIBRARY
SOFTWARE DESIGN SPECIFICATION

AUTHOR: MICHAEL GLEDHILL

ol

AUTOMATION LIBRARY

Published By: Practical Series of Publications
Published in the United Kingdom
mg@practicalseries.com

Copyright 2021 Michael Gledhill

Document No.: PS2001-5-2311-001
Document Template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto)

LICENCE This document and associated software are made available under the MIT License:

The MIT License (MIT)
Copyright © 2021 Michael Gledhill

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

2-201

DOCUMENT AUTHORISATION

L)

The signature of the author confirms that the document has been prepared in accordance with an

Michael
Author (chac Lead Engineer “\

Gledhill 21 May 2022

approved document management process, that all content is technically complete and that all relevant
material has been included.

Frank Project

Reviewed by Greenwood Manager

21 May 2022

The signature of the reviewer indicates that the document has been checked for technical content and
that it complies with the technical standards, specifications and conventions.

[;
Approved by Frank Project %/ Lz /M‘i 21 May 2022

Greenwood Manager Y, [’fe’?:‘

The signature of the Approver indicates that the document has been checked for compliance with the
quality management Procedures.

REVISION

REVISION DATE REVISED BY DESCRIPTION
. . Properties standardised across all documents
R02.00 21 May 2022 Michael Gledhill
Changes to interrupt and functional group names
RO1.00 29 Jul 2020 Michael Gledhill ~ First release for use

4-201

CONTENTS

l. Introduction U I |
I.1 Scope of this document 12
1.2 Ownership, status & relationship to other documents 14
1.2.1 Ownership of the dOCUMENt........c.ccveruveureeercrreeeireeereieeeesseeeeeseeeseeaeene 14
1.2.2 The status of thisS dOCUMENe et eeeeeeee e e eseeeeeeesseseseseas 14
1.2.3 Relationship to other documents 14
1.3 Understanding and using this document 16

2. OIVEIVIEW ..cceeeeereereenccnenceneccenencensscsnssccssscssssesssssssssesssssssssessssessssssassesassessssssnssoss 17
2.1 A description of the Project software e 17
2.1.1 Standard modules, an overview w19
2.1.2 Application modules, an OVErVIEWcecrereveereneeneereeenenreeesesnesesensenes 21
2.1.3 Template MOAUIES ...ttt seeaens 26
2.1.4 Documentation MOAUIES...........ciieeeeeecceeee et eseaeas 27
2.2 Regulatory requirements 27
2.2.1 Software ClassifiCationcceeeeeeeeeeeeecceeeeererere e sesene 28
222 Regulation and legislative requirementscoceeveeeerevceremrencereseneenennenes 29
223 SOftWare SLANAANASc.cceeeeececc ettt sene 29
224 Maintenance and publication of verification certificates........cccccecoveuneenee 29
2.3 A description of the User Documentation 30
24 Assumptions and limitations..........ccueeeeeeeccciisnnnnneeeeccccsnnnee 33
2.5 NONCONFOIMILY ..cccccuunnnnneereicciiiisnnneneeeicccssssnnseeeeeccsssssssssseenseces 33
2.6 Addressing the URS requirementscccceceicicccsssscsccisssnnnns 33

3. Programming environments and common settings .. 35
3.1 Engineering stations and Windows settings 36
3.1.1 Engineering station operating system and hardware specifications..... 36
3.1.2 ES fiXed [P addrEss......uoeeveveeeececeeeeeeeeterereee et sesese s sesesenes 38
3.1.3 Naming the Engineering Stationveneneneenenenceneneneesenneeesennenes 39
3.14 Windows regional SELLINGSc.ecveeeereucereeeereeseeeseseessessessessesssssessessessesns 42
3.2 TIA Portal settings .43
3.2.1 Applying PAL settings to TIA Portal.........connnnenesinencsesernenene 43
322 TIA Portal block overview column SEtLingscccocceevemrerremrercmsersennenne 45

33 Common CPU Propertiescccueemeeeeeecccssscnnnneeencccssssnnnsenee 46

6-201

Naming, numbering and other conventions..............eeeeeecccissnnnneeeeecccssnnes 49

4.1

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.1.6
4.1.7

4.2

4.2.1
422
423
424
425
426

4.3

4.4
44.

4.5

4.5.1
452
453
454

4.6

4.7
4.7.1

Block type and numbering conventions..........ccceeeeiiciiciicinnnnns 50
BlOCK NUMDBEIING ...cereeiieiceeeiceeerice ettt eessesesaesseaeeseanen 53
Standard, application and template block numbering.........ccccccveucuucece 55
Data block NUMDEIINGccovuereeerrerirerrecirenrecirenreeesensecesesseeesesseessesneessenne 56
Instance data block NUMbEriNg.........cc.ovveuvemeveenericrcrerecresecseneeeenne 58
OB (Interrupt block) NUMDBErINGccceueerereereenreererrereireeeseeeenaes 59
Document block NUMDEIINGc.cvueeeremreremrererremnirnernenessenseaseseesesenserseenes 60
Block numbering SUMMAryc.oceceerenceneneceneeecteeeescnseeeenseenesseseeennes 6l
Module naming Conventions...........cceeeciinenneeeeeeecccssssnnneeeeenees 64
BIOCK LY P@..ueieeenceenenirreneeerseeeee e esseseessessesessessessessessssesssasesssene 64
BIOCK NUMDET ...ttt essessessesse s ssasesseenes 65
BIOCK CIaSS ...cueueueuciieececericerearicetiseciseaseesstaseess e sess s ssesstasssesseassssssenssssanen 65
BIOCK fUNCLION. ...ttt ssessesssnsessenaes 66
BlOCK d@SCIIPLIONecvuemeeceeerecriareceemeeeeareesraeeaes s esesseasesesseaensesencesesnes 67
Block Naming restriCtionsccoceeeceeurevceremeencremceersesenessesenessesensessescesesses 67
Block optimisation & IEC checkccuueeeieinnneiicisnenecisnnnnnn. 68
Tags, parameters, symbolic and absolute representations..69
EN and ENO Parametersc.eceeeveeceeeeeeesseseessessessessessessessesessessessesseeses 71
Block parameter NAmMIiNG.....ccuueeeeeeeeeccciissnnneeeeecccssssnnsseeececes 73
FOrmMal PArameEters........ocecereeeeeeneceneeneeierseeesesseeesessenetsesseessessassssessesssenns 74
Temporary (I0€al) data..........cccceeeneeneereenseneeseneeessensenessessessessessesseesessesenns 75
CONSLANLES <..cuveueuenenerrererssessesessessesse e sssessasesssssessessessessssssssssssesssssesasssesaes 76
Static data (function blocks ONly) ... 78
Naming variables in static UDTscccccovvuuuneeeeeccccsssnnnnneecenees 79
Naming variables in dynamic UDTs......uuuueeeeeeecccisnnnnnceeencen 80
UDTSs holding reCipe dataeceeeveeceneenceneenseneesessensessessessessesssssesssssesssene 8l

4.8 Naming variables in static DBs.......ccccceevuuuueeeeeeccccisnnnnneeecceens 82
4.9 Naming variables in dynamic DBs.........cccccciviiiiiiiiiiiiiiiiiiinnnnn. 83
49.1 DBs holding reCipe data.........ceveeeeereeereeneeeneeneceneeneeesesneeesesseessesseessessene 83
4.10 Tags and tag naming 84
4.10.1 The PAL system tags (PAL_SystemTags)incncncnncnenn. 84
4.10.2 The PAL Input/Output tags (PAL_TOTAES)..ccccevuvrriririmrcrrimreninerensenne 86
4.10.3 Project specific tag tables..........ccoeereveererreencenerneenerceneeseeseneessesessessessessenns 88
4.11 Control system network device naming 89
Common appearance and version CONtrol.....cccccceeeeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeeeees 91
5.1 TIA Portal comment fieldsccceeeeeeenceeneceeeccenecceeecceeeecceeeens 91
5.1.1 Maximum size of a comment field 94
5.2 Common headers and NEEtWOFIKSceeeceeecceneccenncceneccennccannens 95
5.2.1 Block title and comment fieldoooeeeeerereeeeeeeccrereeeeree s 96
522 Network | — Block description .98
523 Network 2 — Current revision and modification history 103
53 OB | header and revision NetwWorkcecceeeecceneccenecceneenns 105
5.3.1 OB | Network | — Project descriptionceceeveeeeereseneusesesernennene 105
5.3.2 OB | Network 2 — Current revision and modification history 108
54 General Network COMMENtS......cueeeeeeceeeeccenecceneccenecceneeceneecens 110
5.5 Specific network comments for sequences.............cceeveeneeee. 11
5.5.1 Step declaration network — title and comments.........cccceceeureurercurenne. 112
5.6 Data block header and revisSionccceeeceeeecenecceneccenecceneecens 114
5.6.1 Data block revision information 116
5.6.2 UDT block revision informationecceeeeeererereeeeenesenesenns 116
5.7 Programmable block propertiesuuuueeeeeecccisnnnnnneenncens 117
5.8 Data block and UDT properties.........cccceeevunnneeeeeccccsssnnnnneee 119
5.8.1 Data block properties (static and dynamic)ceceeeeecererercereeesensenees 119
582 UDT properties (static and dynamic)cceeeeeeerereeremrencerenseremsemsesessenens 121
5.9 Hardware component comments..........eeeeeeeeeecccssnnnneeeeeecns 122

8-201

Standard MOAUIES........uuueeeeeeeiiiiinnnnneeeeeeccsissnnneeeeesccssssssssssseesscsssssssssssseesses 123
6.1 SMDS CONLENLS ...cueeeeenenenennnnnnnnnnnnenennenemsssssssssssssssssssssssssssssssses 123
6.2 Standard block list and associated documentation............. 135
6.2.1 System funCtion MOAUIES.......c.ccececerceceecereeeeereeeeeseessesessessessessenens 135
6.2.2 Instrument read MOAUIESccoeruicuririerireeereeseestsesseesestsesaseeaes 135
6.2.3 Interlock and protection modules..........coeecererevenenrenernensenernensesernennene 136
6.2.4 Safety and safety system modulesccceveereenreeenscnsenesernemrensennennens 137
6.2.5 Calculations and mathematics modules........c.ccveeveenecreercrcsercrnennennees 137
6.2.6 Sequential CONLIOl ...ttt esseaesesseaees 140
6.2.7 Device drivers — Control I0OPs.........ccecrereveerereneenennenernesenersesesessennene 140
6.2.8 Device drivers — VaIVeS ... eererneeneeneeeeneceeneeenseneessessessessessessenne 141
6.2.9 Device drivers — DIiIVES......crereereeneercenenneereneesenseeensseseessessessessessessenns 141
6.2.10 Message handlingccceceveeecneceneneeireineetreereeeerreeesesseessesseeasesseeasesseaes 142
6.2.11 Communication handlingcceeeueceeerencenenenceneeiseseeeseeseeesesseeesensenees 143
6.2.12 SUDFOULINES ..ottt ss s sssss s ssssssasssssssassnssssanes 144
6.2.13 DebUg SUDIOULINES ...ttt eneseessessessessesessessssseens 145
Application MOdUIES........uuueeeeeeeieeeeecisrsnnneeeeeccsssssssneeeesssssssssssnsssessssssssssssanes 147
7.1 Application module numberinguuueeeeeeeecisnnnneeeeenecccnnnns 151
7.2 Sequence aNNOLALIONuuueeeeeeeeecciiissnnneeeeeeccsssssnsseeecscccsssenes 153
7.2.1 Sequence 1O MALriX SUMMALYccvcueeeereecereeeeeeseseeessessessessessessescssess 162
INterrupt MOAUIES.......ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiisssssssssssssssssssssssssssssssssssssnsanes 163
8.1 Error detection OBsccccuuuuneeeeecccsisssnnneeeeecccsssnnsseeecscces 165
Template MoOdUIES.......eeeeieeiiiiiinnnneeteiiciiissnnnneeeeecccssssssssseeesccsssssssssseee 167
9.1 Templates for application modules............ccccvviiiiiiiiiiiiiinnn. 167
9.2 Template modules for organisation blockscccccuuuuee. 170
Documentation MOdUIES.........uueeeeeeeeiciiiinnneeetiecccissssnnneeeenccsssssnsseseeesccssnnes 171
Common approach to data handlingeeeeeeeccciinnnnnneeeeecccissnnnneeeeeeens 173
11.1 Conventions for using UDTs........cuuuuuieeennnnnnnnnnnnennnnnsesssssssnnes 173
[1.1.1 Static UDT CONVENTIONS......coiurieeenreeinianieesensesesseaseesseassesseasssesseasssesssaees 174
1.1.2 Dynamic UDT CONVENTIONS......ccveureuremercrrenrererenserenensesessessesessensesessenens 176

Common modes of operation

12.1 [ETTTET I 0 3 T X« [T N 179
12.2 Bypass mMode........uueeeeeeiieiiiiisnnnneiiinnsssssssnnseeeeesssssssnnssssesenes 181
12.3 Simulation mode . 182
12.4 Remote/local mode 183
12.5 Faceplate disable mode 185
User doCUMENLALION ...cceeeecciinnnnneeeeecccsssssnnneeeecccssssssssssseescssssssssssssssssssssssnes 187
13.1 Organising the user documentation .. 188
13.1.1 The use of 2 hOME PAZEcvueureerreicrrereerreeeerree e esesseeeseaneaes 192
13.2 Project specific User Documentation . 193
13.2.1 User Documentation for additional items..........ccceeeeeereerecsercrscnscrnennces 194
Software security 195
14.1 The protecting of software modules . 195
References and gloSSarycccciiiiiiiiiiiiiiiiiniiniiiiiiissssssssssssssssssssssssssssssssssnnnes 197
15.1 Document references 197
15.2 Glossary of terms .. 198

BLANK PAGE

10-201 Doc: PS$2001-5-2311-001 Rev: R02.00

1 Introduction

This document is the Soffware Design Specification (SDS) for the Practical Series Auto-
mation Library of software modules (the PAL).

This Software Design Specification has been produced by Michael Gledhill, under his
authority as the lead engineer of the Practical Series Automation Library of software
modules project (hereafter referred to as the Project).

The Project software consists of a library of software modules and templates that have
been made available for the Siemens Simatic S7-1500 range of controllers (and to a
lesser extent the S7-1200 range), what used to be referred to as Programmable Logic
Controllers or PLCs.

The PAL is configured and deployed using the Siemens Simatic TTA Portal program-
ming environment.

This document, the Software Design Specification, explains the underlying concepts
of how the software works, the fundamental structure applied to the software and the
common features and practices needed to implement the software.

The SDS is a very detailed document and assumes a degree of knowledge about PLC
programming in general and TTA Portal programming and Simatic Controllers in par-
ticular.

1.1 Scope of this document

This document is the main design document for the Practical Series Automation Library
of software modules. It is a detailed document that explains the underlying philosophy
behind the PAL. It does the following:

@ Explains the PAL Controller programme structure

(@ Establishes the common properties for S7 Controllers and asso-
ciated hardware

® Establishes the naming and addressing conventions for Control-
ler hardware and programming devices:

o PAL network addressing
. Controller naming
. Remote rack naming

. HMI, SCADA and server naming
. Engineering station (ES) naming
) Establishes the block numbering mechanisms for:
. Programmable blocks (FC, FB and OB)
. Data blocks and instance data blocks (DB and iDB)

. User data types (UDT)

12-201

® Establish naming conventions for:
. Programmable block names (FC, FB and OB)
o Data blocks and instance data blocks (DB and iDB)

J User data types (UDT)

o Block parameter names
o Local variables and constants
) Tag (symbolic) names
o Data block variables
(® Explains the usage of data types within the PAL
(@ Establish the standard PAL global signals
Specifies the structure of interrupt organisation blocks
® Explains common library features (automatic and manual op-
erations &c.)
Establish PAL conventions for block optimisation
() Explains how the operator interfaces (HMI and SCADA) to the

system work

In addition to explaining the PAL software, this Software Design Specification also
explains the user documentation mechanisms used to provide web-based information
about the PAL software; this documentation is embedded within the PAL project files
and is accessible using the user documentation facilities available within the TIA Por-
tal application.

1.2 Ownership, status & relationship to other
documents

This document (the Software Design Specification) is a design document for the Pro-
ject, the ownership of the document (those whom control it and are able to modify it),
its status within the Project and its relationship to all other primary documents are
important factors and are explained below:

1.2.1 Ownership of the document

This Software Design Specification has been produced, and is controlled and main-
tained by the Practical Series of Publications (PSP).

This Software Design Specification and all the referenced documents produced by the
PSP are subject to the change control management procedures for this Project, these
are detailed in the Project Quality Plan (QP), /Ref 001].

1.2.2 The status of this document

The Software Design Specification (¢his document) is a subordinate document to the
Functional Specification (FS) /Ref’ 005] and is a deliverable item under the terms of
the Project. The Software Design Specification is an internally approved document
(approved by the Practical Series of Publications).

1.2.3 Relationship to other documents

The Software Design Specification is a subordinate design document for the Project, it
both expands and provides additional detail to the specifications given in the Func-
tional Specification (FS) /Ref 006/. The SDS also acts as a coordinating document the
individual Software Module Design Specification documents (SMDSs) /Ref 008].

The full document flow-path for the Project including the Software Design Specifica-
tion is shown in Figure 1.1; full details of this document within this flow-path can be
found in the Project Quality Plan (QP), /Ref. 001] and Validation Plan (VP), /Ref. 002].

14-201

TRACING REPORTING

r 3

DOCUMENTATION

Validation Plan

o Test Plan
Ll TP

User Requirements
Specification

r

URS

Functional Specification

F 3
»

3

da
mainay ubisaq

y

s Proof of Concept
Specification POC

Hardware Design
HDS

Software Design

»

rF

Style Guide
SG

Specification
SDS

THIS DOCUMENT

»

Design Review
Report DRR

WLy

Hardware Factory Hardware Factory
Acceptance Test Acceptance Test &
Report H-FATR H-FAT

F 3

xupew Apjiqeases) sjuawaainbay

Software Module
TestReport B
SMTR

Software
—) T Test L
Report SITR

v
Module Source
< Code Review
SCR
Integrated Source
« Integration Test Code Review ﬁ

Specification SITS SCR

Software Factory J

Software Factory
Acceptance Test [
Report S-FATR

Qualification
Report IQR

Acceptance Test
S-FAT

DEPLOYMENT

HARDWARE
COMMISSIONING

KEY

|
SOFTWARE
COMMISSIONING
[Optional

Operational

Installation
Qualification
Q

<

Report OQR

Qualification
O Project activities,
primary flow path(s)

Documented evidence,

System Acceptance = reports and credentials
Report < for validation
SAR

VALIDATED SYSTEM RELEASED FOR USE

Doc: PS2001-5-2311-001

Figure 1.1 Project Documentation

Rev: R02.00

ONINNV1d

SLNIW3INO3Y

>

N9IS3d

<

aling

>

1S3l

LNIWAOId3a

NOILYDI41TVYND
2 ONINOISSIWWOD

EEVEREL |

15-201

1.3 Understanding and using this document

This document, the SDS, is a detailed design document, it builds upon and expands
the information provided in the Functional Specification (FS), /Ref. 005]. The docu-
ment is concerned specifically with the design and implementation of software for the
Simatic S7-1500 and S7-1200 ranges of Controller; as such, this document is intended
for those whom have a detailed knowledge of Simatic Controller and the TTA Portal
programming environment.

This document uses technical terminology common to both the programming of PL.Cs
in general and Simatic Controllers in particular; where such terminology is used within
the accepted engineering conventions and customs of this field, it is done so without
further explanation. For example, reference to the “Clock Memory” within a Control-
ler, is done without further explanation, the clock memory being a common and well-
known component of a Simatic Controller; those reading this document are expected
to know what the Controller clock memory is and how to configure and use it.

16-201

: ! Overview

This overview sets out a brief description of the Project software, its purpose and its
design.

2.1 A description of the Project software

The Practical Series Automation Library (PAL) Project is a library of software mod-
ules and templates that can be used to control and develop software for use in Siemens
Simatic Controllers to control and operate most industrial process applications.

The PLC software is designed to be applicable to virtually all industrial applications
that can generally controlled by a programmable logic controller (PLC).

PLCs are general purpose devices designed to control a wide range of process plant
and while PLC are relatively fast acting devices, they, and consequently the PAL soft-
ware, would not be considered suitable for very high-speed applications (bottling ma-
chinery, paper mills, rapid assembly equipment &c.), such system usually have their
own bespoke controller dedicated to the requirements of the particular application.

Generally, PLCs are suitable for processes that operate with a response time of more
than 100 ms. I.e. the system would not be expected to respond to some stimuli faster
than 100 ms. In practice, a Controller may (and usually will) respond faster than this;
but, a response time of 100 ms is considered to be an acceptable (and widely used) limit
for PLC control.

17-201

The PLC software was developed for, and has been deployed in, the following indus-
trial applications:

o Water and waste water treatment

) Pharmaceutical and batch production
) Brewing and fermentation

o Chemical manufacturing

o Oil and gas systems

o Power plants

. Food and beverage production

At its most fundamental level, the PAL is a library of software modules that control
aspects of an industrial plant; such modules would for example read the value of an
instrument, operate a valve or drive, perform a calculation &c.

Such software modules are referred to as standard modules, these are fixed modules
that perform a particular function and are identical across all software installations.

The PAL software structure contains application specific modules; these contain soft-
ware that is applicable to the plant being controlled, these can be simple coordinating
modules that organise the software into logical areas, marshalling modules that call
the standard modules or programmable modules that contain the control software re-
quired to control specific aspects of the process plant.

In addition, the PAL is supplied with femplate modules, these serve as example mod-
ules to demonstrate how the PAL modules should be used, and the best practices for
doing so.

Finally, there is a series of documentation modules that demonstrate how the modules
should be documented, commented and named.

18-201

2.1.1 Standard modules, an overview

Standard modules carry out a particular function; an example would be a module that
controls the operation of a valve, such a module would do the following:

. Open and close the valve when commanded to do so

° Determine if the valve is in a fault condition (i.e. the valve did not
open when commanded to do so)

° Provide status information about the valve allowing other sys-
tems (SCADA, HMI &c.) to display the condition of the valve
(i.e. opened, opening, closed, closing, fault, interlocked &c.)

The module would be configurable to accommodate different types of valves and sig-
nalling arrangements:

. Different arrangements of position feedback (none, open only,
closed only or both open and closed)

. Different opening and closing times
° Handle external fault signals (typical for motorised valves)
. Accommodate different energising states (i.e. energise to open or

energise to close)

. Manage different interlock arrangements and signals

19-201

The module would also determine how the operator could interface with the valve:

) Provide manual control (operator can take direct control of the
valve)
) Restrict specific manual control function (this ranges from full

control using simulation to override faults, to no control whatso-
ever, even restricting the display of faceplate interfaces)

) Allow or restrict the operator from changing operating parame-
ters associated with the valve

The PAL has many of this type of module; in fact these modules make up the bulk of
the PAL.

The standard modules within the PAL are fixed modules, the software within these
modules has been written, tested and validated and must not be modified or changed
in any way (to do so would invalidate the software).

The standard modules cover all aspects of a control system:

o System (internal) signal generation
o Instrumentation

o Safety and interlock systems

o Calculations

o Continuous control

J Sequence control

J Command execution logic

o Device handling (valves, drives &c.)
o Alarm handling and messages

o Communications

20-201

There are also various standard subroutines that, while not associated with any partic-
ular piece of equipment, provide common software functions (e.g. timing functions,
string functions, format conversions &c.) that are available to all modules within the
Controller.

The different options available to a standard module are selected by passing parameters
to the module that either activate or deactivate modes of operation or pass configura-
tion values to the module (opening and closing times of a valve, operating range of an
instrument for example).

The mechanisms, data structures, numbering and naming conventions for standard
modules and the methods of passing data to the module is done in conformance with
standard practices set out within the PAL (and within this document).

2.1.2 Application modules, an overview

Application modules are project specific modules; they are written for a particular pro-
ject and are configured to match the requirements of that project.

The project (that is the Controller project that operates some aspect of a plant) is usu-
ally required to control and monitor various devices and instruments. For example,
consider a simple filtration plant (Figure 2.1), this expands on the example given in the
User Requirements Specification (§ 2.1.2) /Ref. 003].

21-201

MV101

RAPID GRAVITY
FILTER RG101

Y

INLET
WORKS

OUTLET
TANK

Mv201

RAPID GRAVITY
FILTER RG201

DRAIN

A 4

F 3

BL501

BACKWASH
TANK

Figure 2.1 Filtration plant schematic

22201 Doc: P$2001-5-2311-001 Rev: R02.00

This has the following valves:

BISTABLE MOTORISED VALVES QUANTITY 2
DEVICE TAG DESCRIPTION
MVI0l1 Filter | inlet valve
MV201 Filter 2 inlet valve
Table 2.1 Filtration plant equipment — Motorised valves
MODULATING VALVES QUANTITY 2
DEVICE TAG DESCRIPTION
Cvio02 Filter | outlet valve
CVv202 Filter 2 outlet valve
Table 2.2 Filtration plant equipment — Modulating valves
ISOLATING VALVES QUANTITY 6
DEVICE TAG DESCRIPTION
VVI03 Filter | backwash water inlet valve
V104 Filter | backwash water outlet valve
VVI05 Filter | Air inlet valve
VV203 Filter 2 backwash water inlet valve
VV204 Filter 2 backwash water outlet valve
VV205 Filter 2 Air inlet valve
Table 2.3 Filtration plant equipment — Isolating valves

It has the following drives:

DOL DRIVES QUANTITY 2
DEVICE TAG DESCRIPTION
BL501 Backwash blower |
PM501 Backwash pump |
Table 2.4 Filtration plant equipment — Drives

23-201

And the following instruments:

INSTRUMENTS QUANTITY 3
DEVICE TAG DESCRIPTION
FICIOI Filter | outlet flow
FIC102 Filter 2 outlet flow
LIT501 Backwash tank level
Table 2.5 Filtration plant equipment — Instruments

In summary, this filtration plant has the following types of devices and instruments:
) 2 X Bistable valves (open/close valve driven by a motor)

o 2 x Modulating valves (can be set to any position between
opened and closed)

o 6 x Isolating valves (open/close valve operated by a solenoid)
o 2 x DOL Dirives (simple start/stop motors)
. 3 X Instruments

Le. it has five different types of devices and instruments.

To programme this project using the PAL five standard modules would be needed (one
for each type of device):

. Standard module for bistable valves
. Standard module for modulating valves
. Standard module for isolating valves

. Standard module for DOL drives

. Standard module for instruments

24-201

There would also be five project specific applications modules:

o Application module for bistable valves

o Application module for modulating valves
o Application module for isolating valves

o Application module for drives

o Application module for instruments

The first of these (for bistable valves) would call the standard bistable valve module
two times (once for MV101 and once for MV201) and each instance would link the
standard module to the particular IO and internal storage locations associated with the
motorised valve in question.

Similarly, the application module for modulating valves would call the standard mod-
ulation valve module twice (once for CV102 and once for CV202).

The isolating valve application module would call the standard module (for isolating
valves) six times (for VV103, VV104, VV105, VV203, VV204 and VV205).

And so on.

The contents of each application module is dependent on the requirements of the plant
being controlled (specifically how many of each type of device exist). I.e. the applica-
tion modules differ between different projects; the standard modules on the other hand
are the same across all projects.

In the above (filtration) example, the application modules are simply co-ordination
areas that call the required standard modules the requisite number of times; there is
clearly more to a Controller programme than this, something must decide when a valve
is to be opened, a drive started &c. and in the case of the modulating valves something
must decide what position the valve should adopt.

The type of logic that performs these actions is either continuous logic (operates all the
time) or sequential logic (operates as part of a sequence). In this case, the filter would
normally operate under continuous control (the inlet valve would open and the mod-
ulating outlet valve position adjusted to maintain a specific flow from the filter).

25-201

At some point, the filter will be need to be cleaned (probably at a specific time of day);
the continuous logic would (when the specific time was reached) trigger a cleaning
sequence that would then take control of the filter and clean it. A typical sequence
would be:

) Isolate the filter (take it out of service and close all valves)
o Aerate the filter (open air inlet valve and start blower)

) Backwash the filter with aeration (open backwash inlet and outlet
valves and start backwash pump)

. Washout the filter (stop blower and close air inlet valve)
J Allow filter bed to settle (stop pump and close backwash valves)
J Return filter to service (open inlet and outlet valves)

These modules (continuous logic modules and sequential control modules) are also
application modules.

2.1.3 Template modules

Template modules are example modules that explain how to do things within the PAL,
a typical template module being one that shows how sequences work within the PAL.

Template modules contain a basic configuration that can be copied, expanded and
modified for the application in question; they provide a basic “skeleton” software struc-
ture that can be used repeatedly for a particular type of application.

Templates exist for most application modules and should be used wherever possible as
a model for the application module.

Templates are used to develop the software for a particular plant. Once the software is
complete (or at least past the development stage) the template modules themselves
should be deleted.

26-201

0]

@

O}

)

2.14 Documentation modules

The PAL software is extensively commented (indeed, there is a Style Guide (SG)
[Ref. 010] dedicated to explaining how to comment PAL software); the documentation
modules contain examples of different types of comments for the various different soft-
ware modules and data structures used within the PAL.

Like the template modules, the documentation modules are used to make the develop-
ment of the software easier, and should be deleted once the software development is
complete.

2.2 Regulatory requirements

The environments within which the PAL software can be used include pharmaceutical
applications; as such the software must be written to the standards necessary for Good
Manufacturing Practice (GMP), generally referred to as GxP'.

The Validation Plan (VP), /Ref. 002] provides a justification and determination of val-
idation requirements of this Project. The result of this determination is that this Project
is a category 5 “bespoke” system and will comply with, and be written to, the standards
necessary for GxP. These are the most rigorous standards used for control system soft-
ware and hardware development and use.

The GxP requirements are encapsulated in the International Society for Pharmaceuti-
cal Engineering (ISPE) guidelines, referred to as Good Automation Manufacturing
Practice (GAMP), currently at revision 5 (GAMP 5), [Ref. 011]. Systems that are writ-

ten to the standards in GAMP 5 are said to be compliant systems that can be validated.

Validation is the process of making sure a computerised system (such as a PLC and its
software) does precisely what it was designed to do; specifically, it is the exercise of
correctly and traceably documenting every requirement of the system and making sure
that that requirement is formally and exhaustively tested.

GxP is a general term for good ... practice, where the x stands for various things, manufac-
turing, distribution, laboratory, clinical, engineering, &c.

27-201

2.2.1 Software classification

M This Project, the Practical Series Automation Library, will be written to the standards
specified in GAMP 5, it will be a validated and fully compliant GMP Project. The
precise details of the validation process are specified in the Validation Plan (VP) doc-
ument, /Ref. 002].

@ GAMP 5 provides the following software categories (category 2 is no longer used):

CATAGORY DESCRIPTION EXAMPLE REQUIREMENTS
| Layered software (i.e., upon Operating System Record version
Infrastructure Which applications are built) Database Engines Verify installation
Software Programming languages
Software used to manage the Statistical packages
operating environment Spreadsheets
3 Run-time parameters may be Firmware- As category | plus:
Non- entered and stored, but the Commercial off the shelf | jrg
Configured software cannot be configured software Supplier assessment
S —" to suit the process Tests against URS
oftware, often very complex, ata acquisition systems: s categor us:
Sof f ry pl D quisition sy A gory 3 pl
Configured that can be configured by the * SCADA Verify supplier QMS
Sof user to meet the specific needs * HMI Design specs. (DS)
oftware :
of the process. * ERP Tests against DS
* MRPII Procedures for:
Application software code is « Data management
not altered. * Maintenance
5 Software custom designed and Bespoke IT applications As category 3 plus:
CUSET coded to suit the process. Bespoke control S)./stems Full life cycle docs:
(bespoke) Custom ladder |Og|c FS, DS, SDS, HDS,
Seffavire Custom firmware SMDS &c.
Spreadsheets (macro) Source code review
Structural testing:
SMT, SIT, FAT,
IQ, OQ
Table 2.6 GAMP 5 software classifications

® The control system and software being developed as part of this Project is
a bespoke system and, under the GAMP 5 classification system, is a cate-
gory 5 system.

28-201

0]

@

(©)]

Q]

0]

@

0]

@

2.2.2 Regulation and legislative requirements

There are two specific sets of regulations that apply to control systems in pharmaceu-
tical environments:

° CFR 21 Part | | US Code of Federal Regulations, Title 21, Food and Drugs, Part || —
Electronic Records, Electronic Signatures [Ref. 013]
e FEudralex Vol 4 EU Regulations Volume 4: Pharmaceutical legislation — Medicinal Products
Annex |1 for Human and Veterinary use — Good Manufacturing [Ref. 014]

Generally, if a system is compliant with GAMP 5 it will satisfy the EU Regulations
Volume 4, Annex 11.

CFR 21 Part 11 is concerned with the accuracy, reliability and storage of electronic
signatures; this is more relevant to supervisory systems rather than the Controller soft-
ware of this Project; however, were applicable the PAL software will comply with
these regulations.

The Practical Series Automation Library software will be written to comply with the
above regulations, the software will also conform to the standards specified below:

2.2.3 Software standards

The Practical Series Automation Library software will be written to the standards set
down in the International Electrotechnical Commission (IEC) publication 61131-3: Pro-
grammable controllers - Part 3: Programming languages, listed here as [Ref. 012].

All software will be written using Ladder Logic (other languages including statement
list will not be used.

2.24 Maintenance and publication of verification certificates

The software library will be validated and will be fully GMP compliant (see § 2.2.1).
The details of the validation process are given in the Validation Plan (VP), [Ref. 002].

The completed verification documents (e.g. test specification, calibration certificates,
&c.) will be made available as secure documents that clearly identify the software mod-
ule and its version number. Each document will be complete with signatures and all
attachments.

29-201

2.3 A description of the User Documentation

TIA portal supports various mechanisms for storing user documentation for software
modules; the PAL makes extensive use of this facility.

All software modules within the PAL are extensively documented within the modules
themselves, see the Style Guide [Ref 010] for details, this includes the block headers
and individual network comments discussed in section 5.2.

In addition, the TIA facility for user documentation (referred to as 714 User Documen-
tation) is also used. This facility allows documents to be stored in a variety of formats:
PDF documents, text documents, Microsoft Word documents and also as web pages.

Of all these formats, the PDF format offers the most flexibility, it is readily produced
from the Software Module Design Specifications /Ref. 008/ (written in Word DOCX
format), can be configured to use the document headings as navigable bookmarks and
can be rendered in most standard web browser.

The PAL user documentation will also provide links to the various documents gener-
ated within this project. This includes the following:

. The User Guide /Ref. 009]

o The software Design Specification [Ref. 007]

o Individual Software Module Design Specifications /Ref. 008]
. The Style Guide [Ref. 010]

The PAL user documentation will also be developed as a full website, working under
the confines and structures imposed by the TIA User Documentation requirements.
This website provides a standard format for displaying the PAL user documentation,
it has the following appearance:

30-201

Doc:

o
O

PS2001-5-2311-001

PRACTICAL SERIES AUTOMATION LIBRARY
Software Module Design Specification

FC O'l OO 'I _StdSysGlobalData

SYSTEM

STANDARD SYSTEM GLOBAL DATA

AUTHOR: MICHAEL GLEDHILL SOFTWARE VERSION:

FC 01000 STANDARD SYSTEM GLOBAL DATA

Abstract
1 Block technical summary 4 Parameters
2 Functional overview 5 Data structures & usage
3 Detailed block description 6 Temporary (local) data
31 Enabling the clock memory byte 7 Block calls
32 ThePAL system tag table)
8 Associated blocks
33 Globallogicsignals
3.4 Global timing signals 9 System block calls & data types
341 Scan synchronised timing pulses 10 Special properties & requirements
342 Scan synchronised timing square waves 101 Block optimisation
35 Cyclically dependent signals 102 Calling requirements
351 Record cycle times and properties n Exainpla uiags & raviion Kistory
36 Realtime clock (RTC) data

ABSTRACT

This block (FC01001_StdSysGlobalData) is an essential system block that generates the in-
ternal logic and timing signals needed by all the other PAL software modules.

The block records the controller scan times and converts the Controller real time clock value to
discrete integers, making the data globally available to all systems including non-Siemens equip-
ment.

The block provides the following functions:

All the blocks within the PAL conform to the PAL style guide. This block (FC 01001) is a tem-
plate module that holds common arrangements for various aspects of the block notation and docu-

mentation styles.

It sets out the basic approach to documenting a block and includes:

- Generates global logic signals (TRUE and FALSE)
- Generates the following scan synchronised timing pulses:
50ms, 100ms, 200ms, 500ms, 1s and 2s.
- Generates the following (1:1 mark/space) square wave signals:
100ms, 200ms, 500ms, 1s and 2s
. Generates odd and even (alternating) cycle tick-tock signals
- Generates a first-gyele signal indicating the controller has just started
L Records the cycle time of the last, maximum and minimum controller cycles
L Reads the controller internal real time clock and converts the values to discrete

integer values containing: year, month, day, day of week, hour, minute, second
and millisecond

The block requires that the controller clock memory function is enabled.

The block must be the first block call within the main organisation block (OB 1).

Figure 2.2 Typical PAL user documentation web page

Rev: R02.00

31-201

The PAL user documentation website will support the following functions in addition
to the standard displaying of text:

o Utilise embedded fonts
) Be responsive to screen resolution (support for phone and tablet
devices)

o Utilise JavaScript and jQuery

) Utilise persistent “sticky” navigation to ensure ease of use
o Provide facilities for:
. Allowing images to be overlayed on the screen

“lightbox” imaging
o Display code fragments
o Display mathematical formulae

The PAL user documentation website will be distributed within the library software
(distributed as part of the software project itself).

The PAL user documentation website will be available in its own right from with the
PSP internal intranet.

The user documentation web pages will utilise the existing Practical Series of Publica-
tions web documentation facilities; these will be restructured to accommodate the
folder organisation required by the TTA Portal User Documentation (TIA Portal des-
ignates specific folders each type of block documentation). The Practical Series of Pub-
lications web documentation facilities are designed to accommodate this type of re-
structuring.

32-201

0]

0]

@

3

)

0]

@

2.4 Assumptions and limitations

The PAL software will be validated to the GxP requirements that are applicable to
Europe and specifically, the United Kingdom at the time of writing.

2.5 Nonconformity

There are no nonconformities between this document and the User Requirements
Specification (URS) /Ref. 003].

The URS specifies that the sequence control logic will be IEC 61131-3 /Ref. 012] com-
pliant (see the section Sequential logic control, § 4.2.2 of the URS, [Ref. 003]); and in-
deed, the associated standard modules are compliant, satisfying the requirements of the
URS.

There is however, a school of thought that the TEC implementation of sequence control
logic has certain impracticalities; this is associated with the terminating phase of one
step overlapping the initialising phase of the next step (both occur in the same PLC
cycle, Section 9.3 of the Functional Specification (FS) /Ref. 005/ contains a full descrip-
tion of this point). Engineering application often prefer that the sequence steps do not
overlap in any way (the steps are completely independent); to satisfy this common
engineering practice, a second, non-IEC compliant, version of the sequence logic
modules is included, these maintain the segregation between steps.

The use of these modules is entirely optional.

2.6 Addressing the URS requirements

Where a particular point in the SDS addresses a formal requirement raised in the URS,
the point in the SDS is given a paragraph number, this allows each point to be uniquely
identified by section number and paragraph number. These specifications will be rec-
orded in the Requirement Traceability Matrix (RTM), /Ref. 004].

Paragraphs that are not numbered are not formally addressing a requirement; these
may be introductions to a section, explanatory texts, notes or clarifying statements.

33-201

BLANK PAGE

34-201 Doc: PS$2001-5-2311-001 Rev: R02.00

0]

@

3

Programming environments
and common settings

The PAL software is written using the Siemens Simatic TTA Portal programming en-
vironment. This is a highly configurable workspace, supporting various windows, task
panes and tool bars all of which are adjustable and selectable by the user. The default
arrangement is shown below:

T4 Siemens - D:\1000 Software ProjectsiP52001 - PALG1 Source Codel31 SW TIA PALDAXc DeviPs2001-PAL-000.111-DalPS2001-PAL-000.111-Da

Totally Integrated Automation
PORTAL

Options

v |Find and replace

~ |] PS2001-PAL-000.1110a
I Add new device
B Devices & networks
» (1 PLCI00 [CPU1518.
» fid Ungrouped devices
» £§ Securitysettings
» [3¢ Crossdevice functio.
» [gh Commen data
» [E]) Documentation sett.
D emmrere Cer
» [& Version control inter.

| Languages & resources

Editing language:

v | Details view

| Properties [*Info)| 2] Diagnestics

General

3 i 5
=3 overview

i

Figure 3.1 Default TIA Portal configuration

In addition to the TIA Portal configuration settings, TIA Portal also relies on the un-
derlying Windows regional settings; there are some peculiarities with this arrangement
that need to be addressed in order to give a consistent and uniform programming ex-
perience.

Finally, there are common settings that must be enabled for each CPU that is to run
the PAL software, all of which are explained in the following sections:

35-201

U]

@

0}

@

©)

3.1 Engineering stations and Windows
settings

The computer upon which TIA Portal is installed is, in Siemens terminology, referred
to as an Engineering Station or ES. This usually refers to a machine that holds the
development software for the application (as opposed to just the runtime application
for, say, a supervisory system). I.e. it is the programming environment for Controllers,
HMIs and SCADA systems.

This section summarises the following aspects of an Engineering Station:
Q) Operating system and hardware requirements of the ES
(@ Assigning a fixed IP address to the ES
(3® Naming of the ES
® Regional and date and time setting of the ES

Full details of the Engineering Station configuration including details of all software
installations is given in the ES/WDP Configuration Manual /Ref. 019).

3.1.1 Engineering station operating system and hardware specifications

The PAL software requires TIA Portal (professional) version 16 or higher. Version 16
was released in early 2020 and at the time of writing is the latest version of TIA Portal.

The professional version of TIA Portal is required, this is the version that supports the
S7-1500 range of Controllers. The PAL software is designed specifically to run on the
S7-1500 range of Controllers (it will also run to a lesser extent the S7-1200 range).

As of version 16, TIA Portal professional only supports the Windows 10 and Windows
Server operating systems as shown in Table 3.1:

36-201

Table 3.1
1
Note:
“ The Siemens

WINDOWS 10 (64-BIT)
Windows 10 Professional Version — build: 1809 and 1903
Windows 10 Enterprise Version — build: 1809 and 1903
Windows 10 loT Enterprise 2015 LTSB, 2016 LTSB or 2019 LTSC

WINDOWS SERVER (64-BIT)
Windows Server 2012 R2 Standard (full installation)

Windows Server 2016 Standard (full installation) 1!

Windows Server 2019 Standard (full installation) 1!

TIA Portal V16 supported operating systems

The full installation referred to here is the Desktop Experience option, this is selectable during the
operating system installation process; the other “standard” option just installs a command line version
of the operating system

LTSB is the long-term service branch of Windows (now renamed LTSC, long-
term service channel), this is a mechanism for restricting Windows updates to
security and bug fixes and allowing the updates to be controlled by the system
administrators. Essentially, this prevents the automatic updates implemented by
the normal Windows 10 operating system.

minimum hardware requirements, and the PSP standard specification,

for an Engineering Station running TIA Portal are:

FEATURE SIEMENS RECOMMENDED (MIN) PSP RECOMMENDED
Processor Core i5-6440EQ, 3.4 GHz Core i7-10875H, 5.1 GHz
RAM 16 GB (32 GB for large projects) 16 GB for large projects
Hard disk SSD with at least 50 GB of free space SSD with at least 512 GB of free space
Screen resolution Single 1920 x1080 px monitor Dual QHD (2560 x 1440) px monitors
Table 3.2 TIA Portal V16 hardware requirements

37-201

0]

@

3.1.2 ES fixed IP address

TTA Portal always uses an Ethernet network to connect to individual Controllers. The
Controllers and any supervisory systems (HMIs or SCADA) systems will all have fixed
IP addresses; this is standard engineering practice with control systems (control system
networks require individual devices to communicate with each other in a very specific
way and via IP addresses. Unlike office networks where the given IP address of an
individual machine is not particularly important).

Figure 3.2 shows an expanded version of the PAL network architecture, complete with
an Engineering Station and Supervisory System:

ENGINEERING STATION ELECTRICAL PANEL h
ETHERNET IP: 192.168.1.240
HMI
TP1200
ETHERNET IP: 192.168.1.110
T4qu
I
@
F4 ETHERNET SWITCH
- al UNMANAGED
o}
2-qu
CONTROLLER | CONTROLLER 2
EI
' CPU I515-2PN CPU I511-1PN
ETHERNET IP: 192.168.1.100 ETHERNET IP: 192.168.1.101
SUPERVISORY SYSTEM PROFINET IP: 192.168.0.100
ETHERNET IP: 192.168.1.200
PROFINET SWITCH
MANAGED
PROFINET IP: 192.168.0.120
-
———ETHERNET PROFINET PORTS
—PROFINET TO REMOTE IO

Figure 3.2 Expanded PAL network architecture

38-201

3

®)

(O]

0]

@

O]

Within this arrangement there are five devices connected via the Ethernet network,
these devices all have fixed IP address within the Ethernet Class C address range
(192.168.1.nnn). The addresses are assigned as follows:

DEVICE NAME IP ADDRESS DESCRIPTION
CONI00 192.168.1.100 Controller | — CPU 1515-2PN
CONIOI 192.168.1.101 Controller 2 — CPU 151 1-1PN
0OS§200 192.168.1.200 Operator station (supervisory system)
ES240 192.168.1.240 Engineering Station (development system)
Table 3.3 Device names and IP addresses

The Engineering Station, the PC upon which the full TIA Portal professional develop-
ment software is installed, has the fixed IP address of 192.168.1.240 and as such must
be assign this fixed IP address within its Windows operating system.

The ES/WDP Configuration Manual /Ref. 019] gives full details of how to set a fixed
IP address for and Engineering Station.

3.1.3 Naming the Engineering Station

All PCs that form part of the control system should have a network accessible name.

If the PC in question is to run either the WinCC Professional development environ-
ment or the WinCC Professional runtime environment, then the following point
should be observed:

Importance of setting a PC name

If WIinCC Professional is to be installed on a PC, it is very important to set the name of the
PC BEFORE installing the TIA Portal software; in particular, before installing the WinCC
Professional component. WinCC will hard code the PC name at the time of installation
into the Microsoft SQL database manager setup.

It is very difficult to change the name of the PC after this without re-installing TIA Portal.

The Engineering Station PC will have been assigned a unique name (as part of the
Windows installation process); However, Siemens (particularly WinCC) applications

39-201

have stricter naming conventions than is permissible in Windows. For Siemens appli-
cations the following rules apply:

Siemens computer name restrictions

e The following characters are not permitted:

S 2L A [~ L+ =] /TN
@ *~#3%$% &8 ° ()[1 {3}
<> 7 " space

e All character must be uppercase
e The first character must be a letter

e The computer name must be less than 12 characters

“ The restrictions for Windows are less severe:

Windows computer name restrictions

e The following characters are not permitted:

P /LN <L) L

e The name cannot start with a full stop .

e Keep the computer name less than |5 characters

© The general rules for naming a PC that is to run the PAL the software are:
@ Use a dash instead of spaces

@ Only use the characters [A-Z], the numbers [0-9] and the
dash/hyphen [-]

®)

The name must be less than 12 characters long

(@) Start the name with a letter

40-201

The Siemens PC naming convention

© There is a commonly accepted convention for naming the main equipment within a
Siemen control system; it is to start the name with an abbreviation of what the device
is (e.g. ES, OS, CON &c.) followed by the last octet (byte) of the device IP address.

@ In Figure 3.2, the Engineering Station has the IP address 192.168.1.240, the last octet
of the IP address is thus, 240 and the PC name given to the Engineering Station would
therefore be:

ES240

® The following abbreviations are commonly used:

ABBREVIATION DEVICE

Automation System, another name for a PLC (generally used with

AS o :
distributed control systems like PCS 7)

Es Engineering Station, the PC that runs the full development software
(in this case TIA Portal)

os Operator Station, a supervisory system (HMI or SCADA). If the
system is a server/client arrangement, OS refers to a client

CON A Controller

SV A server, usually a supervisory system server

PN Profinet node, usually a remote 1O rack, these have a different
numbering arrangement (see § 4.11)

Table 3.4 Device naming abbreviations

©) The ES/WDP Configuration Manual [Ref. 019] gives full details of how to name and
configure an Engineering Station.

41-201

0]

@

3

)

3.14 Windows regional settings

TIA Portal is not responsive to the regional settings selected within windows?. TTA
Portal only uses the REGION AND LANGUAGE settings for ENGLISH (UNITED STATES).

Where other regions are used — ENGLISH (UNITED KINGDOM) for example, then
TIA Portal will ignore this and use the default setting for ENGLISH (UNITED STATES).
This tends to mean that dates always default to the American format of mm/dd/yyyy,
and this is generally not acceptable.

The only way to change this is to set the region and language to ENGLISH (UNITED
STATES) and then change the defaults to something more English (British) in nature.

The ES/WDP Configuration Manual /Ref. 019] gives full details of how to set the re-
gional settings for an Engineering Station.

2 This is an omission on the part of TIA Portal, all Windows programmes should adopt the
region settings selected by Windows — it is however consistent with earlier versions of
Siemens programming packages: Simatic Manager (Step 7) and PCS 7; both of which ignored
the Windows regional settings.

42-201

0]

@

(©)]

0]

@

3

3.2 TIA Portal settings

The PAL software will be entirely developed using the Siemens Simatic TIA Portal
Professional (Version 16) programming environment.

To provide a common interface format, the PAL uses the default settings for TIA Por-
tal as much as possible. However, there are a few areas where these settings need to be
changed to match the requirements of the PAL.

The ES/WDP Configuration Manual /Ref. 019] gives full details of TIA Portal should
be configured for an Engineering Station. The following sections summarise these set-
tings:

3.2.1 Applying PAL settings to TIA Portal

Certain changes are needed to make the PAL appear in the correct format within TTA
Portal (give TIA Portal a common appearance that matches the requirements of the
PAL, variable naming length &c.), other changes are made to give a more consistent
and convenient arrangement when using TIA Portal.

To make the changes, again open the settings page: select OPTIONS — SETTINGS.

The following changes should be made:

GENERAL
AREA OPTION SETTING
. By default, this is the username of the current
General settings User name . L .
windows user. If this is not correct, change it here

e Most recent

Start view e Portal Select PROJECT
e Project
e Details

View for objects in .

. o List Select DETAILS

overview

e Thumbnail

43-201

PLC PROGRAMMING — LAD/FBD (LADDER/FUNCTION BLOCK DIAGRAM)

AREA
Operand field

OPTION

Maximum width

SETTING

Set to 26 characters

ONLINE & DIAGNOSTICS — DEFAULT CONNECTION PATH FOR ONLINE ACCESS

AREA OPTION

Default ti
etau conhec on Type of PG/PC interface
path for online access

Default connection .
. PG/PC interface
path for online access

VISUALISATION SETTINGS

AREA OPTION
Screens Settings editor
Screens Grid
Standard screen size
Screens

(RT Professional)

Resize screen Size adaptation of objects

Table 3.5 Default TIA Portal settings adjustments for the PAL

44-201

SETTING

Select PN/IE

Select the PC network card being used to connect
to the controller (e.g. Intel PRO/1000)

SETTING

Select SNAP TO GRID

Set grid size X & Y to 2 (this is the smallest size)

Set to match resolution of target monitor e.g.:
width 2560
Height: 1440

Disable both, tick the boxes next to:
DISABLE “FIT TO SIZE” FOR TEXT OBJECTS
DISABLE “FIT TO SIZE” FOR GRAPHICAL OBJECTS

0]

@

3

)

3.2.2 TIA Portal block overview column settings

The block overview screen shows a summary of whatever is selected in the project tree.
The most used application of the overview screen is to view the blocks within a project.

The configuration adopted for the overview screen is not project specific, once set TTA
Portal will apply it to each subsequent project that is opened.

The following column settings should be selected:

ShowiHide ame ShowrHide I

Showall columns Group Column display:
Optimize width E Tidle ame E
Optimize width ofall columns % CZ:mE"t E{‘:
Address itle
[] Mumbering [0 Comment
& e @rdsress
4 Longusge [TIhumbering
- guag: @ype
[supenisions MLangusge
[& optimized block access []supervisions
[] DB accessible from OPC UA [Optimized block access
[] Time stamp interface [C] DB accessible from OPC UA
7] Time stamp code [Time stamp interface
@ Modified [Time stamp code
@ Family [Modified
.) [Famnily
@ versien Sverien
[Author & Author
[¥ User-defined ID [User-defined ID
™ Load memory [# Load memery
& work memary %:uurk memery
. riority
D Priority [Dewnload without reinitialization
[7] Download without reinitialization [TIhemory resere
[Memory reserve [[)Download without reinitialization (retentive tags)
[[] pownload without reinitialization (retentive tags) ["]Retentive memary reserve E
[[] Retentive memoryreserve
Figure 3.3 Show/hide columns Figure 3.4 Show/hide columns dialogue box

The correct order for the columns (from left to right) is:

O Name Family
Title Version

Address Author

® ©

Type User-defined ID

Language Load memory

® ©® 6

Optimized block access Work memory

Q @ © ® ®©® O

Modified

45-201

0]

@

3

3.3 Common CPU Properties

The PAL is not associated with a particular CPU; it will work on any S7-1500/1200
CPU. It does however require that certain property settings associated with the selected
CPU are activated (and some deactivated). Those settings are described below.

The CPU properties are accessed from the DEVICE CONFIGURATION entry in the TTA
Portal PROJECT TREE (Figure 3.5).

In the project tree select DEVICE CONFIGURATION (1), this opens an image of the Con-
troller rack in the central area, right click the CPU (2) and from the dropdown menu
select PROPERTIES (3), this opens the PROPERTY SETTINGS window in the centre-bottom

area (3.

PS2001-PoC-D00.09 » PLC_1[CPU 1515-2 PN] -0 R
Devices |E Topology view @ Network view ||T]'|‘ Device view

= d¢ [PLC_1ICPU 15152 FN] [& = s E @ s =} Device overview
¢! . |Module
~ 7] P52001-PoC-D00.09 EI E
B Add new device
ELEE Devices & networks ~ PLC_1
Bl MECCAIITCROMS T N b FROFINETinterfac...
11§ pevice configuration v - » PROFINETinterfac. .
4 Online & diagnostics
» [Program blacks w0 z o & & e 5
v [Technology objects Rail_0 I
» External source files :
v [PLCtags =
» L) PLC data gypes
v [viatch and force tables
» ’—\j, Online backups Change device
v [Traces arameters
» E Device proxy data cut Crrlex
Foz s
Ei§ Program info 2] Copy Cerl+C
[PLC supervisions &alarm :ﬂ Paste Ctrley 1
E] PLC alarm text lists .[
< Delets Del [£ >
» [l Local modules @ X Delete o & E .
» i Ungrouped devices & Go to topology view %i}Info (i) | %] Diagnostics
= = Go to network view
D = SECENGISEL J General'i_:H 10 tags || System consta o}
¢ (3§ Commen data ' Tl Compile 3
» (5] Documentation settings s . — | General Download to device 3
o Praject information
[@ Languages & resources — & Goonline Crrl+K
» [1g Online access 9 - - Project in &q G : Crrl+1
e Identification & Meinten_.
» [Card ReaderiUSB memory R Online & diagnostics Crrl+D
Checksums e : N
~ PROFINETinterface [X1] = |
General ur ‘
Ethernetaddresses
3¢ Cross-references F11 ~
Time synchronization 28 Crossaeference information ShifsF
Operating mode = W s mITeE TToTmaTen =
A: : [t call structure
vanced options = Assignmentlist ~
Interface options
Media redundancy Show catalog Crrl+Shift+C
= Real time settings [=» Export module labeling strips...
10 communication AltEnter
Synchronization Catalog informaton
Real time options
Boclyi gl

rouiven EEECEEYCSSS

Figure 3.5 CPU properties

46-201

As with TIA Portal, the PAL keeps most CPU settings at the default values. The ones

that must be changes are:

PROFINET INTERFACE (XI)
AREA OPTION

Interface networked
with

Click ADD NEW SUBNET

Tick SET IP ADDRESS IN THE
PROJECT

IP Protocol

SYSTEM AND CLOCK MEMORY

AREA OPTION

Enable the use of system

System memory bits memory byte

Enable the use of clock

Clock memory bits
memory byte

Address of the clock memory

Clock memory bits byte (MBx)

PROTECTION AND SECURITY

AREA OPTION

Permit access with PUT/GET

Connection o
communications from remote

mechanisms
partner

Table 3.6 Default CPU setting adjustments for the PAL

SETTING

This will change the network to PN/IE_1

Enter the correct IP address and subnet for the
Controller

SETTING

This is unticked by default but it is very
important that it remains unticked

Ensure this box is ticked

Set to the value 10

SETTING

Ensure this box is ticked

47-201

BLANK PAGE

48-201 Doc: PS$2001-5-2311-001 Rev: R02.00

Naming, numbering and other
conventions

O The following give details of the conventions used to name the various components of
the PAL software:

() Numbering conventions
Block naming conventions
Parametric naming conventions

Naming conventions for variables and constants

@ ® © O

Symbolic naming of IO and system tags
(® Project specific tags

@ Some of these conventions are addressed in detail within the Functional Specification
(FS) [Ref. 005], in these cases, the details are summarised (for completeness) in the
following section; other conventions are explained here for the first time and are ex-
plained in more detail.

49-201

4.1 Block type and numbering conventions

() The PAL uses the block types and data structures available within the Simatic Con-
trollers, these are summarised as follows:

(O Organisation block (OB) Interrupt driven block called in re-
sponse to a specific event detected
by the Controller operating system

(2 Function (FC) A subroutine (with or without pa-
rameters) used to structure the soft-
ware or handle recurring or com-
plex functions

(® Function block (FB) Similar to an FC but with an allo-
cated retentive data area

(®) Data blocks (DB) User configurable storage areas,
generally used to store information
required by the standard and appli-
cation modules

(® Instance data blocks (iDB) Specialised form of a data block,
used by FBs to store the retentive
data required by the block

(© User data type (UDT) User defined data structures that
can be stored in DBs and iDBs or
passed as parameters to FCs and
FBs

(@ System blocks These are predefined blocks that
perform specific functions; the

blocks are built into each Controller
or loadable via TIA Portal

@ A broad outline of each of these block types and data structures is given in the follow-
ing sections:

50-201

Organisation Blocks (OBs)

@ Organisation blocks (OBs) serve as the interface between the Controller operating sys-
tem and the user programme; OB 1, for example, the main organisation block is called
at the start of every Controller cycle and is the only user block that the Controller will
execute automatically (all other user blocks must be called by elements within the user
programme).

) Other OBs are called in response to certain events: hardware interrupts, timed inter-
rupts, Controller faults &c. and are given specific numbers, these are discussed in detail
in Section 8.

Functions (FCs)

©) Functions (FCs) are used to subdivide a programme into meaningful sections or are
used to handle frequently recurring or complex functions; a typical example would be
to have a FC that control a specific device (a valve for example) and then repeatedly
call this FC for each such device in the system.

® Using FCs to divide a programme into sections is common practice and makes for
better structuring of the software; allowing the software to be more easily navigated
and faults to be readily identified.

@) This subdivision of the Controller programme will be widely applied within the PAL
and will have the prescribed structure detailed in Section 4.1.

® FCs will form the vast majority of blocks within the PAL.

Function Blocks (FBs)

©) Function blocks are a special version of functions that are automatically assigned a
data block within which they can store function block specific data.

a9 In practice, FBs are not used in the PAL. However, where third-party software is re-
quired (to interface to specific equipment) these are often provided as FBs and their
use is permitted.

an The PAL does not restrict the use of FBs in any way, it simply does not require any
itself for the library modules within it.

51-201

(12)

(13)

(14

(15)

(16)

Data blocks (DBs)

DBs are configurable by the user, but do not contain programming instructions (unlike
the programmable blocks of the previous section), they hold data specified by the user
(variables, constants, working values &c). The data stored in a DB can be anything
and of any supported type (Booleans, integers, byte, floating point numbers, strings
&c.). The structure and configuration of a DB is entirely at the discretion of the user;
DBs are a very flexible and convenient mechanism for storing user information.

Instance data blocks (iDBs)

Instance data blocks are a used by function blocks (FBs) as retentive data storage areas.
These preserve data between successive calls of the block and are a requirement when
using function blocks. Each call of a function block requires its own iDB.

User Data Types (UDTs)

The PAL will rely heavily on the use of data structures to pass information between
modules. UDTs are used to define the internal structure of DBs and can be passed as
parameters into functions (FCs) and function blocks (FBs). Within the Siemens Con-
troller these data structures are variously called User Defined Data Types or User Data
Types or PLC Data Types).

These terms are interchangeable, all meaning a data structure (a collection of named
variables made up of standard data types, grouped together in a named structure). The
original name (predating TIA Portal) was User Defined Data Type (UDT), with the
advent of TTA Portal this became either a User Data Type (again UDT) or PLC Data
Type (PDT). They all mean the same thing (a data structure).

For clarity, the term UDT (User Data Type) will be used to specify a user defined data
structure (or any of the other names it uses).

52-201

(17)

(18)

(19)

(20)

U}

@

Built-in system blocks

The Simatic Controllers and the TIA Portal programming environment have built in
system blocks that perform specific functions (for example, a PID control loop,), these
blocks will always be used in preference to developing a new block with similar func-
tionality.

These built-in system blocks are pre-configured functions (FCs) and function blocks
(FBs) written and issued by Siemens, they are given numbers in the range 1-999 (this
is a reserved numbering range, reserved for third-party software, and is not occupied
by any of the PAL modules).

Where system function blocks are used, these, like all FBs, will require an instance DB
(see § 4.1.4); these function blocks will generally be contained (called from) within a
standard module, and this standard module will be a function FC, this standard mod-
ule can be considered a wrapper for the system function block. To accommodate the
need for an instance DB required by the contained system function block, the instance
DB to be used will be passed as a parameter to the standard function.

Some system blocks have their own system data structures (referred to as system data
types), these are similar to UDTs but are predefined within the TIA Portal program-
ming environment, where such system data types are required, they will be installed
and issued as part of the PAL software).

4.1.1 Block numbering

The Controller blocks have the following number ranges

BLOCK TYPE PERMISSIBLE NUMBER RANGE PAL NUMBER RANGE IN USE
1-60999
FB, FC 1-65535 (61000 onwards reserved for doc modules)
DB 1-59999 1-59999
OB 1-32767 (not inclusive) 1-122
UbDT Unlimited (symbolic addressing is used) 1-59999
Table 4.1 Controller block and UDT number ranges

These number ranges have been split further to allocate different number ranges to the
different block and data block functions within the PAL. The PAL will use the follow-
ing number ranges for the specified module classifications:

53-201

NUMBER RANGE FC/FB CLASSIFICATION ABBREVIATION DB/UDT CLASSIFICATION

00001-19999 Standard modules Std Static data storage
20001-39999 Application modules App Dynamic data storage
40000-59999 Template modules (application) Tmt Instance data blocks
60000-60999 Template modules (interrupts) Tmt N/A

61000-65535 Documentation modules Doc N/A

Table 4.2 Block and number allocations for the PAL

@ The PAL software itself is structured according to Figure 4.1

SYSTEM Each entry in this structure is referred to as a function group; All
non-documentation software modules within the PAL (be they
standard modules, application modules, or template modules)

* are grouped into subcategories or functional groups that iden-

INTERLOCK AND tify more closely the purpose of each module.

PrROTECTION
! These functional groups also determine the execution order of
SAFETY SYSTEMS the PAL software. The PAL has a predetermined order of pro-
1 gramme execution; this is shown in Figure 4.1. This shows the
CALCULATIONS complete PAL programme structure.
CoNTiuous The structure of Figure 4.1 is the complete structure of the PAL

c L : : i
S software and is applicable to any software developed using the

PAL. Not all Controller programmes will require all these steps
(it depends on the application in question). However, where a
step is used, it must follow the execution order shown in Figure
4.1

DEVICE DRIVERS Each of the functional groups in Figure 4.1 usually has both an
application block and at least one standard module associated
with it.

MESSAGE
HANDLING

Table 4.3 expands on this arrangement.

COMMUNICATIONS

Figure 4.1 PAL structure

54-201

0]

@

4.1.2 Standard, application and template block numbering

The PAL functional groups are allocated numbers within the block types as follows:

STANDARD APPLICATION TEMPLATE
FUNCTION GROUP MODULE NUMBER MODULE NUMBER MODULE NUBER

N/A

Safety systems FC 04ppp FC 24nnn FC 44nnn
Calculations & mathematics FC 05ppp FC 25nnn FC 45nnn
N/A

Command handling N/A FC 28nnn FC 48nnn
Reserved N/A N/A N/A

Device drivers (control loops) FC 10ppp FC 30nnn FC 50nnn
Device drivers (valves) FC I l1ppp FC 31nnn FC 51nnn
Device drivers (drives FC 12ppp FC 32nnn FC 52nnn
Message handling FC l16ppp FC 36nnn FC 56nnn
Communication handling FC 1 7ppp FC 37nnn FC 57nnn
(subroutines) FFC 18ppp N/A N/A

Debug (end of cycle) FC 19ppp FC 39nnn FC 59nnn

Table 4.3 Functional group summary nnn indicates any number in the range 0 to 999; thus,
37nnn is any number in the range 37000-37999
ppp indicates any number in the range | to 999; thus,
02ppp is any number in the range 02001-02999

Standard blocks are self-contained units of software, they do not use subroutines, they
may however use the built-in system blocks. Certain standard modules are associated
with or work in partnership with other standard modules (certain communication
mechanisms require both a send and receive module and the sequence modules have
more than one component).

Doc: PS2001-5-2311-001 Rev: R02.00 55-201

0]

@

3

)

5

©)

@

4.1.3 Data block numbering

Data blocks are the primary mechanism for storing data within the PAL and for pass-
ing data between blocks.

Depending on the nature of the module, there may be a considerable amount of such
data and all this data will be stored in data blocks. Within the PAL, this data will fall
into two categories:

(1) Static data
@ Dynamic data

Static data specifies constant (preset) values that have some meaning for the block in
question (e.g. the opening time of a valve, the hysteresis of an alarm setpoint, limit
switch arrangements for a valve &c.). Static data does not change (the data is usually
configured during the commissioning of the plant and then remains fixed and unchang-
ing for the lifetime of the plant).

Dynamic data is live, operating data (e.g. if a valve is in the process of opening, the
elapsed time of the operation will be stored in a dynamic data area).

This data, whether static or dynamic must be passed to the block as parameters. To do
this, the data will be configured as data structures within the data blocks. These data
structures will be configured as user data types (UDTs). Each block will generally have
two such structures, one for static data and one for dynamic data; these structures will
be unique to the block in question.

Static data will be passed to a block via an INPUT parameter (i.e. read only), this is data
that is required by the block, but will not be modified by it. This static data will be
stored in a data block using a UDT data structure, the INPUT parameter to which this
data is linked, will use the same UDT as its data type.

Note: Other data may also be passed in this way, specifically, this will be information
that will not be modified by the block, system information for example.

Dynamic data will be passed to the block via an INOUT parameter (i.e. read/write
data), this is data that is required by the block, and that will be modified by it. This

56-201

®

(10)

(n

(12)

(13)

dynamic data will be stored in a data block using a UDT data structure, the INOUT
parameter to which this data is linked, will use the same UDT as its data type.

Static and dynamic data will always be stored in separate data blocks, designated as
static and dynamic and these will have their own numbering ranges:

DB NUMBER RANGE TYPE OF DATA
00000-19999 Static data
20000-39999 Dynamic data
Table 4.4 PAL static and dynamic data block numbering ranges

Where a standard module has a static data assignment or a dynamic data assignment
or both (this is most cases), then UDTs will be defined to hold the static data and the
dynamic data. The static UDT will be given the same number as the standard block
with which it is associated, the dynamic data will have the same number plus 20000.

For example, if FC 10001 is used, the static UDT will have number 10001 and the
dynamic UDT will have number 30001.

Similarly, the data blocks that hold the static and dynamic data will have the same
numbers as the UDT.

Extending the previous example, FC 10001 would have static UT 10001 and Dynamic
UT 30001, these would be stored in DB 10001 (static data) and DB 30001 (dynamic
data).

57-201

0]

@

3

®)

4.1.4 Instance data block numbering

Where a function block (FB) is used, this will have an associated instance data block
(iDB), this is a requirement of the Simatic Controller software itself.

Generally, only third-party software will use FBs, all standard and application modules
will be stored in functions (FCs) that do not require instance data blocks.

The instance data block assigned to a particular function block will be in the numbering
range:

DB NUMBER RANGE TYPE OF DATA
40000-59999 Instance data blocks
Table 4.5 PAL instance data block numbering range

The actual number can be freely allocated within this range; i.e. the instance DB num-
ber does not have to match the FB number, the numbering should however reflect
logical grouping of the instance DBs.

58-201

M

@

3

4.1.5 OB (Interrupt block) numbering

Interrupt blocks are of two types: general event interrupts (non-fault) that detect spe-
cific events within the Controller (e.g. a time of day, hardware interrupt &c.) and fault
interrupts that detect errors and other adverse conditions). The following give a full list
of both types of interrupt blocks:

General, non-error interrupts:

OB NUMBER PAL MODULE NAME DESCRIPTION

. Controller main program cycle
o8l ©B0000!_tncNrmHainProgram Called at the start of each Controller cycle

Time of day Interrupt
Called by time and day of week

OB 10 OB00010_IntINrmNTimeOfDay

Table 4.6 Non-error interrupt modules and organisation blocks

Fault (error) condition interrupts:

OB NUMBER PAL MODULE NAME DESCRIPTION

OB 80 OB00080_IntIErrECycleTimeErr Error Interrupt
- Maximum cycle time exceeded

. Error Interrupt
OB 82 ©BO0082_InclErrEModuleDiag Module diagnostics signal received (module fault)

Table 4.7 Fault interrupt modules and organisation blocks

Doc: PS2001-5-2311-001 Rev: R02.00 59-201

0]

@

3

)

4.1.6 Document block numbering

The PAL software is extensively documented and makes us of various naming con-
ventions for variables, constants &c.

The standards and conventions for documenting the PAL software is detailed in a sep-
arate document: the Style Guide /Ref. 010].

The Style Guide, defines a series of rules, guidelines and practices that produce a con-
sistent (and pleasing) programming style. It is the basis for all documentation within
the PAL modules and templates.

The practices specified in the style guide are summarised within the documentation
modules, these are intended to be proforma examples of comments, variable and con-
stant naming and block parameterisation.

60-201

4.1.7 Block numbering summary

O There are five types of software modules included with the PAL:

() Standard modules Library modules that carry out a
particular function, for example reading
and scaling an instrument connected to
the Controller.

(@ Application modules Project specific modules that coordinate
the use of the standard modules and
apply appropriate logic and signal
conditioning relevant to the project in
question

(3® Template modules Example modules that show how
application modules should be
constructed and how standard modules
should be used

® Document modules Modules containing information
explaining how to document project
specific modules and examples of such
documentation

(® Interrupt modules These are specifically the organisation
blocks used to process different types of
interrupt operations and fault detection

@ Within the PAL these individual types of modules are assigned to functions (FCs). The
interrupt modules are exclusively assigned to organisation blocks (OBs).

@ The PAL also supports user data types (UDTs), these are used to define and organise
the data needed by each standard module, generally a standard module will have both
static data (holding the fixed, configuration information for the module) and dynamic
data (the live, changing data required by the module).

61-201

)

(O]

(O]

The data required by the standard modules (and defined in the UDTs) is held in data
blocks, these being designated static data blocks (holding multiple instances of the static
UDT) and dynamic data blocks (holding multiple instances of the dynamic UDT).

A third type of data block, the instance data block, is needed whenever a function block
(FB) used.

In summary, the following types of data structures and data blocks are supported by
the PAL:

() Static user data type Data structures specific to each stand-
ard module that hold fixed, unchang-
ing, configuration data for the module

@ Dynamic user data type Data structures specific to each stand-
ard module that hold live, variable, op-
erational data for the module

©) Static data block A data block that holds the multiple in-
stances of the static UDT associated
with the standard module (one instance
per call of the module)

#® Dynamic data block A data block that holds the multiple in-
stances of the dynamic UDT associated
with the standard module (one instance
per call of the module)

(5) Instance data block A data block that holds function block
data for a standard module that is allo-
cated to a function block (FB) rather
than a function (FC), there is one in-
stance data block allocated to each in-
stance in which the FB is used

62-201

@) The type of module is identified by block number allocated to it. This is summarised

in the following table:

BLOCK TYPE NUMBER RANGE

OB OB00001-00122
FC/FB FC/FBO00O1-19999
FC/FB FC/FB20001-39999
FC FC40000-60999
FC FC61000-65535
UbDT UTO00001-19999
ubDT UT20001-39999
DB DB00001-19999
DB DB20001-39999
iDB DB40000-59999

Table 4.8 Full range and type of module numbering for the PAL

CLASS

Int
Std
App
Tmt
Doc
St_
Dy_
St_
Dy_
iDB

DESCRIPTION

Interrupt handling modules
Standard modules
Application modules
Template modules
Document modules

Static data structure
Dynamic data structure
Static storage data block
Dynamic storage data block

Instance data blocks (associated with FBs)

@® Each of these number ranges is broken down further in relations to the subdivisions

within the PAL software structure.

63-201

0]

0]

4.2 Module naming Conventions

Within the PAL all modules (blocks and UDTs) are given a name; that name has a
particular structure that includes the block type (above), the block number (address), a
block class, a block function attribute and a description formatted as follows:

BBnnnnn_CccFffffDddddddd

Where:
ITEM MEANING DETAILS
BB Block type 2 characters
nnnnn Block number 5 digits (in the range 00000-59999)
Ccc Block class 3 characters (see block class below)
FFFFf Block function 5 characters max (see block function below)
Dddddddd Block description Short description of the block
Table 49 Block naming components

Each of these is summarised in the following sections:

4.2.1 Block type

There are four common types of block associated with Siemens Controllers, three pro-
grammable blocks (functions, function blocks and organisation blocks), and global
data storage blocks (data blocks). There are also instance data blocks that hold infor-
mation for specific function blocks. Finally, the PAL treats User Data Types as blocks
(UDTs are not blocks, but the PAL always associates then with a specific block and
names them accordingly).

64-201

@

3

0]

0]

Each of these block types (and the UDTs) is given a two-letter abbreviation, the block
identifier (BB) that uniquely identifies its type within the software:

MEANING

Organisation block

Instance data block

BLOCK ID
FB Function block
FC Function
0B
DB Data block
ID
uT User data type
Table 4.10 Two letter block abbreviations

All block names (and UDT names) will start with one of these block identifier abbre-

viations.

4.2.2

Block number

The block number (nnnnn) is simply the five-digit block number (with leading zeros)

given by the functional groupings, Table 4.3 and the general block numbering arrange-

ments, Table 4.2

4.2.3

Block class

The block class (Ccc) is abbreviated as follows:

ABB.
Std

App
Int
Tmt
Doc
Dy_
St_
Rc_

Table 4.11

CLASS

Standard
Application
Interrupt
Template
Documentation
Dynamic

Static

Recipe (semi static)

Block naming classes

MEANING
Standard block

Application block

Interrupt block

Template block

Documentation block

Data block and UDT only (contains live, dynamic, data)
Data block and UDT only (contains static data)

Data block and UDT only (data is loaded from a recipe)

65-201

4.2.4

Block function

() The block function (Fffff) is abbreviated as follows:

66-201

ABB.
Sys

Inst
ILock
Safe
Calc
Cont
Seq
Cmd
Dev
Msg
Comms
Sub
INrm
IErr
Debug
Gen

Table 4.12

FUNCTION

System
Instrumentation
Interlocks

Safety
Calculations
Continuous
Sequence
Command
Device drivers
Messages
Communications
Subroutines
Normal Interrupts
Error Interrupts
Debug

General

Block naming Functions

MEANING

System block

Instrument block

Interlock, permissive and trip logic
Safety systems

Calculation and mathematics
Continuous control logic

Sequential control logic

Command handling

Device drivers

Alarm, warning, event and prompt handling
Communication handling

Subroutine functions

Normal (non-error) interrupt functions
Error interrupt functions

Debug functions

General (or global) usually applicable to documentation

0]

@

0]

4.2.5 Block description

The block description (Dddddddd) does not have a prescribed list of naming options;
it is simply a short form description of what the block does. Examples are:

ABB. MEANING
AnalogRead Analogue read
ValveMod Modulating valve
DriveVSD Variable speed drive

Table 4.13 PAL block naming — description

Block descriptions are always written without spaces using camel case’; typically, block
descriptions should be 12 characters or fewer in length.

4.2.6 Block naming restrictions

The basic restrictions on naming blocks within the PAL are:

(0 The Class abbreviation is three characters long and starts with a
capital letter

(@ The Function abbreviation is no more than five characters long
and must start with a capital letter

(® The Description does not have a restriction on the number of
characters but should generally be kept short

(®) Each separate word in the description is capitalised with all other
letters in lowercase (this includes the first word)

(® The overall length of the name (including class, function and de-
scription) must be 20 characters or less

® Only the characters [a-z], [A-Z], the numbers [0-9], the dash/hy-
phen [-] and the underscore [_] are permitted

3 Camel case is the practice of joining words together and capitalising the start of each word,
it is more formal known as medial capitals).

67-201

0]

@

3

)

)

4.3 Block optimisation & IEC check

Within the PAL, all blocks (OB, FB, FC and DB) should be set to use OPTIMIZED
BLOCK ACCESS, this is selected from the block properties

The block properties are accessed by right clicking the block (either in the project tree
or on the overview screen) and selecting PROPERTIES from the dropdown list, this opens
the properties dialogue box, block access is under the ATTRIBUTES section:

General Texts

General

Attributes

Information

Time stamps
Compilation [¥) IEC check
Protection [] Set ENO automatically for SCL blocks and SCL networks

Attributes .
["] Handle errors within block

[¥ optimized block access

User-defined attributes

D Enable tag readback

Block properties:

Figure 4.2 Optimized block access

By default, OPTIMIZED BLOCK ACCESS is activated in TIA Portal and generally, this is
the arrangement that is wanted, it allows for symbolic addressing of data within block
parametric interfaces and in data blocks. It gives faster access within the Controller to
data elements.

There are occasions (usually for non-Simatic supervisory systems) where data blocks
need to be addressed absolutely, under these circumstances it is permissible to disable
OPTIMIZED BLOCK ACCESS for the blocks in question

The |IEC cHECK box must be ticked for all standard modules (by default it is unticked),
this ensures that the block is compliant with all aspects of IEC modules given in
IEC6113-3 [Ref. 012], particularly in reference to library module standards.

68-201

0]

@

(O]

)

®)

(G

4.4 Tags, parameters, symbolic and absolute
representations

Tags, parameters and symbols are terms that are commonly renamed, interchanged
and generally misused in PLC programming. To clarify things, this section explains
the correct usage and application of the terms. They are shown in context below:

> Network 3: V001 Device Driver

%FC11001
"FC11001_StdDevValvelsol

EN ENO
%Q0.3
"DB21000_StdGlobalData".SysSignals — SYS_SIGNALS CMD_OPERATE — "V001_OPERATE_CMD"
%11.0
"\V0O1_OPENED_LIM* — FBK_OPENED
%I11.1
"V001_CLOSED_LIM* — FBK_CLOSED
%12.0
"V001_FAULT" — EXT_FAULT
“DB23001_Dy_ILockAreaA".V001.interlocked — INTERLOCK
%MO0.0
*_False" — PERMISSIVE
%M0.0
*_False" — TRIP

"DB11001_St_DevValvelsol".v001 STATIC_DATA

“DB31001_Dy_DevValvelsol".V001 DYNAMIC_DATA

Figure 4.3 Tags, parameters, symbols and absolute addresses

Figure 4.3 shows tags with both symbolic and absolute representation and parameters,
both formal and actual.

Tags are symbolically named items within the Controller. Most tags are associated with
an element that has an absolute address; such elements being inputs, outputs, internal
memory, timers, counters &c.

In Figure 4.3, item (2) is a tag with the symbolic name V001 OPENED_LIM and the
absolute address I 1.0 (this is shown as item (1), and preceded with a 7 sign — indi-
cating an absolute address).

Some tags (particularly those associated with data blocks) do not have an associated
absolute address (item (4)); such tags are identified purely by their symbolic name.

Parameters: both functions (FCs) and function blocks (FBs) support the passing of
information to and from the block with the use of parameters. These parameters are
defined within the block itself and are apparent when the block is called as the

69-201

Y]

®

©

(10)

()

parameter name shown within the block (item (3)) in Figure 4.3; the parameters have

a short connection point outside the block to which logic instructions or tags can be
attached.

These connection points have different colours depending upon the data type of the
connection: all Boolean connection points are coloured black; these connections can
have logical instructions connected to them.

All other data type connections (integers, real, strings, UDTs, &c) are coloured ;
these connections are to direct data points (e.g. some variable within a data block, a
constant or local variable or even a hardcoded value) and do not support the connec-
tion of instructions.

The block parameter itself, item (3) is referred to as the formal parameter. The tag at-
tached to the parameter (item (2) in this case) is called the actual parameter.

As a convention within this document, formal parameters are referred to as just “pa-
rameters”, where a distinction is made with actual parameters; the actual parameter
will be referred to as an “actual parameter”. This distinction is often not necessary; it
is usually made clear by the context of the subject under discussion.

Standard modules are true library modules and conform to the standards required of
such modules, in terms of the Siemens Simatic programming standards this is:

o Library modules must not use global data access (of memory bits,
10 signals, timers, counters &c.)

o Library modules must not directly access data blocks or instance
data blocks

It is for this reason that the common system logic and timing signals (see § 4.10.1) are
passed parametrically to the block in the SYS_SIGNALS parameter; all standard modules
have this parameter

70-201

4.4.1 EN and ENO parameters

M Within the TIA Programming environment all functions and function blocks have the
Boolean connections EN (ENABLE IN) and ENO (ENABLE ouT). By default the ENO

connections are configured in TTIA Portal to always return a true value (the signals

are said to be disabled); this means that blocks can be daisy chained together in a line
(the EN of downstream block being connected to the ENO of the preceding block):

PLC-100 [CPU 1511-1 PN] » Program blocks » FC30000

eI EEL BRI P E LR e

¥ Network 3:

EN

—HF Al —0— = 5k

Block 1 Block 2

ENQ —————— EN ENO

Figure 4.4

Daisy chaining blocks with ENO disabled

@ With ENO disabled, block 2 will always execute (EN O being set constantly to a true
value). In programming terms, it is identical to the following:

PLC-100 [CPU 1511-1 PN] » Program blocks » FC30000

e L, EAEC8r @Y [THF e EaD 1% |

¥ Network 3:

W01
" _True”

b Al —0— = 1 5 e

Block 1

EN ENO

Block 2

EN ENg ———]

Figure 4.5

Equivalent call mechanism with ENO disabled

71-201

3

)

4

(6

@

®

If the ENO is not disabled (right click the block and select GENERATE ENO from the
dropdown), then the function can influence the state of the ENO; it could set it to a
false value and if this were the case block 2 of Figure 4.4 would not be executed.

The PAL maintains the TTIA Portal default of disabling EN O on all blocks. This allows
blocks to be daisy chained together in the manner of Figure 4.4.

The EN is used to enable the calling of the block (or instruction) to which it is con-
nected. If the EN connection is false, the block will simply not be executed (and
neither will any downstream blocks if they are daisy chained).

The use of EN is permitted under the PAL, although none of the blocks within the
PAL use it themselves. Blocks written by the user can use the EN as they see fit (even
to call the PAL standard blocks). The only caveat being that daisy chained blocks will
not be executed if any upstream EN signal is false.

Generally, it is better practice to use the structure of Figure 4.5; this is more unequiv-
ocal and is the structure used within the PAL templates.

Some instructions also have the EN and ENO functions; these are often used within
the PAL.

Note: In Figure 4.5 the always true signal (_True) is used before calling multiple
blocks, this is a requirement of TIA Portal, branches can only be inserted after an
instruction, it is a short hand way of grouping block calls and is used extensively
within the PAL software.

72-201

0]

@

4.5 Block parameter naming

Both functions (FCs) and function blocks (FBs) support the passing of information to
and from the block with the use of parameters. These parameters are defined within the

block and are apparent when the block is called as the parameter name shown within

the block itself.

The parameters are specified by editing the interface of the block from within the block
editor (the BLOCK INTERFACE):

...001-PAL-000.111-Da » PLC100 [CPU 1518-4 PN/DP] » Program blocks » FC11001_StdDevWalvelsol [FC11001] - EX

FC11001_5StdDewWalvelsol
Mame

Data type

e L, EAED8 @' G EHF @B =l ad &7

Default value

bl

Comment

<m@f~ Input '\1\J

1

2 |am|= » sYS_SIGNALS "UT21000_Dy_SysSignals® The system logic and timing signals for parametric access

ERE-T|] FBK_OPENED Bool Valve opened limit switch (1 = opened limit reached)

4 |qi|w FBK_CLOSED Bool Valve closed limit switch (1 = closed limit reached)

5 ijm= EXT_FAULT Bool Valve external fault signal (1 =fault, 0= healthy)

6 |dd|= INTERLOCK Bool Vavle interlock (1 = interlock active, 0 = OK to operate)

7 | FERMISSIVE Bool Vavle permissive (1 = permisive active, 0 = 0K to operate)

8 <= TRIP Bool Vavle trip (1 = trip active, 0 = OK to operate}

9 |«gml= » STATIC_DATA "UT11001_5t_DevValvelsol® Valve static data storage (UDT)

10 @(‘ Output "\2\,]

11 |-a\= CMD_OPERATE Bool Vavle operate signal (1= valve energised, 0 = de-energised)

12 @(v Inout (3) J

13 <gl= » DYMNAMIC_DATA “UT31001_Dy_Dewalvelsol” Valve dynamic data storage (UDT)

14 @(' Temp "\5\,)

15 |-<\= wrkOpCmd Bool Operating Command (internal working value)

16 @(‘ Constant ':6\, J

17 |<\= k_MIN_C'JT’_'I'IME Real 0.2 Mimimum operation time (seconds)

18 <~ Return '14‘,

19 @[‘ FC11061_Sthev\a’a|velso| Void = MOTUSED J
(<] >

Figure 4.6 Formal parameter declarations

73-201

0]

@

3

)

4

4.5.1 Formal parameters

The formal parameters are divided into four groups:

O INPUT
@ OurtpuT
© INOUT
® RETURN

The fourth group (RETURN) is not generally used within the PAL (or indeed within
wider PLC programming circles). It is included to make the blocks compatible with
the IEC requirements for programming languages. By default, the RETURN parameter
is given the same symbolic name as the block and is declared as a VOID data type (VvOID
types are essentially “empty” data types that have no value and cannot hold a value).
If the RETURN parameter is declared as a void, it will not be visible when the block is
called.

The RETURN parameter is not used within the PAL, but the PAL does permit its use,
however, it is not common practice to use this parameter; where it is used it is generally
employed to return fault codes from the function.

The remaining parameter types (INPUT, OUTPUT and INOUT) are widely used
throughout the PAL (particularly by the standard blocks).

The PAL naming convention for formal parameters is as follows:
() Parameter names use uppercase characters only

©) Only the characters [A-Z], the numbers [0-9] and the under-
score [_] can be used

®)

Spaces are represented by the underscore character

(®) The parameter name must not start with a number or under-
score (do not use consecutive occurrences of the underscore)

(® The parameter name must be 15 characters or less in length

74-201

O]

0]

@

3

)

All parameters must have a comment in the block interface to explain the function of
the parameter. This is important; the text in the comment field will appear as a tool tip
when hovering over the parameter on a called version of the block.

4.5.2 Temporary (local) data

Local (or temporary) data (point (3) in Figure 4.6) is used to store temporary or inter-
mediate data locally to the block within which it is defined. The data is not accessible

to any other block (i.e. any data stored within the TEMP area is not accessible externally
to the block).

Local data is not permanent; data within a local variable is only present until the end
of the block is reached. The data has to be reinitialised (or recalculated) each time the
block is executed.

Where local data is used within a PAL block it is always given a symbolic name start-
ing with either the prefix wrk (for a working or intermediate value), act (for an actual
value), cal to denote a calculation has taken place or seq if it is part of a sequential
control block. The rest of the name is given in camel case. E.g.:

actElapsedTime
wrkPermActEn
calDeadbandPercentage

seqThisStep

Two other prefixes rev and 1ic are also used, these store revision and licensing infor-
mation and are common to all blocks.

75-201

4

(C)]

0]

@)

©)

The basic restrictions on local variable names within the PAL are:

©) The name must be prefixed with rev, lic, act, wrk, cal or
seq

The rest of the name must be written in camel case

®

3 The name (including prefix) must be no more than 24 charac-
ters

® Only use the characters [a-z], [A-Z], the numbers [0-9] and the
underscore character [_]

All local data must have a comment in the block interface to explain the function of
the variable.

4.5.3 Constants

Constants are declared in the CONSTANT area of the BLOCK INTERFACE (point (6) in
Figure 4.6). These are defined with a data type and an INITIAL VALUE. This INITIAL
VALUE is the value given to the constant. Constant values are constant (somewhat obvi-
ously) and cannot be changed within the block (any attempt to write a value to a con-
stant will be reported as an error).

Constants can only be used within the block where they are defined; they are not avail-
able to other blocks.

Where a constant is used within a PAL block it is always given a symbolic name start-
ing with the prefix k_. The rest of the name is given in uppercase. E.g.:

k_MIN_TIME

k_SECONDS_PER_HOUR

76-201

) The basic restrictions on constant names within the PAL are:
©O) The name must be prefixed with k_ (all lowercase)
(@ The rest of the name must be written in uppercase

3 The name (including prefix) must be no more than 21 charac-
ters

® Only use the characters [k], [A-Z], the numbers [0-9] and the
underscore character [_]

® The underscore character should be used in place of a space to
separate words

©) All constants must have a comment in the block interface to explain the function and
usage of the constant.

77-201

0]

@

3

)

)

4.5.4 Static data (function blocks only)

Function blocks (FBs) support the use of static (local) data. Static data is permanent
data that is stored in the instance data block associated with the function block. Static
data is retained permanently between repeated calls of the block (the data will be pre-
sent until changed by some operation within the block).

Static data is specified by editing the interface of the block from within the block itself
(the BLOCK INTERFACE), similar to the formal parameters of Figure 4.6

Where static data is used within a PAL block it is always given a symbolic name start-
ing with the prefix St_. The rest of the name is given in camel case. E.g.:

St_LastState

St_PreviousCount

The basic restrictions on static variable names within the PAL are:
(0 The name must be prefixed with St
©) The rest of the name must be written in camel case

® The name (including prefix) must be no more than 24 charac-
ters

® Only use the characters [a-z], [A-Z], the numbers [0-9] and the
underscore character [_]

All static data must have a comment in the block interface to explain the function of
the variable.

78-201

0]

@

3

4.6 Naming variables in static UDTs

Static UDTs are static only in terms of how they are used within the PAL, all UDTs

are of a read/write nature (it is not possible to declare a constant within a UDT — as
is the case with FCs and FBs).

Static UDT data should not be overwritten by any operation within the PAL (there is
an exception for recipe data, see § 4.7.1.).

Entries within a static UDT are given symbolic names in uppercase:

P52001-PoC-D00.18 » PLC_1[CPU 1515-2 PN] » PLC data types » UT09000_St_DevPID

= L=

UT09000_St_DevPID

Hame Data type | Default val Accessible from HMIOPC UA Witable from HMIOPC UA Visible in Hil enginesring Setpoint | Comment

1 @ CONFIG_ALMH_EN Bool Config - High Alarm i Enabled (1 = Enabled, 0 = No Alarm)
3 40 CONFIG_ALM_L_EN Bool Config -Low Alarm is Enabled (1 = Enabled, 0 = No Alarm)
S @l CONFIG_DEV_H_EN Bool Config - High Deviation is Enabled (1 = Enabled, 0= No Alarm}
4 40 CONFIG_DEV_L_EN Bool Config - Low Deviation is Enabled (1 = Enabled, 0 = No Alarm)
5 4@ CONFIG_FP_OFF Bool Config - Faceplate is disabled (1 = No Faceplate, 0 = Normal)
6 40 CONFIG_MAN_OFF Bool Config - Manual Mode is disabled (1= Disabled)
7 @1 CONFIG_SP_RESET Bool Config -Reset PID Block when in CTRL_SP-One Shat
8 40 CONFIG_REV_ACT Bool Config - Loop is Reverse Acting (1 = Reverse PVSP, 0 = Normal SPV)
9 41 CONFIG_DEADBAND Real Config - Deadband (Engineering Units)

CONFIG_P_TERM Real Config - Proportiona| termTerm

CONFIG_I_TERM Time Config - Integral Term (ms) - Small number, fast response

CONFIG_D_TERM Time Config - Derivative Term (ms) - Large number, fast response

CONFIG_LIM_OUT_MAX Real
CONFIG_LIM OUT MIN Real

Config - MaxValue of CV
Config - Min Value of CV

CONFIG_ALM_H Real Config - High Alarm Limit
CONFIG_ALM_L Resl Config - Low Alarm Limit
CONFIG_ALM_HYST Real Config - HighlLow Alarm Hysterisis
COMFIG_DEV_H Resl Config - High Deviation Alarm Limit
CONFIG_DEV_L Real Config - Low Deviation Alarm Limit
CONFIG_DEV_HYST Resl Config - Devistion Alarm Hysteresis

CONFIG_DEV_DEL_PRE Real
CONFIG_SP_LIM_MAX Real
23 41 CONFIG_SP_LIM_MN Real

Config -Deviation Alarm Time Filter - Preset (s)

depdabbLblabe

Config - Setpoint Maximum Value (Engineering Units)
Config - Setpoint Minimum Value (Engineering Units)

NN EEIEIEOEOEORERNED
o o o [o |
INNENEENEEEEEEEOENEEREE
NN NENEEEOEOEOREDED0

Figure 4.7 Example static UDT

CONFIG_ALM_H_EN

CONFGIG_FP_OFF

79-201

)

®)

(6

0]

@

The basic restrictions on static UDT element names within the PAL are:
©O) The name must be written in uppercase
©) The name must be no more than 21 characters

® Only use the characters [A-Z], the numbers [0-9] and the under-
score character [_]

(® The underscore character should be used in place of a space to
separate words

All elements must have a comment in the block interface to explain the function and
usage of the element.

All elements within a static UDT should be declared as SETPOINTS (the SETPOINT box
should be ticked).

4.7 Naming variables in dynamic UDT's

Dynamic UDTs can be freely overwritten by blocks within the PAL, (there are no
restrictions).

Entries within a dynamic UDT are given symbolic names in camel case.

PS2001-PoC-D00.18 » PLC_1 [CPU 1515-2 PN] » PLC data types » UT29000_Dy_DevPID

¥ =

UT29000_Dy_DevPID

Name Datatype Defsultvalue | Accessiblefrom HMIIOPCUA Writsble from HMIOPC UA Wisible in HMI engineering Setpoint Comment
1 @ status_AutoOff Bool false =] (=] (=] =] Status - FID in Auto with Leop turned off (zero output)
2 4 Status_AutoSP Bool =] (=] (=] =] Status -PID in Auto with Set-paint
5 |40 Stwws_AutoFixOp | Bool ™ =] =] (] Status -PID in Auto with Fixed Output
4 @@ stats_ManOff Bool =] (=] (=] =] Status -FID in Manual with Loep turned off (zero output)
5 40 Status_ManSP Bool =] (=] (=] =] Status -PID in Manual with Setpoint
6 |40 Status_ManFxOp Bool ™ =] =] (] Status -PID in Manual with Fixed Output
7 @ swws_llock Bool ~ (=] (=] B Status -PID is Interlocked (1=Interlock Active)
8 4@ Mode_futo Bool =] (=] (=] =] Mode - Automatic Made (1 = Auta)
9 |40 Mode_Man Bool ™ =] =] (] Mode - Manual Mode (1 = Manual)
10 <@ Mode_tocal Bool ~ (=] (=] B Node - Local Control Mode (1= Local HM Control)
11 4@ Mode_Remote Bool =] (=] (=] =] Mode - Remate Control Mode (1 = Remote SCADA Contral)
12|40 Mode_BypassOn | Bool =] (=] [~} (=] Mode - Interlock Bypass (1 = Bypass on, IL ignored)
13 @ Mode_autoOff Bool ~ (=] (=] (@] Node - Automatic Mode - Loop OFF (1 = Off)
14 4@ Mode_AutosP Bool =] (=] (=] =] Mode - Automatic Made - Loop PID Mode Operating te Setpaint (1 = SP Mode)
15|40 Mode_AutoFixOp | Bool =] [~} [~} a Mode - Automatic Mode - Loop in Fixed Output Mode (1 = FixOP Mode)
16 <@ Mode_ManOff Bool ~ (=] =] B Mode - Manual Mode - Loop OFF (1 =Off)
17 @ Mode_MansP Bool =] (=] (=] =] IMode - Manual Mode - Loop FID Mode Operating to Set-point (1 = SF Mode)
18|40 Mode_ManFixOp Bool =] [~} [~} a Mode - Manual Mode - Loop in Fixed Output Mode (1= FixOP Mode)
194 Mode_06 Bool ~ (=] =] (m] NMode - Spare
20 @ Mode_07 Bool =] (=] (=] (m] Mode -Spare
21|40 Mode 08 Bool =] =] = a Mode -5pare

Figure 4.8 Example dynamic UDT

80-201

3

Q]

®)

0]

@

O}

)

Status_BypassOn

Mode_AutMan

The basic restrictions on dynamic UDT element names within the PAL are:
O The name must be written in camel case
@ The name must be no more than 25 characters

® Only use the characters [a-z], [A-Z], the numbers [0-9] and the
underscore character [_]

All elements must have a comment in the block interface to explain the function and
usage of the element.

All elements within a dynamic UDT must not be declared as SETPOINTS (the
SETPOINT box should always be unticked).

4.7.1 UDTs holding recipe data

Under certain (very limited) circumstances, the data in a static UDT can be overwrit-
ten. These circumstances arise when some form of recipe handling is being performed.

Recipes consist of preconfigured data sets that are selected by the operator and then
loaded into the Controller (via some external device such as a SCADA or HMI). Such
recipe data sets are permitted to overwrite (overload) a static UDT (essentially the static
UDT is being selected for a particular set of production requirements).

Once a recipe has overloaded a static UDT, the data in that UDT is then fixed (and
will not be overwritten) until the operator selects a different recipe.

Data blocks that hold static UDTs that are under the control of a recipe are given the
class Rc_ (rather than St), the UDT retains the St_ designation and retain the prop-
erties specified in § 4.6 (i.e. all uppercase &c.).

81-201

0]

@

3

)

5

©)

4.8 Naming variables in static DBs

Static DBs are static only in terms of how they are used within the PAL, all DBs are
of a read/write nature (it is not possible to declare a constant within a DB — as is the
case with FCs and FBs).

Static DB data must not be overwritten by any operation within the PAL (there is an
exception for recipe data, see § 4.9.1.).

Entries within a static DB are given symbolic names in uppercase.
The basic restrictions on static DB element names within the PAL are:
(0 The name must be written in uppercase
@ The name must be no more than 21 characters

® Only use the characters [A-Z], the numbers [0-9] and the under-
score character [_]

@ The underscore character should be used in place of a space to
separate words

All elements must have a comment in the block interface to explain the function and
usage of the element.

All elements within a static DB should be declared as SETPOINTS (the SETPOINT box
should be ticked).

82-201

0]

@

(©)]

)

®)

0]

@

(O]

)

4.9 Naming variables in dynamic DBs

Dynamic DBs can be freely overwritten by blocks within the PAL, (there are no re-
strictions).

Entries within a dynamic DB are given symbolic names in camel case.
The basic restrictions on dynamic DB element names within the PAL are:
©) The name must be written in camel case
©) The name must be no more than 25 characters

® Only use the characters [a-z], [A-Z], the numbers [0-9] and the
underscore character [_]

All elements must have a comment in the block interface to explain the function and
usage of the element.

All elements within a dynamic DB must not be declared as SETPOINTS (the SETPOINT
box should always be unticked).

4.9.1 DBs holding recipe data

Under certain (very limited) circumstances, the data in a static DB can be overwritten.
These circumstances arise when some form of recipe handling is being performed.

Recipes consist of preconfigured data sets that are selected by the operator and then
loaded into the Controller (via some external device such as a SCADA or HMI). Such
recipe data sets are permitted to overwrite (overload) a static DB (essentially the static
DB is being selected for a particular set of production requirements).

Once a recipe has overloaded a static DB, the data in that DB is then fixed (and will
not be overwritten) until the operator selects a different recipe.

Data blocks that hold recipe data that are under the control of a recipe are given the
class Rc_ (rather than St_), the individual elements within the DB will retain the prop-
erties specified in § 4.8 (i.e. all uppercase &c.).

83-201

0]

@

3

0]

@

3

4.10 Tags and tag naming

Tags are a mechanism for giving symbolic names to absolutely addressable elements
within the Controller itself (timers, counters, inputs, outputs, bit memories &c.).

Where possible, the PAL uses data blocks to store information and it does not use
timers and counters* at all. It does however use some (but not very many) bit memories
(the number of bit memories available to the S7-1500 range of CPUs is 16384 bytes of
data or 131,072 bits) and it also uses symbolic addressing for 1O signals.

The system tags and the 1O tags are stored in separate tag tables (as follows):

4.10.1 The PAL system tags (PAL_SystemTags)

The PAL uses bit memories to store certain global system signals (these are the signal
generated for use by FC 01001, the STDSYSGLOBALDATA block).

The PAL uses three bytes of the bit memory range for specific global signals (Table
4.14). The bytes used are MBO, MB1 and MB10. MB 10 is populated by the clock memory
signal (generated within the CPU).

The PAL stores all these tags in their own tag table:

PAL_SystemTags

4 The number of timers and counters available within Siemens Controllers is restricted (alt-

hough it is better than it was) typically being 2048 of each. The PAL generally replaces the
timers with edge triggered pulse counters of which there can be any number and they can
be stored in data blocks. Counters are replaced with specific blocks that again store counts
in data blocks and again any number of which are supported.

84-201

It contains the following tags:

NAME TYPE AD- DESCRIPTION

DRESS
_SysSignals Int 7MW0 System signals (logic and timing signals for direct access)
_SysSignalse1l Byte 7%MBO System memory byte 0] — Logic and scan synchronised pulses
_False Bool %M0O . 0 System Logic Bit — Always FALSE
_True Bool ZMO . 1 System Logic Bit — Always TRUE
_5ems Bool 7MO . 2 System Timing — 50 ms Pulse Scan synchronised
_1e0ms Bool %M0 . 3 System Timing — 100 ms Pulse Scan synchronised
_200ms Bool MO . 4 System Timing — 200 ms Pulse Scan synchronised
_5e0ms Bool %M0 . 5 System Timing — 500 ms Pulse Scan synchronised
_1s Bool ZM0 . 6 System Timing — | s Pulse Scan synchronised
_2s Bool “MO . 7 System Timing — 2 s Pulse Scan synchronised
_SysSignalse2 Byte 7MB 1 System memory byte 02 — Scan signals and common square waves
_CycleTick Bool ZM1.0 System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)
_CycleTock Bool ZM1.1 System Timing — Cycle tock (active even cycles, alternates with _CycleTick)
_CycleFirst Bool ZM1.2 System Timing — First cycle detected
_100msSqwW Bool ZM1.3 System Timing — 100 ms square wave Scan synchronised
_200msSqwW Bool ZM1.4 System Timing — 200 ms square wave Scan synchronised
_500msSqwW Bool ZM1.5 System Timing — 500 ms square wave Scan synchronised
_1sSqgW Bool ZM1.6 System Timing — | s square wave Scan synchronised
_2sSqgW Bool WML 7 System Timing — 2 s square wave Scan synchronised
_ClockMem Byte 7ZMB10 Clock Memory (populated by the CPU)
_ClockMem_100msSqW Bool %M10.0 Clock Memory — 10.0 Hz square wave 0.1 s Period
_ClockMem_20@msSqW Bool ZM10.1 Clock Memory — 5.00 Hz square wave 0.2 s Period
_ClockMem_400msSqW Bool ZM10.2 Clock Memory — 2.50 Hz square wave 0.4 s Period
_ClockMem_500msSqW Bool 7ZM10.3 Clock Memory — 2.00 Hz square wave 0.5 s Period
_ClockMem_80@msSqW Bool ZM10. 4 Clock Memory — 1.25 Hz square wave 0.8 s Period
_ClockMem_1000msSqW Bool ZM10.5 Clock Memory — 1.00 Hz square wave 1.0 s Period
_ClockMem_1600msSqw Bool ZM10.6 Clock Memory — 0.62 Hz square wave |.6 s Period
_ClockMem_2000msSqW Bool ZM10.7 Clock Memory — 0.50 Hz square wave 2.0 s Period

Table 4.14 PAL system bit memory usage

The PAL_SystemTags tag table is a fixed tag table and is a fundamental part of the
PAL. It must not be modified.

85-201

(6

@

®

®)

0}

@

Similarly, the bit memories contained in the bytes MB0, MB1 and MB 10 are reserved by
the PAL and must not be reallocated, renamed or used in any other tag table.

All PAL system tags contained within the PAL_SystemTags tag table are identified by
a leading underscore character ().

The PAL system tags are named according to the following conventions:
Q) Each tag is prefixed with the underscore [_] character
©) The remaining tag name is written in camel case
(® The name (including prefix) must be no more than 24 characters
@

It is permissible to separate parts of the name with an underscore
[_] character (e.g. ClockMem 100msSqW)

@

Units (such as milliseconds, ms) are not capitalised

Q)

The dash/hyphen [-] is not to be used (use the underscore instead)

@ Only use the characters [a-z], [A-Z], the numbers [0-9], and the
underscore [_]

All PAL system tags have a brief explanation of what the tag does stored in the com-
ment field of the tag.

4.10.2 The PAL Input/Output tags (PAL_IOTags)

The inputs and outputs associated with a project are unique to that project (they obvi-
ously depend on the plant being controlled). The PAL does not prescribe in anyway
what IO can be used. It does however have certain rules for how that IO should be
named and where the tags should be stored.

Taking the later point first, the PAL stores all the IO tags in their own tag table:

PAL_IOTags

86-201

3

)

4

The following is an example of an IO tag table:

SYMBOL

ESTOP_HEALTHY
MOO1_RUNNING
MOO1_TRIPPED
MOO2_RUNNING
MOO2_FAULT
MOO1_ROTATION
CVOO01_OPENED_LIM
CVe01_CLOSED_LIM
VOO1l_OPENED_LIM
VOO1l_CLOSED_LIM
V@02_OPENED_LIM
VO02_CLOSED_LIM
VOO3_OPENED_LIM
VO03_CLOSED_LIM
VOo4_OPENED_LIM
Voo4_CLOSED_LIM
M@@1_START_CMD
Mo02_ENABLE_CMD
CVOO1_ENABLE_CMD
VOo1_OPERATE_CMD
VO02_OPERATE_CMD
VO03_OPERATE_CMD
Voo4_OPERATE_CMD
M@02_SPEED_ACT
CVeoe1_POS_ACT
M@02_SPEED_DEM
CVeo1_POS_DEM
Table 4.15

TYPE

Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Int
Int
Int
Int

PAL 1O tag table (example)

ADDRESS
%10.
%10.
%10.
%10.
%10.
%10.
%10.
%10.
%I1.
%I1.
%I1.
%I1.
%I1.
%I1.
%I1.
%I1.
%Q0.
%Q0.
%Q0.
%Q0.
%Q0.
%Q0.
%Q0.

®

i A W N P OIN O U1 B WIN PR OIN O UV A WN B

6

%IW268
%IW270
%QW264
%QW266

DESCRIPTION
Emergency stop healthy/pressed
MO01 is running/stopped
MO001 is heathy/tripped
M002 is running/stopped
M002 is heathy/inverter fault
MOO! rotation sensor (proximity PD00I)
CVO00I opened limit switch active/inactive
CVO00I closed limit switch active/inactive
V00! opened limit switch active/inactive
V00! closed limit switch active/inactive
V002 opened limit switch active/inactive
V002 closed limit switch active/inactive
V003 opened limit switch active/inactive
V003 closed limit switch active/inactive
V004 opened limit switch active/inactive
V004 closed limit switch active/inactive
MO0O01 start command
M002 enable command
CVO00I enable command
V00| operate command (energise)
V00| operate command (energise)
V00| operate command (energise)
V00| operate command (energise)
M002 actual speed
CVO00I actual position
M002 demanded speed
CV00! demanded position

There are some general rules for naming IO tags:

@
@

@

The IO tag name is in uppercase

The IO tag name must be no more than 24 characters

Only use the characters [A-Z], the numbers [0-9] and the under-
score character [_]

The underscore character should be used in place of a space to
separate words

The Functional Specification § 6.2 [Ref. 005] contains more details about the naming

of IO tags.

87-201

0]

@

3

)

5

©)

@

4.10.3 Project specific tag tables
The PAL defines two tag tables:

USER
TAG TABLE NAME FUNCTION CONFIGURABLE
Contains the global system signals generated
PAL_SystemTags g 4 g g No
as part of the PAL system logic
Contains all the IO signal tags connected to
PAL_IOTags Yes

the controller

Table 4.16 PAL tag tables

Of these, only the first one (PAL_SystemTags) is actually required; it is perfectly pos-
sible for a Controller to not have any 10O signals (it may be some form of communica-
tions coordinator for example).

If the Controller does have 10, then the IO tags must be stored in a tag table called
PAL_IOTags.

The user is at liberty to create any other tag tables that may be required (there are a lot
of memory bits available should the user wish to make use of them). These tag tables
are referred to as project specific tag tables.

Project specific tag tables should be prefixed with PROJ_ (to differentiate from the PAL
tag tables that are prefixed PAL) as follows:

PROJ_FunctionDescriptionTags

It is recommended that the project specific tag tables end with the word Tags, but this
is not compulsory.

The user can create as many project specific tag tables as required.

Note: Tag tables must not contain duplicate symbolic names or attempt to use an abso-
lute address that has already been allocated in some other tag table.

88-201

0]

@

3

)

4.11 Control system network device naming

All devices that are in some way connected to a Controller via an Ethernet or Profinet

network must be named.

The naming of an Engineering Station was discussed in § 3.1.3; and similar procedures
should be followed for naming other PC based systems that may be connected to the
Controller (supervisory systems for example).

In addition, all Controllers and any remote IO installations must also be named. The
following table summarises the general abbreviations for naming devices (this is an
expanded version of Table 3.4):

ABBREVIATION
CONnnn

ESnnn

ESWnnn

HMInnn

0Snnn

PNnnn
PNmmm_nnn
PSWnnn
PSWmmm_nnn

SVnnn

DEVICE

A Controller

Engineering Station, the PC that runs the full development software
(in this case TIA Portal)

Ethernet network switch or router

HMI a panel mounted computer-based system similar to a SCADA
system, but with restricted in capabilities.

Operator Station, a supervisory system (SCADA). If the system is a
server/client arrangement, OS refers to a client

Profinet node, usually a remote 1O rack, or Profinet enabled device
Profinet node on a separate subnet

Profinet network switch or router

Profinet network switch or router on a separate subnet

A server, usually a supervisory system server

Table 4.17 Device naming abbreviations Where nnn is the last octet of the IP address

mmm is the second to last octet of the IP address

An example (fully expanded) network arrangement for the test rig (expanded to in-

clude a supervisory system with clients and an Engineering Station) is shown below:

89-201

ENGINEERING STATION

ETHERNET IP: 192.168.1.140

ELECTRICAL PANEL

DEVICE NAME: ES 140

| ES140

L

HMI

TPI1200

ETHERNET IP: I92.168.1.110
DEVICE NAME: HMI| 10

HMITT0

ETHERNET SWITCH
UNMANAGED

O \
bt
E B

SLYOd 13NY¥3IHL3

et R —

CLIENT |
ETHERNET IP: 192.168.1.121 CONTROLLER | CONTROLLER 2
DEVICE NAME: OSI121 m = == =1 T RIEETIY TN | | R |) n
[0OS122 o o
o o
' O CPU 1515-2PN CPU I511-IPN -
SUPERVORY SYSTER ey o e et S
SERVER DEVICE NAME: CON 00
SUPERVISORY SYSTEM ETHERNET IP: 192.158.1.113 il
CLIENT 2 PEVICENANESILE rrorNeT switcH [l PSW 120
ETHERNET IP: 192.168.1.122 PRQF'NET'F'T‘G:'Nﬁ?nGFZE jas)
DEVICE NAME: 05122 DEVICE NAME: PSWI20

PROFINET PORTS

- ETHERNET

H
REMOTE 1O
~——FPROFINET IM155-6 PROFINET
PROFINET IP: 192.168.0.130

DEVICE NAME: PN130

o icoec 1-PN140

PROFINET IP: 192.168.0.140
DEVICE NAME: PN 140

Figure 4.9 Expanded network with device names

© In Figure 4.6 Figure 4.9, all network addressable devices (those devices with an IP
address) have been named (shown in red).

© If more than one Profinet network were in use, then these would have different sub-
nets, the Profinet network shown here has subnet 192.168.0.nnn, a second Profinet
network would have a different subnet, e.g. 192.168.101.nnn. Devices on the first
subnet would be labelled (for example) PNO©O_ 130 or PSWO0O_120 &c. Device on the
second subnet would have addresses with 101 as the first set of digits (for example
PSW101_120 &c.).

@ Where only one Profinet network is present, it is not necessary to use the dual num-
bering system.

® It is not necessary to distinguish between the Ethernet subnet and the Profibus subnet,
there is no duplication of unique device name between these two networks.

90-201

0]

@

O}

0]

@

O]

5 Common appearance and
version control

All the blocks in the PAL have a common style and appearance. This is to give the
blocks a similar look and feel and ensures that the same type of information is available
within each block and that this information is located with a degree of commonality
that makes finding and interpreting the block easy and predictable.

This section looks at common elements of programmable blocks (FC, FB and OB):
(M) Definition of the title line for a block

A standard PAL block header

Common networks and how they are used

The block description network for a typical block

®© ® ©

A current revision and modification history template for a typ-
ical block

©)

Special examples of the above for the main execution block
(OB 1)

The Style Guide (SG) [Ref. 010] provides additional detail on the topics covered here.

5.1 TIA Portal comment fields

TIA Portal supports comment fields within blocks and within individual networks
within a block.

These comment fields are not particularly sophisticated and cannot be customised,;
they use a fixed font at non-adjustable point size. The font in question is Siemens TIA
Portal Basic and it uses a fixed-point size of 9 pt that cannot be changed.

The font is a proportional sans-serif font; it is shown Figure 5.1:

91-201

)

5

[Normal characters]
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

[Quotes & punctuation]
..IIIIII***§1'|. OT¢®©®TM

[Index numbers]

OEOEEOEEOMEBEWBE@ @
[Box drawing characters]

e

Y B+

— |1 INX P

[Block elements]

[Geometric shapes]
EOREOMR OV EANEENESZE« cmole o
2O QOPB9000000000°000039 000

‘k"AVﬂBAA»D‘qvv|><|>><<>>774<AA

[Arrows]
(—T—)lHI'\/‘\/«—T—»&(—()—)HII—)IIiﬁﬁdbjd[\@@bd

Figure 5.1 Siemens TTA Portal basic font

There are two restrictions with the use of this font, the first is the fixed-point size is
quite small (and it cannot be made bigger), the second is the fact that it is a proportional

font.

The older programming package, Simatic Manager (the forerunner to TIA Portal), had
a similar comment arrangement; however, it used a non-proportional font (Lucida con-

sole):
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijkImnopgrstuvwxyz 0123456789
pes 7= M Gon QI3 *
I Yt
Figure 5.2 Lucida Console font
5 Proportional fonts have letters that are different widths, the M character is wider than the

| character. With non-proportional fonts all characters are the same width (like text written

on a typewriter).

92-201

O]

Y]

®

©)

(10)

()

The advantage of the non-proportional font was that it was easy to make lists (e.g. lists
of parameters) that all lined up correctly.

The proportional font can make TIA Portal comments look untidy:

FUNCTION MEMORY BIT SYMEOL
Always Off h 000.0 _FALSE
Always On h 0001 _True

50ms Pulze 0002 _50ms
100ms Pulse h 0003 _100rns
200ms Pulse hA 000 4 _200rs
500ms Pulse M 0005 _500rms=

1.0= Pulse h 000.6 1=

2.0s Pulse 0007 2=

Scan tick signal M O01.0 _ScanTick
Scan tock signal M 0011 _ScanTock
Firstscan active r 0012 _ScanFirst
100ms S5quare Wave n001.3 _100ms=_5qW
200ms Square Wave h 00T .4 _200rms=_5qW
500rms Square Wave mM0O01.5 _500rms_SqW
1.05 Square Yawve n001.6 _1=_5gqW
2.0 Square Yave n 0017 _2s_5qW

Figure 5.3 Lining columns using spaces (without tabs)

In Figure 5.3 the columns are aligned using spaces, the discrepancies are most clearly
seen with the Ms and underscores, they do not correctly line-up (the orange lines are
vertical and show the misalignment).

It is possible to accurately align these columns within TIA Portal comments (even with
the proportional font in question). The Siemens TIA Portal Basic font characters
all have varying widths; however, they are all either a whole multiple of the normal
space character or a multiple of the normal space character plus % of a normal space,
or a multiple of the normal space character plus % of a normal space.

Additional whitespace characters are available to the TIA Portal font that accommo-
date the !5 and % of a normal space: a six-per-em space that has a width of % of a
normal space and a three-per-em space that has a width of 1'5 of a normal space.

The consequence of this is that with judicious use of the normal space, three-per-
em space and the six-per-em space it is possible to always get a perfect fit.

93-201

(2 Here is the same column arrangement aligned correctly with the additional whitespace
characters (again the orange lines are vertical to show the alignment):

FUNCTION MEMORY EIT SYMBOL
Always Off it 000.0 _FALSE
Always On M 0001 _True

50ms Pulze M O00.2 _50ms
100ms Fulse M O00_ 3 _100ms
200ms FPulse i 000 4 _200ms
500ms Pulse i 0005 _500ms

1.0= Pulse M O00.6 1=

2.0s Fulse M 0007 2=

Scan tick signal MO01.0 _ScanTick
Scan tock signal MO0 .1 _ScanTock
Firstscan active Moo1.2 _ScanFirst
100ms Square Wave MO01.3 _100ms_SqW
200ms Square Wave MOoT 4 _200ms=_5qW
500ms Square Wave MOo01.5 _S00ms_SqW
1.05 Square Wave Moo1.6 _1=_5gW
2.05 Square Wave MO01.7 _2=_sqgW

Figure 5.4 Lining columns using additional whitespaces characters

5.1.1 Maximum size of a comment field

M A comment field for any network can hold approximately 65000 characters including
spaces and line break characters.

@ This equates to approximately 670 lines of text, and with (a typical) 19.2 words per
line, this is in the region of 13,000 words per comment field.

@) Where these restrictions provide insufficient space for the comments, it is permissible
to add an empty network and continue the comments in the comment field for that
network.

94-201

5.2 Common headers and networks

O Each programmable block within the PAL (FB, FC or OB) has several common areas
at the start of the block:

Q)

Block title and comment field
This holds a plain English title for the block and a generic
copyright message along with links to the PAL documentation

Network 1 — Detailed description of the block
This contains a full and detailed functional description of the
block including its parameters and data structures

Network 2 — Current revision and modification history
This holds a full list of modification made to the block along
with the revision number, data and the author of the revision

@ These networks can be considered a standard requirement of all blocks within the PAL;
all blocks must contain these elements and be in accordance with the requirements
discussed in the following sections.

® Taking each of these elements in turn:

95-201

5.2.1 Block title and comment field

O The first item in any programmable block (FB, FC or OB) is the block title field with
a comment area underneath, highlighted in Figure 5.5:

[v Block title:]

¥ Network 1: .

Figure 5.5 Block title

® The block title line contains the block title in the form
Class Module [FUNCTION] — Description

©) For example, the block title for the isolating valve module (FC11001) is:

Block title: Standard Module [DEVICE DRIVER] — Isolating Valve

) Generally, the block title should be no more than 80 characters (including spaces) and
should be in title case (i.e. all principle® words are capitalised), with the function field
in capitals.

© The block title comment field contains a standard copyright message for the PAL, de-
tails of how to access the specific User Documentation for the block and a link to the
full PAL documentation It is shown below:

PRACTICAL SERIES AUTOMATION LIBRARY (PAL) — COPYRIGHT 2020 — M. GLEDHILL (MIT LICENCE)
.
FULL ONLINE DOCUMENTATION IS AVAILABLE AT: https://practicalseries.com/2001-pal/index.html

G The block title comment field is common to all blocks that are issued with the PAL.

6 Principal word are words that are not:

e Articles (a, an, the)
. Conjunctions (and, or, but &c.)

e Prepositions (in, with, on &c.)

96-201

@) The following is a typical example of a block title and comment field

¥ Block title: Standard Module [DEVICE DRIVER] — Isolating Valve
-

PRACTICAL SERIES AUTOMATION LIBRARY (PAL) — COPYRIGHT 2020 — M. GLEDHILL (MIT LICENCE}
*
FULL ONLINE DOCUMENTATION IS AVAILABLE AT: https:iipracticalseries.comi2001-paliindexhtml

Figure 5.6 Example block title and comment field

97-201

0]

@

3

)

4

5.2.2 Network 1 — Block description

The first network in the block (always numbered Network 1) immediately follows the
block title and comment field. The network itself is not used; it is just an empty net-
work. Its importance is purely as a comment field containing a description of the block.

Network 1 is always given the title Block description. The main function of Net-
work 1 is to hold a full description of what the block does, how it does it and the pa-
rameters and data structures used within the block. The block description should con-
tain the following sections:

Title

Overview

Block technical summary

Functional description

Detailed block description

Supervisory system interface

Parameters

Data structures and usage [and instance DBs]

Constants and Temporary (local) data

@ Q@ @ v 6 © O O

Block calls and associations

©

Example usage
Test and verification path
Each of these areas has its own section in the block description.

The typographical styles used to specify titles, headings, subheadings and area dividers
are discussed further in the Style Guide (SG) [Ref. 010].

Network 1 itself, is simply an empty ladder network:

98-201

ign spec-

iption

1n question.

based upon the software module des

Block description with an empty network
fication (SMDS) /Ref. 008] for the module

iption are

Block descriptions
Figure 5.7

Network 1

The following is an abbreviated extract from an example block descr

The contents of the block descr

1

(C)]
@

indasp-jedpindosdy: sduy
(08YO-ZONYE-T 154539 0U J3PI0) NAZ-5 1S 1-NdD LD PRINSES |

P +o AHOMIA O
9110z AHOWIN Q01
sl pg L JNL NOLNDIXT

SOMLIN

¥20|q piepuels 3dAL 39¥5N Tod
saA 55300 QI5WILO

a¥l I9¥NONYT

LS181 HIFNNN X009

(24 uonauny 34AL310073

JOWSN B 34AL D078

JLduaAgawLgns aryg3asn o078
JLHUAATIWILANS LG 18104 108WAS ¥007d
1G1812d 5534aaY 12078

suinoigqng JNOYD NOWDNNL 20078

RIEPENTRTER) JUWL A2078

ONISSIHAAY B FUNLYIONINON

AHFIAINS TY2INHDAL ¥2079 L

“Y20|q AUINOIONS B 51 SIYL
13||0AUDT 3340 Y303 3LUM | 234 33 L0 PE3I 38 S3LI pUS pue Lels 3y

(Fua uels AL snUIW 3w

PU3) IU3A3 3L 40 UDREIND 343 5338|N3jed pue {|eubis y39oMl ays o 36pa Buljey papua uass
3y 3w a3 {jeubis 43901 2y jo 3Bpa Buisy) pane1s 1UaA3 3L 3L 3D SPJOI3I YI0|] Sy

"UOIIN|O53) PUOISTOUEU 01
1USAS UB JO UOINEIND 341 S3LIIL 1EYL 320]0 SUNNDIGNS B 51 JIHIUSATSWILGNS |S18104

- =ea-om
14+LdIHS Buissaud pue (ya) sy uo)

3341 193loud a1 Ul anpow syl Bunaajas fg passanie aqueny

'ugneluawnIog pauyagiasnaalold ayjo ued se 3jqejiene osje 513

d-151813-spwsedpnrdosdy:sduy
313y auluo 3|qE|IEAR S| SINPOW SIUL 0} SAWS SYI 40 UDISISA 404 SYL

{50M5) NOWY2HD3S NDISIA IINAOW HHMH05— 1518124

DL HINILL LN 3AT — INILNOYEaNs S

W QUYANYLS
0l 01 | suonaas— uonduasap yaoig | HJOMIBN

99-201

1.1 Additional docurnent references

In addition to the documents referenced in OB1 (section DOCUMENT REFEREMCES), the
following documents are associated with this modul

REF. DOCUKMENT NO. TTLE

101 F52001-5-2331-001-01 FC19512 Calculation Sheet
102 P52001-5-2331-001-02 FC19512 2nd Order Response Simulation Spreadsheet

[Alternate text, use if there are no additional references]
Onlythose docurnents specified in OB1 (section DOCUMENT REFERENCES) are listed within this
block. There are no additional document references

— Swwwey —

FUNCTIOMAL DESCRIFTION

FC18157 is the Subroutine Event Timer using RTC black, it simply records the duration of an event
vith a high degree of accuracy. The event being timed is a Boolean signal passed to the block as
the TRIGGER parameter.

Three times are recorded for the event, the start time (rising edge of the TRIGGER parameter), the
end time (falling edge of the TRIGGER parameter} and the duration of the event (end time minus
the start time). The duration is calculated on the falling edge of the TRIGGER parameter,
immediately after the end time is recorded.

The start and end times are read from the Controller's internal real time clock (RTC) and are
stored in DTL (date time long) format, this format contains year, month, day, hours, minutes,
seconds, milliseconds, microseconds and nano seconds.

The duration is stored in LTime (long time, 64-bit) format, and is veryaccurate, it resolves to
days, hours, minutes, seconds milliseconds, microseconds and nanoseconds, it keeps this
resolution irrespective of the duration

The duration is also calculated ac a real number in seconds (or fractions thereof); this iz a
more convenient format for helding the duration, butis notas accurate as the LTime format.

T SeweeS ——

3. DETAILED BLOCK DESCRIFTION

The purpose of this block is to determine with a high degree of accuracy the duration of an event,
the eventitself must be in the form of a Boolean trigger signal, the rising edge of the signa
considered to be the start of the eventand the falling edge the end of the event.

The eventsignal is passed to the block as the TRIGGER parameter.
The block returns five values, these are stored in a UDT passed to the block in the
DYNAMIC_DATA parameter:

FARAM ASSOCIATED UDT ASSOCIATED DATA BLOCK

8151_Dy_SubTimeEventRTC DB38151_Dy_SubTimeEventRTC

The block returns the following data:

UT28151_Dy_SubTimeEventRTC

SIGNAL NAME FUNCTION TIPE
status_Running STATUS —The event timer is running Bool
actual_StartTime ACTUAL—Tirne at which the TRIGGER signal DTL

went high (event start time}

actual_EndTime ACTUAL —Time at which the TRIGGER signal DTL
went low (event end time}

actual_Duration ACTUAL — Event duration LTime

actual_DurationSec ACTUAL — Event duration in seconds REAL

EBlock returned signals

31 Timing an event

The block constantly monitors the TRIGGER parameter; ifa rising edge is seen on the TRIGGER
parameter (point () in the figure below), the Controller RTC is read and its value is stored in
actual_StartTime, atthe same time the running signal (status_Running} is activated.

The block centinues to menitor the TRIGGER parameter, when a falling edge is detected
(point(Z), the RTC is read once more and its value is stored in actual_EndTime, and the running
signal (status_Running} is deactivated

Once the end time is stored, the following calculation is carried out:

actual_Duration = actual_EndTime — actual_StartTime

[}
[}

TRIGGER

l

time

actual_Start_Time actual_End_Time
DIL#2020-04-18-09:34:25 899548353 DIL#2020-04-18-09:34:36.004744916

100-201

— 5SS ——

¥20)q Buiwin 1sAs aup o) aimanns e1ep aiweulg JLMuEAIaWILgnsAQT LS LBELN
1001004 335 Buiwn pue :boj1op sjeubis wasis sjeubissis™AgoooLzLn
wn (13621u1 Buo)) eaie 2Beiors Bury W 1001024 235 20| SIYE J04 UDIIBULLIOMI 33U3D1 25u20Ms45735 LO0LOLN
|eay {|eay) abeions Buryoy 1001024 335 3200 SIY2 10} UORELLOWI UDISIAZY uoisiaaysfsTIsT000 100N
| {42B31u1) eaue abeiols Buryio,
LooLaLn ¥20|q 3yp Joj uonewlou Buisuaan NOLWdI¥253a FHALDMHLS Yiva
00oLoLn 170]q 3Y3 10} LD ELLIOHUI UOISIASY
3dAL MOLWINNd TN TTNDIS
‘a1manas exep paienosse bumo||oy 3y1 sey y30|q SYL
:pasn 51 mep Aeiodwsl Buwoyog ay
ADYSN ANY SIUNLINYLS Y1va 9
e1ep (|eao)) Leloduwia) oL
— LSS0 ——
123y (Uz)1dx T4o 3njEn SBLEBT'Y 1427
1eay Wy dgoanjepn ZESLFLE] T
ngul LSLBELN Buiwin 1uaAa 3yl Jo 51Nsal 3yl 53015 YLV O JINYMAQ
3dAL NOWIMNd anjep NN TYNDIS

{pua aus abBpa Buijey ays IuaAa sy o LeIs

WI¥a SINFLSNOD |oog 2 syiew 26pa Buisy g) |eufis JaBBuiuaag 4IDOML

ipasns s t Bu
P3sn <1 B8P SUEELO3 BUMOII%Y UL s5302@ anawesed sog sjeubis Buiwn pue 21bo|

000LZLA sleubis waisls uowwad STHNDIS SAS
SWEIsU0D LL
LNO-NI IdAL MNOLWINNA Widyd
W90 (T9I07T) AHROMAL ONY SLNWLSNOD gl 42919 34 Lt pa1elosse 1@ siai3uieled bumoljoy 3y
543NV 5
— S5O0 LS ——
SPUOISS Ul LONRIND JUSAT — TyMLIY Jaguoneing”|emae —_— SLSS8d ——
3w LOREINP UAAT — TYLIY uoneing jemae waishs Josiuadns e Y 228423301 10U S30P 3NPOW SIYL
S [m=1 s1ewS1)y]
{3wn puauana) mojuasm
wa 1eubis HIDDIML BYL YIIym 1E WL — Tyl 3w pu3|emoe SIBLYTIET-SLO0T S 151 13qUWNU JUSWNI0P 343 "3NPOW SIY3 Jod
5 [oud- d- EETIEH sod
(3w weys wana) yBIy wam |y s30p-00-L0pa2lod-1 zjjed-LooZ/wor s3ua s ed)) sday
1a |euBIZ YIDDIHL AU LAY 18 Sl — TYNLDY 3wjueIsT|Emoe
1313y 3|qe|iens st (UonesWNIop 133foud JaLo ||e pue) sais aur o Adod sjqepeojumop v
|oog Buiuuny sJawn uana Yl — SMLYLS Buuuny~snie1s
g - - _ (110 $24] Ju3Wn30p SQNS 240 + UeRI3S Ul uanb 5 3npow
2dAL NOWINNY YN THNDIS i3 1oy wiazsds Losiuadns aug o) 3jqe)iene saiedade; pue sUod¥20|q 3y o uoneuedea Uy
7N TYNDIS

d-1 5181 -spws-jedpn-dosd): sduy opuy sy moorao 14+ 14IHS

RIEHIERE T E=E-1T) .
:552ud pue 333303loud 3up U1 Y2019 B43 123135 — 20| SIYI 104 UOIEIUSWINIOP 3

uo 3y 235
auans syl oy sanjes Buiw aui saiols

33eusun warshs Aosiuadng +

oLpuangawl g LS 1BELN L9

101-201

8 BLOCK CALLS AND ASSOCIATIONS

This section details any blocks which may be called from within this software module (subroutine
functions for example), any partner blocks with which it may be associated (for example a
receive module thatis parner with a transmit medule &c). Itlists any system functions which
may be called (e.g. reading the real time clock} and any system data types that may be used

it lists any special calling requirements for the block (for example, must be called from
within a cyclic interrupt erganisation block) and ifthe bleck is using “optimised access” (this is
the default arrangement)

8.1 Elock calls frerm within this module

There are no PAL block calls from within this block

82 Blocks associated with this module

This is a stand-alone block and is not associated with any other blocks

83 System block calls and system data types

The following calls are made to system blocks:

system block calls

BLOCK TTLE DESCRIFTION

RD_LOC_T Read the local RTC time Reads the CPU real time clock

There are no special system data types used

8.4 Special properties and requirements

841 Block optimisation, IEC compatibility and library conformance

* Block eptimisation is ACTIVE for this block.
« The block has been checked for IEC compatibility and is compliant.

+ The bleck is compatible with all IEC library-conformance module constraints

842 Calling requirements

This block is a documentation block and as such is a reference block that should not be called.
The block itself does not contain any executable code, with the exception of the revision and
icence networks, all netwarks are empty. The block itself does nothing, and its execution w
have no effect, other than extending the cycle time.

— evewvew —

9. EXANMPLE USAGE

The following shows a typical deployment of FC18151:

{ FC18151

%M100.0
“Event001” — TRIGGER

"DB38151_Dy_TimeEventRTC" Event001 —] DYNAMC_DATA

J—

T SeweeS ——

10 TESTAMND VERIFICATION PATH

The following diagram shows the full test and verification path for the formal release of each
version of the software module. See the Test Flan [Ref 003] for full details, available here:
https:ilpsop.ukipaltpp

FC18151-T001 FC18151-T002

Testversion: 000.801 Testversion: 001.801
Released version: 001.000 Released version: 002.000

Released commit: DOOO3 Released commit: DOOT1
SCR SMT sev
— [} Im
i} e [
Initial test Comments standardised
Initial test to release the Comments updated &
maodule following the minar typogra phical
developmentstage. corrections
SMT SCVonly
Where:
5CR Source Code Review Avisual inspection of the software to ensure it has been written
] to the correct standards, uses the correct structures within the
= software and is generally suitable for deployment.
SMT Software Module Test Afull and detailed test of an individual software moedule in
™ isolation; such testing requires that all branches of the
[=] software are tested.

It tests all the interfaces to the module, any data recorded or
stored by the module, all error and exception handling functions
and tests all timed and interrupt driven operations

SCV Software Compatibility A mechanism for verifying that no executable code software
1 Verification changes have been made to a module following changes to
I nn_.:_.:m:;m_nw

Allows typographical errors &c. to be corrected without forcing
a full SMTen a module that has not functionally changed.

An 5CV can only be performed on a module that has at some point previeusly, successfully
completed both an SCR and SMT. Where an SCV is implemented, it replaces the requirement for
beoth the SCRand the SMT for the test iteration in question.

— eeeee —

I B EEE o EEE

102-201

0]

@

3

5.2.3

Network 2 — Current revision and modification history

Network 2 contains the current revision of the software module. This network is not
empty; it contains the current revision number of the block, the revision date and the
author’s initials. These are hard coded in the network.

Network 2 always has the title: Current revision and modification history.
The network comment field contains the modification history of the block (up to and
including the current revision).

The comment network has the following appearance:

-

Network 2: Current revision and modification history

-
WODIFICATION HISTORY

This is a complete summary of all software medifications made to this block. The current
revision is at the top of the list.

The current revision, author and the date of the revision are hardcoded into the Controllerin
this network (allowing revision data to be obtained directly from the Controller)

The revision data shown here, in the network comments, contains additional information
reflecting the software development workflow, under the version contrel system (VCS).

The VCS in use is the GIT Source Code Management system in conjunction with the GitHub online
hosting system. The software in its entiretyis available in the GitHub remote repository:

hitps:github.comimgledhilliPs2001-pal-sofiware

This repositary s public and can be freely cloned and used under the M Licence
The MIT Licence is reproduced in full in the lsst network of this software module

— FCo1001

REVISION MASTER BRANCH DEV
DATE (nnn.amm} COMMITTAG (Base —>Merge) BRANCH AUTHOR
20201109 001.000 DO003 DO002Z DOOO3 None 11 Gledhill

FCO1001 — RELEASED FOR USE
Merge back to master branch

202011.09 001.000 DO0O2AD01.000 DOOOZ NIA DO002A M. Gledhill
FCO1001 — Fost test RELEASED FOR USE
2020.11.08 000.801 D0002A-000.801 DO002 MIA DO002A M. Gledhill
FCO1001 — Released for (SMT)
Software module testing
202011.04 000102 DOOO2A000.102 D002 NIA D0002A M. Gledhill
FCO1001 — Incremental build
Software based on tested pre VC5 version
20201103 000.101 DO002A000.101 DO00Z MNIA DO002A M. Gledhill
FCO1001 — Block created

Where: nan = Major revision
a = Type (17 Development. BProving, 9 Qualification, O Release)
mm = Miner revision (must be 00ifa =0)
Block properties version number should be set to nn.a (only one decimal place)

#5YS_SIGNALS. False

S_MOVE
:/: EN —
FCO100 N OUT — #revinfo REV_BLOCK
S_MOVE
EN —
001.000° — 1N OUT — #revinfa REV_NUMBER
S_MOVE
EN —
2020.11.00' — N OUT — #revinfo REV_DATE
S_MOVE
EN —
. Gledhill' — |y OUT — #revinfo REV_AUTHOR
Figure 5.8 Network 2 — Current revision and modification history

103-201

) All blocks within the PAL have the block revision number stored in Network 2. Each
field of the revision data is stored as a string, the four revision fields are:

(O Block number (e.g. FC02001)

@ Revision number of the block

©) Revision date in the format YYYY-MM-DD

) Author of the revision, initials and surname

© The revision numbering mechanism is detailed in the Software Control Mechanism
(SCM) /Ref. 018].

104-201

0]

@

0]

5.3 OB 1 header and revision network

OB 1 (the main organisation block) is considered a special organisation block in terms
of the Practical Series Automation Library (and in terms of most Siemens Controller
software). It is the block that executes all the rest of the controller software.

As such it contains information about the whole project rather than just a software
module. The revision data is also project specific (not module specific).

5.3.1 OB 1 Network 1 — Project description

The OB 1 block description contains a summary of the project, rather than of a partic-
ular module, as well as copyright, licence, file and project details &c. as follows:

. Copyright details

. Customer details
° Project name
° Project number

. Controller type(e.g. CPU-1515-2PN)
. Controller name(The CPU name assigned in TIA Portal)

. IP (Ethernet) address

. TIA project name

. Software status(e.g. Development, Release &c.)

. Project overview(a summary of the project and its purpose)
o Document references

. Completed modules (list of)

. Licence(details of any software licence)

105-201

Network 1: Project description

TTLE: P52007 — PRACTICAL SERIES AUTOMATION LIBRARY

COPYRIGHT:

© 2020 Michael Gledhill

Part of the Practical Series of Publications
Published in the United Kingdom
mg@&practicalseries.com
https:iipracticalseries.com

CUSTOMER: Practical Series of Fublications (FSF)
PROJECT: Practical Series Automation Library (PAL)
FROJECT NO.: PS2001

CONTROLLER: CPU 1515-2PNIDP

CONTROLLER MAME:

IP ADDRESS:

CONT00

192.168.001.100

TA PROJECT NAME :
STATUS:

P52001-PAL-DOOTS
DEVELOPMENT

FROTECTION:

To minimise the risk of inadvertent modification to
tested modules, certain blocks will be released for
use with “protected access” (referred to a “write
protection” in Siemens terminclogy), this allows the
block to be used normally, but prevents the block
being accidentally modified

This is in accerdance with the risk assessment given
in the Validation Plant (VFP}, \ [Ref. 002].

THE WRITE PROTECTION PASSWORD IS: PS2001

FROJECT OVERVIE

The PAL is a library of software modules and templates that have been developed for the
Siermnens Simatic 57-1500 range of controllers (and to a lesser extent the 57-1200 range).

The full libraryand all necessary documentation is available from the Practical Series website:

https:iipracticalseries.comi2001-palfindex.html
The PAL is configured and deployed using the Siemens Simatic TIA Portal programming
environment {(versicn 16 or higher).

The PAL software structure is designed such that it is applicable to virtually all industrial
applications that can generally controlled by a programmable logic controller

The PAL software being developed as part of this Project, is considered to be suitable for use in
ing types ofindustries (this is not an exhaustive list):

* Waterand waste water treatment

= Pharmaceutical and batch production
* Brewing and fermentation

* Chemical manufacturing

= Oiland gas systems

* Food and beverage production

Such applications can generally be thought of as processes that operate with a response time
of more than 100 ms. Le. the system would not be expected to respond to some stimuli faster
than 100 ms. In practice, a Controller may (and usually willy respond faster than this; however,
a response time of 100 ms is considered to be an acceptable limit for PLC control

At its most basic level, the PAL will be a library of software modules that control the fundamental
aspects of an industrial plant; such modules would for example read the value ofan instrument,
operate a valve or drive, perform a calculation &c

Such software modules are referred to as standard modules, these are fixed modules that
perform a particular function and are identical across all software installations.

The PAL also contains application specific modules; these contain software that is applicable
to the plant being controlled

The Practical Series Automation Libraryis freelyavailable under the MITOpen Source licence
(see below). Those who find it useful may, if theywish, make a donation to support the library.

Denations can be made here:
https:iipracticalseries.comi2001-pali1 1-+webi81-00-pay.html

The PAL contains fully deployable software that has been developed by the author in his
profession as a chartered electrical engineer. Itis currently in use on various live plants
throughout the UK and in some other parts of the world

This software is suitable for controlling and automating most industrial applications (typical
process applications). Itis easyto use and configure, but does have a degree of practical
complexity appropriate for the envirenments within which itis employed. Itis heavily
configurable, has various operating modes and is suitable for a multitude of industrial
applications.

IFYOU DONTUNDERSTAMND IT, DONTUSE IT. IF YOU DO USE IT, YOU DO 50 ATYOUR OWHN RISK.

— Swwwvy —

106-201

I B EEE 0 EEEE

— tosSss ——

"payAUL 248 (53u0 3u|od) S3UIe|dWoD pUB WSIIRUD SARINSUOD 'SUDRIZN0D 'SUDRS3NE
-_
wosaussieadedgbu :auay rewa fq Joyine Sy yIeas ued noy,

FYYMLAOS JHL NI SOMITYIT HIHLO HO 35N IHLHO

FIAALAOS TJHL HLM NOWDINNOD NI HO 40 1N0 P04 DNISIHY "ISIMHIHLO HO LHOL 1 IYHINOD
40 NOWDY N NI HIHLIHW "ALITIEIT 43IHLO HO S3D¥NYA WINTD ANY HO4 3718%1 38 S43TT10H
1HDIEAIOD HO SHOHLAY JHL TIYHS LNIAT ON NI LN INIDNMINENON aNY 3S0dUNd 491IN2LEYd
W HO4 SSINLIE "ALMIGYLNYHIE N 40 SIWNYHEA JHL OL QALINITLON LNE OMIANTINI

'3 HO 55344XT AN ANY 40 ALNYIEYI LNOHLI *, 51 5%, @30IA0Hd 51 JHWML40S THL

31enyos a0 suood |enuesqns

10 saido3 |je u papnpoul aq |jeys adnou uoissiuuad siyy pue aonou yBufdos snoqe sy

:suoRipuod Buwo|oy 2u3 03333lqns 'os op o3 paysiuny

51 21emyos U3 woym o} suosiad Junad o1 pue ‘asemyos ayigo s31dod |35 JojpuE '3sURd)|qns
*sinquasip 'ysygnd *sbiaw fupow ¥doa *asn a1 s1ybu ayr uoneyw) inoyum Buipnpu

Y05, 3YY) 53U UOIIEIUSWINIOP P31RII0SSE pUe
asemyos siyyo fdod e Buiuieygo uosiad Aue o3 'abieya jo a3y 'pauelb Agalay 51 uoissiLLay

up2|2 |2eyay 0z0z @ ybufday

(LI 25U=3r LW 34

132U LY 242 J2pUN 3|0B|1BAR SPEW 51 UOIEIUSUWNIOP PIIBIJ0SSE 51 PUE 3IBMYOS

MOWYWNHO4MI LOWINOD aNY 3DN320N

— Sttt ——
e12p |InyJog [T10 yu] 1315182y 3npoyy auemyos 233

auon 3UON 91-+0-220T

auoN aUON 000'Z00 3|dwex3uag300 000192
000'Z00 ZT156£80 91-+0-2Z0T
DO0'ZO0 ZTLSEELN SUON DOOZOD J42piozisuBngEgpls 1Sl
000°Z00 15L8EAQ 91-+0-220Z
000'ZO0 LSLBELN SUON 0O0ZOD JLHUSAZSWLONSPIS 1518104

3uoN BUON 9L'+0'ZZOT

auon 30N 000°Z00 ¥3|eI5N5PI5 1008124
D00'ZO0 LOOLEAd 00OZO0 L0OLLEd 91-+0-TZ0T
000'Z00 LOOLELN 000TZO0 10OLLLA O0O0'Z00 |osI2A|BAN20P25 1001 LD
000'Z00 LOOZZEA 000ZO0 LOOZ0EA 9L-+0-2T0T
000°Z00 LOOZZLN 00OTZOO LOOZOLN O0DO'Z00 peaybojewasuipis 100024
000°Z00 1001780
DOO'ZO0 LOOLZLN 91-+0-ZZ0Z
00000 00DLZLN aUON 000'Z00 e1egieqo|9sispis 100102
NOISIAZY SQLAN MOISIAZY 90L0n NOISIAZY INYN D078
— WIvd JWYNAG— WL JILYLS

SIMNA0W g3LITdN0D

3340 171 uoidas ul fjateledas pasuaiggal aq

— ssssss

|wiy s30p-00-10p23foid-| Zj ed-1 00z WO sauas|eanaeld)p sduy

43y 2|qe|ieae 51 uoneluswniop 3alod e an

Y

‘uonsanb uiyaog sy sy uonduasap yaolg
W IUSWINIop eyl (3|dwexa Joy

13343 UOI1E|N2| 83 B) 3A00E P15/ 10U JUSWNI0P J3LI0UE S30U3I3Ja) ¥20|q 8 13y, (310N

(2n) 3ping 1asn LOG-LLLAG-L00Z5d +10

(MDS) WsIUELISN puE [0U0D 31ENYas LI0-Z0ST-5-10025d €10
{ws) 1215162y 3|npoyy alemyos LOCrLOEZ-5-10025d Z10
(50 5) uaneawnads ubisag ajnpopy asemyas ONWZLETS L0054 L0
|2nuep) uoneinByuol JAWSI LOG-LOLFEZ-S-L00ZSd 01O

(95) 3ping 3jfas LIFELEC-S-LD0ZSd 600

(5as) uoneayads ubisag aiemyos 1001 1E2-5-10025d 800
(saH) uoneayaads ubisag arempiey LOO-LLET-5-LO0ESd £00
(54) uonedynads |euonaung LOG-LOLET 5100254 900

(AlLH) *rep Aigeaael wswainbay LOG-LLLI-6-100Z5d 500
(sHn) uonedyads suswannbaiiasn LOC-10L1-5-100Z5d +00
(dL) ueldasaL SO0-1E10-5-10025d €00

{dn) ueld uonepen ZO00-LZ10-5-10025d Z00

(dt) ueld fyeng L00-1010-5-10025d LO0

EQIlTe ONINIWNDOO 434

EERLECEEECNE K lynlela]

107-201

U]

@

3

)

5

6

Y]

5.3.2 OB 1 Network 2 — Current revision and modification history

OB 1 Network 2 contains the current revision of the whole soffware project (rather than
of a particular block). The whole project is issued at a particular release and this is
independent of individual module revisions — most modules do not change their revi-
sion when the project as a whole is reissued at a new release, the new release may be
to include new blocks or it may be to include a change or correction to a particular
block (in which case the revision of the affected block would change, but not the oth-
ers).

Like all other software blocks, Network 2 in OB 1 has the title: Current revision
and modification history. The network comment field contains the modification
history of the software project as a whole (up to and including the current revision).

OB 1 stores more revision information than is done with the general software block
revision data (see § 5.2.3) and it stores it in a data block.

In all other blocks, the revision, the revision date and author’s initials are hard coded
as statements that simply transfer the data to a temporary area within the block.

In OB 1 the data is loaded in the same way, but this time it is transferred to the system
data block (DB21001 Dy SysGlobalData). This allows the data to be read elsewhere
within the software or by an external device (such as a SCADA or HMI system). In
short, OB 1 makes the current revision of the project available to anything that has
access to the controller.

In the case of OB 1 revision data, the block number is replaced with the project num-
ber.

Figure 5.9 contains an example of the OB 1 Current revision and modification history
network and comments:

108-201

Network 2: Project revision and modification history

-

IMODIFICATION HISTORY

The revision data herein contains the current revision of the whaole software project

(rather than of a particular block}. The whole project is issued ata particular release and this is
independent of individual module revisions

The revision data shown here, in the network comments, contsins additional information
reflecting the software development workflow under the version control system (VCS) employed
to track all software changes.

The VCS in use is the Git Source Code Management system in conjunction with the GitHub online
hosting system. The software in its entiretyis available in the GitHub remote repository:

https tligithub comipracticalseriesiPs2001-pal-sofware

The repositoryis public and can be freely copied (forked in GitHub terminclogy) and used
under the MTlicence

The MIT licence is repreduced in full in the last network of this software module.

DATE COMMITTAG AUTHOR REASOM FOR MODIFICATION
2022.03.20 Dooi1o M. Gledhill FC19512 —RELEASED FOR USE
2021.08.23 Dooog M. Gledhill FC11001 —RELEASED FOR USE
2021.05.26 Dooos M. Gledhill FCO2007 —RELEASED FORUSE
2021.0522 Dooo7 M. Gledhill FC18001 — RELEASED FOR USE
2021.05.11 Dooos M. Gledhill FC0O1001 —RELEASED FOR USE
2021.05.02 DOOOS M. Gledhill Typographical corrections only
2021.05.02 DOOOD4 M. Gledhill Typographical corrections only
2021.02.19 Dooo3 M. Gledhill FC18151 —RELEASED FOR USE
2021.02.18 DOOO2 . Gledhill Baseline build
20210218 DOOO1 M. Gledhill Hardware build
2021.02.18 DOOOO M. Gledhill Initial commit — repository created
W00
" _Falze® 5_MOVE
EN
PS200 IN out "DE21001_Dy_SysGlobalData”.revinfo.REV_BLOCK
S_MOVE
EN
000010 IN out "DB21001_Dy_SysGlobalData”.revinfo.REV_NUMBER
S_MOVE
EN
2022.03.20 IN out "DE21001_Dy_SysGlobalData®.revinfo.REV_DATE
s_MOVE
EN
M. Gledhill IN out "DE21001_Dy_SysGlobalData”.revinfo.REV_AUTHOR

Figure 5.9 Network 2 — OB 1 Current revision and modification history

109-201

5.4 General network comments

O All coded networks within the PAL should be given a title and be commented (all
networks have a title and comment field). The following shows a typical example:

hd MNetwork 13: Load the system RTC and store in local variable

The systern block RD_SYS_Treads the time of day, the date and the day of week from the system
real time clock as a DTL (or Date_And_Time_Long) data type (one just being the shorthand
notation of the other). The resultis stored in a local variable for decoding.

The DTL data type stores the date and time information in 8 consecutive bytes in BCD format

as follows:
DATA DESCRIFTION
0 Dear (00h-89h = 2000 to 2089) (90h-9%h = 1990 to 1999}
1 hanth (00h-12h = Jan to Dec)
2 Day {01h-31h)
3 Hour (00Oh-23hR)
4 Minute (00h-59h)
5 Manth (00h-12h = Jan to Dec)
67 millisecond Uses byte 6 and most significant 4 bits of byte 7}
7 Day of Week leastsignificant 4 bits (1Th-7h = Sun to Sat)

The local variable is of type DL (Date_And_Time_Long), this is compatable with the DT output
fram RD_SYST, but allows the individual elements of the DT structure to be accesses
individually as symbaols.

Mote: The DTL format can store more information (it can for example handle years in the
range 1970 to 2262; however, it will still only store the data in the table above
when used with R5_SY5_T.

RD_SY5_T
DTL

— EN ENO
RET VAL #wrkRetValue
ouT — #wrkDate

Figure 5.10 A typical network with comments

110-201

@

3

)

0]

@

All networks must have a title (even if they are a continuation of a previous network).
The title should be written in sentence case, uppercase and title case are permissible
where the author requires emphasis but generally, use sentence case.

The network title should summarise the function of the network and it should be fairly
short, keep it to less than 60 characters (not including spaces).

The Style Guide (SG) [Ref' 010] give full details for constructing network comments.

5.5 Specific network comments for sequences

Sequences have a particular arrangement of comments that differs somewhat from the
normal network comments of non-sequential blocks.

Sequences are divided into discrete steps and each step has a unique (five digit) number
in the range 00000 to 65000. Each step occupies several networks, each network having
one of the following functions:

° DECLARATION — (single network) manages the step, its opera-
tion and its timers

. ACTIONS — (multiple networks) split into INITIALISING,
PROCESSING and TERMINATING phases, each phase can carry out
a specific or multiple actions

. TRANSITIONS — (multiple networks) determines the conditions
needed to leave the current step and proceed to another. Each step
can have up to eight transition conditions

111-201

0]

@

3

)

5

(6

@

®

5.5.1 Step declaration network — title and comments

The declaration network contains a detailed description of the step: its function, phase
operations and transition conditions. An example is shown in Figure 5.11.

The network title consists of two full block (JJ}) characters (Unicode 2588h) followed
by the text STEP XXXXX — DECLARATION (STATE) where XXXXX is the five-digit step
number. The text in brackets reflects the state logic of the step (STARTING, RUNNING,
STOPPING, ABORTING &c.).

The full block characters at the start make the start of each step identifiable if the net-
works are collapsed in TIA Portal.

The most notable feature of the network comment is the large five-digit step number
at the top. This form of step number is used to make the first (declaration) network of
each step easily identifiable.

The large number is preceded by a line of 44 top half block characters (™), Unicode
character 2580h, followed by a blank line. The number is followed by a blank line and
then 44 bottom half block characters (wm), Unicode character 2584h.

The number is produced in the Excel spread sheet: Dot Matrix Generator (DMQG)
[Ref. 018], select the DOT MATRIX GENERATOR work sheet and type the required num-
ber in cell A7, copy the result from cells D8:D 14 and paste it into the network comment
field (the spread sheet itself contains full instructions).

The spread sheet can also convert uppercase letters to the same dot matrix form.

The Style Guide (SG) [Ref. 010] give full details for constructing sequence network
comments.

112-201

hd Network 14:

B STEF 03340 — DECLARATION (RUNNING)

-

| | I B N |
| | | EE B N [|
H I || EE B B
HEEE =m Il B B R
Il u || || HE B BN
| [| || H N ||
[[[| [

STEF DESCRIFTION

Open the dry ai

r purge valve (SV4201), activate the operator prompt ABORT PURGE.

Ifthe main chamber humidity level falls below the target value proceed to the next step.

Ifthe operator presses the ABORT PURGE button proceed to step 03400,

STEF PHASE AND DELAY CONDITIONS

FHASE ACTION

INIMALISING Activate the ABORT PURGE enable signal

FROCESSING Open V4201

TERMINATING Clear the ABORTPURGE enable signal and any ABORTPURGE pressed
signal

STEP DELAY No delay

STEF TRAMSITION CONDITIONS

TRANSITION TO STEF TRANSITION CONDITIONS
1. 03350 HICO0T =< HUMIDITY_LIMIT
2. 03400 Operator has pressed ABORT PURGE button

M0 1
" _True”
] |

3340 IN X oUT #zeqThisStep

Figure 5.11 Sequence declaration comments

EN ENQ ———

113-201

0]

5.6 Data block header and revision

Data blocks do not have a similar facility to the comment field available to program-
mable blocks (FCs, FBs and OBs); however, each line within a data block has a com-
ment line (just one line high) that can be adapted to hold a block description:

DB31001_Dy_DewValvelsol

Mame Data type Start value Comment
1 <@ ¥ Static
2 41 = ~ _DB_Header Array[0.79] of Boal Dynamic DB [DEVICE DRIVER] — Isclating Valve
3 <@ = _DBE_Header[0] Eool STANDARD mmm
4 g L] _DB_Header[1] Bool
5 @ L] _DB_Header[2] Bool TTLE: DEVICE DRIVER — ISOLATING VALVE
6 |40 L} _DB_Header]3] Bool
7 |« = _DBE_Header[4] EBEool
& |4 L _DB_Header[5] Eool TYPE: DYNAMIC
S @ L} _DB_Header[6] Bool
10 40 L} _DB_Header][7] Bool
11 <@ = _DBE_Header[8] EBEool This is the dynamic data block associated with the standard device driver for an isclating valve
12 <4 L] _DBE_Header[9] EBEool block:
13 @ = _DB_Header[10] Bool FC11001_StdDevvalvelsol
14 <@ = _DB_Header[11] Bool
15 <1 = _DB_Header[12] Bool The dynamic data holds the live data for the device (its mode, status and messages
16 <] L] _DB_Header[13] Bool and any other dynamic information required by the module)
17 @ L} _DB_Header[14] Bool
18 <@ = _DB_Header[15] Bool Each valve is given the user data type:
19 <0 L] _DE_Header[16] Bool UT31001_Dy Dewvvalvelsol
20 <@g L] _DB_Header[17] Bool This helds the full set of dynamic data for the device
21 a0 L} _DB_Header][18] Bool
22 <@ = _DB_Header[19] Bocl —_— e —
23 <@ L] _DBE_Header[20] Bool
24 - . _DB_Header][21] Bool
235 41 = _DB_Header[22] Eool MODIFICATION HISTORY
26 <@ = _DB_Header][23] Bool
27 < L] _DB_Header[24] Bool This is a summary of the recent software medifications made to this block (most recent at top)
28 @ . _DB_Header][25] Bool
29 40 L} _DB_Header|[26] Bool
30 @ L] _DB_Header[27] Bool DATE REVISION MASTER BRANCH DEV
31 g L] _DB_Header[28] Bool (nnn.amm) COMMITTAG (Base —> Merge) BRAMCH Author
32 4 L} _DB_Header][29] Bool
33 @ L _DB_Header[40] Bool 20210823 001.000 DO009 D0008 DO0O9 None M. Gledhill
34 @ L] _DB_Header[41] Bocl FC11001 — RELEASED FOR USE
35 <1 L] _DB_Header[42] Bool Merge back to master branch
36 a0 L} _DB_Header][43] Bool
37 @ L] _DE_Header[44] Bocl 2021.08.17 000.801 D0008A000.8301 DOOOB MIA DooosA M. Gledhill
38 @ L] _DB_Header][45] Eool FC11001 Released for SMT
39 < L] _DBE_Header[46] Bool
40 @@ L] _DB_Header[47] Bool 20210810 000103 DO00BA-000.103 DOOO8 MNiA Doo08A ML Gledhill
41 @ = _DBE_Header][48] Bool 11001 Incremnental build
42 <@g L] _DE_Header[49] Bool
43 <@ = _DB_Header][50] Bool 2021.07.21 000.102 DODD8A-000.102 DOOO8 MiA DO00BA M. Gledhill
44 g = _DB_Header[51] Eool FC11001 Incremental build
45 <@ = _DBE_Header][52] Bool
46 L} _DB_Header|53] Bool 2021.07.08 000101 DO008A-000.101 DOOO8 MiA Do008A ML Gledhill
47 @ m _DB_Header[54] Bool FC11001 Block created
48 40 L} _DB_Header|[55] Bool
49 0 = _DBE_Header][56] Eool Where: nnn = Major revision
50 < L] _DB_Header[57] Bool a = Type (17 Development, 8 Proving, 9 Qualification, 0 Release)
51 . _DB_Header][58] Bool mm = Minorrevision (mustbe 00ifa =0)
52 40 L} _DB_Header][59] Bool Black properties version number should be set to nn.a (only cne decimal place)
53 <@ = _DBE_Header[60] Bool
5440 = DB Header|61] Bool I B EEE o EEE N
55 -0 L} _DB_Header][62] Bool

114-201

gure 5.12 Comments within a DB

@

(©)]

)

®)

(C]

@

®

©)

(10)

()

Within the PAL , the first entry within the data block is given to an array of 80 Boolean
elements (10 bytes of data) called:

_DB_Header

This array does not contain any useful data (each entry in the array is set to zero and
is never used by the PAL — in this respect, it is just wasted space at the start of the
DB); it does however, provide 80 blank lines that can be used to hold a block title,
block description and a (rudimentary) current revision and history area.

In Figure 5.12 the large blank area in DB _Header (lines 31 to 81 in the leftmost col-
umn numbers) has been edited out to keep the image to a practical size.

The DB_Header declaration itself (line 2) acts as the block title for the DB (similar to
the block title for a block, see § 5.2.1).

The DB block title (line 2) should be in title case and be no more than 80 characters
(not including spaces) long.

Beneath this is something analogous to the title of a block description network (see
§5.2.2).

The title entry is on the next line (line 5) and consists of the uppercase word TITLE:
followed by the title itself. The title must be in all uppercase characters.

Line 8 holds the type of the data block; this is either static, dynamic or recipe.
This is followed by a brief description of the block and its function.

Finally, there is a modification history (similar to that of Network 2 for a programma-
ble block, see § 5.2.3)

115-201

5.6.1 Data block revision information

O The revision information for the data block is hardcoded into the variable revInfo,
this is of type UT01000_St_SysRevision and contains the following information:

(O Block number (e.g. DB02001)

(@ Revision number of the block

©) Revision date in the format YYYY-MM-DD
® Author of the revision, initials and surname

@ The revision numbering mechanism is detailed in the Software Control Mechanism
(SCM) [Ref. 014].

5.6.2 UDT block revision information

m All UDTs start with the same variables used in the data block for revision and licencing
information:

revInfo of type UT01000 St SysRevision
® typ _St_Sy

@ Again, these contain hardcoded values for the revision and licence information. The
UDT do not contain a comment area that holds the modification history.

116-201

0]

@

3

5.7

Programmable block properties

All programmable blocks (FCs, FBs and OBs) have block property information fields.

The block properties are accessed by right clicking the block (either in the project tree

or on the overview screen) and selecting PROPERTIES from the dropdown list, this opens
the properties dialogue box (Figure 5.13).

The properties for the programmable blocks within the PAL are listed below along
with the format and conventions that are applied (only those properties that can be
changed by the user are listed):

BLocK PROPERTIES FOR FC, FB AND OB

AREA PROPERTY
Name

General Language
Number
Title
Comment
Version

Information
Family
Author
User-defined ID
IEC Check

Attributes
Optimized block
access

Table 5.1

Note:

FORMAT

Block name
The language the block is written in

Block number (manually specified)

Block title in the form:
Class Module [FUNCTION] — Description

Copyright message from block header

For a revision in the form nnn.amm,
it shows nn.a

Block function group (without spaces)

The block author, initial and surname
use underscore in place of spaces

The block ID

Should be active for Standard Modules

Should be active for all FC, FB and OB blocks

Block properties for FBs, FCs and OBs

EXAMPLE

FC11000_StdDevValvelsol

LAD

11000

Standard Module [DEVICE DRIVER] — Isolating Valve
See block header § 3.3.1

00.8

DeviceDriver

M_Gledhill

StdDevValvelsol

Box is ticked

Box is ticked

For all Standard Modules, the entry LIBRARY CONFORMANCE (in the

COMPILATION area) must read. The object is library-conformant

117-201

@ Worked examples of each of these are shown below:

FCT1001_Std
General | Texts
oo
Information enera
Time stamps
Compilation Name: [FC11001_StdDevvalvelzol |
Protection ype: [rC]
Attributes
Language: | LAD [~]
i Number: 11001 [2]
@ Manual
[) Automatic
FC11001_StdDevvalvelsol [FC11001] %
General | Texts
General
Time stamps
Compilation Title: |Standard Module [DEVICE DRIVER] — Izelating Valve |
Protection
Comment:
Attributes PRACTICAL SERIES AUTOMATION LIBRARY (PAL) — COPYRIGHT 2020 — M. GLEDHILL (MITLICENCE)
i FULL ONLINE DOCUMENTATION IS AVAILABLE AT: hit ticalseries comi2001-paliindexhtml
f Version: [01.0]
H Family: |DeviceDriver |
Author: | 1_Gledhill |
Userdefined ID: | StdDewvalvelsol |
FCTT001_StaDevvalvelsal [FC11001] L3
General | Texts
General)
Attributes
Information
Time stamps
Compilation ¥ EC check
posection) (7] setENG automatically for SCL blocks and SCL networks
(] Handle errors within block
] (¥ optimized block access
¥ Userdefined attributes
[Enable tag readback
Block properties: | |

Figure 5.13 FC, FB and OB block properties

118-201

0]

@

3

5.8

5.8.1

Data block and UDT properties

Data block properties (static and dynamic)

Data block properties are very similar to programmable block properties; the difference
is a minor technicality in how some of the entries are made.

Data block properties are accessed in exactly the same way as those for programmable
blocks: right click the block in either the project tree or on the overview screen.

The properties for the various types of data blocks within the PAL are listed below
along with the format and conventions that are applied (only those properties that can
be changed by the user are listed):

BLOCK PROPERTIES FOR STATIC DBs

AREA

General

Information

Attributes

Table 5.2

PROPERTY

Name

Language

Number

Title

Comment

Version

Family

Author

User-defined ID

Optimized block
access

FORMAT

Block name

The language the block is written in

Block number (manually specified)

Block title in the form:
Static DB [FUNCTION] — Description

Copyright message from block header

For a revision in the form nnn.amm,
it shows nn.a

Block function group (without spaces)

The block author, initial and surname
use underscore in place of spaces

The block ID

Should be active for Static DBs

Block properties for Static DBs

EXAMPLE

DBI1001_St_DevValvelsol

DB

11000

Static DB [DEVICE DRIVER] — Isolating Valve

See block header

00.8

DeviceDriver

M_Gledhill

St_DevValvelsol

Box is ticked

119-201

5

BLOCK PROPERTIES FOR DYNAMIC DBs

AREA PROPERTY FORMAT EXAMPLE
Name Block name DB31001_Dy_DevValvelsol
General Language The language the block is written in DB
Number Block number (manually specified) 31000
Block title in the form:
Titl D ic DB [DEVICE DRIVER] — Isolating Val
re Dynamic DB [FUNCTION] — Description ynamic [] solating vaive
Comment Copyright message from block header See block header
X For a revision in the form nnn.amm,
Version i 00.8
it shows nn.a
Information
Family Block function group (without spaces) DeviceDriver
Author The block autho'r, initial and surname M Gledhill
use underscore in place of spaces -
User-defined ID The block ID Dy_DevValvelsol
Attributes Optimized Should be active for Static DBs Box is ticked
block access
Table 5.3 Block properties for Dynamic DBs

DETT00T_S{_DEvalveral [DRTTOaT]

Worked examples of each of these are shown below:

DB31001_Dy_DeWalvelsol [DBI1001]

[Generat | Taxss

General

Mame: (0011001 52 pewshezl

e e o8 b 58
Dounicad ithn L (0o =
I Wumber: 11001]
@ raual
O sommaric
[oc—1 ama
DITO0T St DeVaIvelaT TOITTouTT %

[|

BTT001 St DEVaIvena! 0T T001]

[Ganeral | Taxss

Genensl P

Infarmeson

] Onlystore inlond memery
] Date block write prtected in he device

] Optrmises back access

40 s block azcessiti o 0RCUA

on [camel |

[Generat | Taxts
General

Hame: (0831007 _by_ Deveavesol

mpe: (oo | [Globel ou
bt —

Dounicad ithn s 0 -
I samber: (31001]
@ vorsal
) Autsemntic
[or—1 am
DEITO0T_ Dy Davvaivelsol [DEIT001] L3

Texts |

Thie: | Bynami 08 [DEVCE DRVERI— zolaing Vaive

ok camel |

BESTO0T Dy Davvavarear o

Goneral | Tas
Genersl I
P

Artributes

] amlystore inlood memery
(] Datn bl wite prenecred inthe device
0 optmaed bock serez:

0 Datn blok aceeztie e OPCUA

o1 camcel |

Figure 5.14 Static DB block properties

120-201

Figure 5.15 Dynamic DB block properties

0]

@

(©)]

5.8.2 UDT properties (static and dynamic)

UDT block properties have fewer entries than programmable and data blocks and have

limited scope.

UDT properties are accessed in exactly the same way as those for programmable
blocks and data block: right click the UDT in either the project tree or on the overview

screen.

The properties for the various types of UDT within the PAL are listed below along
with the format and conventions that are applied (only those properties that can be

changed by the user are listed):
BLOCK PROPERTIES FOR STATIC UDTS

AREA PROPERTY FORMAT
General Name Block name

Block title in the form:

Information Title Static UDT [FUNCTION] — Description

Comment Copyright message from block header

Table 5.4 Block properties for Static UDTs

BLOCK PROPERTIES FOR DYNAMIC UDTS
AREA PROPERTY FORMAT
General Name Block name

Block title in the form:

fiarmvee Tid
nformation e Static UDT [FUNCTION] — Description

Comment Copyright message from block header

Table 5.5 Block properties for Dynamic UDTs

EXAMPLE

UT11001_St_DevValvelsol
Static UDT [DEVICE DRIVER] — Isolating Valve

See block header

EXAMPLE

UT31001_Dy_DevValvelsol
Dynamic UDT [DEVICE DRIVER] — Isolating Valve

See block header

121-201

4

0]

@

3

Worked examples of each of these are shown below:

Information

Tale: | 3:atic LOT [OVICE DRVER)

Commens:

FULL ONLIE DOCU

Figure 5.16 Static UDT block properties Figure 5.17 Dynamic UDT block properties

5.9 Hardware component comments

Comment fields within the hardware configuration are not used within the PAL.

The names of hardware objects that are connected to networks (CPUs, Profinet de-
vices) are changed within the hardware configuration to reflect the naming conven-
tions detailed in § 4.11, where such changes require further explanation, the hardware
comment fields may be used

Hardware that has no such connection should not generally have its names changed
from the default values supplied by TIA Portal. Some flexibility may be required where
redundant cards are used.

122-201

Standard modules

0) The PAL standard modules are listed below; each standard module has its own Soft-
ware Module Design Specification (SMDS). Each SMDS contains a very detailed de-
scription of what the block does and how it works.

6.1 SMDS contents

0) Broadly, each SMDS contains the following for the module in question:
Abstract

Block technical summary

Functional description

Detailed block description

Supervisory system interface

Parameters

Data structures and usage [and instance DBs]

Constants and Temporary (local) data

@ Q@ @ v 6 © O O

Block calls and associations

©

Example usage
Test and verification path

® This is the standard format for all SMDS document and each of the above sections
must satisfy the following:

123-201

Abstract (overview)

M The abstract provides a concise summary or overview of the block and its functions. It
serves as an introduction to the block and provides a synopsis of the block: what it does
and why it does it.

® The abstract should be:

o presented as an article that can stand on its own

o written in plain English with limited use of abbreviations and en-
gineering jargon

o Be short, three or four paragraphs at most

o written in a formal tone, avoiding the use of first-person pronouns

The abstract should conform to these guidelines:
J Clearly state the purpose of the block
o Quickly summarise the functions of the block

o avoid introducing information that is not addressed in the follow-
ing sections

When writing the abstract, ensure that:
(O The message is clear
(@ Itincludes the key points and functions

® The message is unambiguous (i.e. a reader reading the abstract
could not miss the main point of the block)

124-201

Section 1 — Block technical summary

® The technical summary contains the following specific information about the block:

©) Nomenclature and addressing

° Block title

) Functional group
o Address
o Symbolic name

@ Block type and usage
o Type of block (FC, FB, OB)
o Block number
o Programming language (LAD, STL &c.)
) Optimise access status

) PAL type (standard, application, template &c.)

©) Software version

. Version number
o Status (Development, proofing, qualification &c.)
o Date of last revision
o Author
@ Metrics
o Execution time of the block (in microseconds)
o Load memory size (in kilobytes)
o Work memory size (in kilobytes)
4 The work memory is the size of the executable software (without comments &c.), the
load memory is the size of the block (with all comments) stored on the CPU memory

card.

125-201

(O]

(6

Y]

®

®)

Section 2 — Functional description

The functional description is a comprehensive examination of what the block does and
how it works. It may include diagrams and supporting tables if required (the use of
diagrams and tables is encouraged).

The functional description should be written in plain English with limited use of ab-
breviations and engineering jargon, it should clearly define the purpose of the block
and the mechanisms use to achieve those purposes.

The functional description can (and usually does) contain subsection and inline sec-
tions identifying and explaining each aspect of the block.

The functional description should:

J Describes precisely the operations performed by the block

o Identify and explain each operating mode

o Describe any operator interfaces (controls from an HMI or
SCADA)

o Explain any interfaces to other blocks or systems

o Clarify any design assumptions and limitations

o Identify all error and failure modes

o List all calculations made by the block

The functional description should be sufficiently technically detailed, such that an en-
gineer programming the block understands the precise requirements of the block and
would have sufficient information to begin coding the block.

126-201

(10)

(n

(12)

(13)

Section 3 — Detailed block description

The detailed block description provides the technical detail needed to build the block,
this is done at an engineering level, using technical terminology common to both the
programming of PLCs in general and Simatic Controllers in particular; where such
terminology is used within the accepted engineering conventions and customs of this
field, it is done so without further explanation.

The detailed block description expands the information given in the functional descrip-
tion section, it explains how the parametric information passed to the block is used to
control and achieve the requirements of the module. It explains in detail any calcula-
tions that are performed by the block. It explains the function of each constant and
variable passed to the modules as static and dynamic data, it purpose and how it should
be interpreted by the module software.

The detailed block description describes any supervisory system interfaces and the sig-
nals passed to and from such systems. Such interfaces control the symbolic represen-
tation of the device on a mimic screen, drive any block icon and allow operator inter-
faces via supervisory system faceplates.

The detailed block description should as a minimum provide:
. An explanation of all formal parameters and their use

. Details of all temporary (local) data employed by the block and
how this data is used

. An explanation of all data passed to and from the block, this
should include details of all variables and constants used within
the block

. Permitted ranges of all signals

. Interpretation of encoded data (i.e. where the value of a variable

can indicate some specific mode or operation, what those values
are and what meaning is applied)

o Explanations of all operating modes and how they are selected

127-201

Full details of any supervisory system interface (at the variable
level)

Details of all timed events (including ranges and resolutions)

Details of all alarms, warnings and events generated by the block
and the circumstances under which they are generated

Precises details of all calculations performed by the block. This
should also include any temporary or partial calculations used by
the block and stored in the temporary (local) data area of the block

Detailed explanations of any algorithms or iterative processes em-
ployed by the block

Section 4 — Supervisory system interface

a4 @Gives a full and detailed explanation of the supervisory system interface. This includes

the following:

128-201

Examples of any symbols used

Examples of any block icons used

Examples of any faceplates used

Precise details of the signals used to animate the graphical objects

Precise details of the signals that can be operated (changed) via
the interface

(15)

(16)

(17)

(18)

(19)

Section 5 — Parameters

This section contains a list in tabular form of all the formal parameters associated with
the block. The table includes the following:

° Parameter — the name of the parameter

o Function — A summary explanation of what the parameter does:
its purpose, and any specific states and requirements

° Type — the data type of the parameter (real, int, Bool &c.). or, if
used, the number of a UDT

. In-Out — Identifies the nature of the parameter interface:
In: (read only)Out: (write only)InQut: (read/write)

The section must be included even if the block has no parameters, under these circum-
stances the following text is used:

This block has no formal parameters.

Section 6 — Data structures and usage (and instance data blocks)

This section contains a list in tabular form of any UDTs that are used by the block.

Where such structures are used, each element of the structure that is used within the
block must be identified and an explanation given of how the block uses or modifies
the data. To avoid duplication, this section may reference the data structure content
table in some other block; however, if the block uses the data in a way that is not
covered elsewhere a full description must be given. Again, this data is given in tabu-
lated form.

The section must be included even if the block has no associated UDTs; under these
circumstances the following text is used:

There are no data structures associated with this block.

129-201

(20)

@2n

(22)

(23)

24

(25)

(26)

27)

If the block is a function block (FB), it will have an associated instance data block.
Under these circumstances a full description of the structures and elements within the
instance data block must be given (generally, this will be the static elements of the DB;
all other aspects will be duplicates of section 4 (parameters) and section 6 (constants
and local data), these will be created automatically when the DB is initialised).

For functions (FCs) the “(and instance data blocks)” can be removed from the section

heading.

Section 7 — Constants and temporary (local) data

This section contains a list in tabular form of any constants or temporary (local) data
used by the block.

Where such data is used, each constant and variable must be identified and an expla-
nation of how the block uses that data given.

The section must be included even if the block has no associated constants or tempo-
rary (local) data, under this circumstance the following text is used:

The section is broken down into the following subsections:

Section 7.1 — Constants

Lists in tabular form all constants used by the block. If there are no constants, the
following text is used:

No constants are used in this block.

Section 7.2 — Temporary (local) data

Lists in tabular form all temporary (local) data used by the block. If there are no tem-
porary variables, the following text is used:

No temporary (local) data is used in this block.

130-201

(28)

29

(30)

(€D}

(32)

(33)

G4

(35)

36)

Section 8 — Block calls and associations

This section details any blocks which may be called from within this software module
(subroutine functions for example), any partner blocks with which it may be associated
(for example a receive module that is partner with a transmit module &c.). It lists any
system functions which may be called (e.g. reading the real time clock) and any system
data types that may be used.

Finally, it lists any special calling requirements for the block (for example, must be
called from within a cyclic interrupt organisation block) and if the block is using “op-
timised access” (this is the default arrangement).

It is broken down into the following subsections:

Section 8.1 — Block calls from within this module

This section contains a list of all the non-system block that are called from within the
block (these are other PAL blocks or third-party blocks for specific equipment). The
list is presented in tabular form.

The list identifies the block number, gives its title and explains how it is to be used.

The section must be included even if the block has no calls to other blocks; if this is the
case, the following text is used:

There are no PAL block calls from within this block.

Section 8.2 — Blocks associated with this module

If the block is associated with other blocks, i.e. it is part of a set of blocks that together
form a particular function (an example of this would be a transmit communication
block that had a counterpart receive block, both being required for data to be passed
between controllers); then the associated blocks must be listed here.

The list is presented in tabular form.

The list identifies the block number, gives its title and explains how it is to be used in
conjunction with the block being described.

131-201

(37)

(38)

(39)

(40)

(41)

The section must be included even if the block is not associated with any other blocks;
if this is the case, the following text is used:

This is a stand-alone block and is not associated with any other blocks.

Section 8.3 — System block calls and system data types

This section contains a list of all the system blocks and extended instructions that are
called from within the block (these are either built into the Controller or made available
via TIA Portal). The list is presented in tabular form.

The list identifies the block name (and if specified its number), gives its title and ex-
plains how it is to be used.

Some system blocks and extended instructions used preconfigured data structures re-
ferred to a system data types (SDTs), where such structures are used a list of the struc-
tures must be given along with an explanation of how the data elements are used.

The section must be included even if the block has no calls to system blocks or extended
instructions; under these circumstances, the following text is used:

There are no system block calls.

132-201

Section 8.4 — Special properties and requirements

@ This section specifies any specific requirements for calling and using the block, this is
usually split into two subsections:

8.4.1

8.4.2

Block optimisation , IEC compatibility and library
conformance’

Does the block use Optimised Block Access (all blocks
should generally be optimised, if not explain why)

Has the block been checked for IEC compatibility and is
it compliant?

If the block is a standard module, it must be compatible
with all IEC library-conformance module constraints

Calling requirements

Is the block time dependant (i.e. is it called from a timed
interrupt) or can the block be called as part of the main
(OB 1) cycle

@) If block optimisation is used, section 8.4.1 should have the following standard text:

This block is configured with Block Optimised Access (default arrangement).

@9 Where there are no special calling requirements, Section 8.4.2 should have the follow-

ing standard text:

This are no special calling requirements for this block.

7 Optimised access dynamically optimises the data storage within a block, it means however,

that absolute addressing cannot be used to access the data (all access is symbolic).

By default block optimisation should always be used. The exceptions are where an older

system (HMIs for example) can only access data using absolute addressing, under these

circumstances, it is permissible to disable the optimised accessing of associated data blocks.

133-201

(45)

(46)

(47)

Section 9 — Example usage

This section contains a typical example of how the block is used and called. It should
show the block call and typical data contents for the data structures used by the block

Where a block has multiple types of usage, additional examples can be included.

Section 10 —Test and verification path

This section shows all the software module tests and verification activities that have
taken place to achieve the current release of the module, it has the following appear-
ance:

[FC02001-T001 I FC02001-T002 |

Version tested: 900.801 Version tested: 901 .801
Post test release: 901 .000 Post test release: 002 .000

Post test commit: [EEBI51%]%k:S Post test commit: EEEBI51% NN

SCR SMT SCR SMT
Initial test Updated and expanded
Initial test to release the module Static UDT CONFIG variable names
following the development stage. standardised. comments updated
Full SMT Full SMT

Figure 6.1 Example test and verification path

134-201

0]

@

6.2 Standard block list and associated
documentation

The following is a full list of all the standard modules included within the PAL soft-
ware. Each module has its own Software Module Design Specification (SMDS) that
gives the precise details of the block functions and how they are implemented.

The Functional Specification (FS) /Ref 005] contains a summary of all these blocks
and their functions.

=)}

2.1 System function modules

=)}

2.2 Instrument read modules

Doc: PS2001-5-2311-001 Rev: R02.00 135-201

=)

2.3 Interlock and protection modules

136-201 Doc: PS2001-5-2311-001 Rev: R02.00

6.2.4 Safety and safety system modules

FC 04002 FC04002_StdSafeZoneNorm02 SMDS: P2001-5-2312-fc04002

Standard safety 2 signal E-stop zone group with status reporting

FC 04004 FC04004_StdSafeZoneNorm04 SMDS: P2001-5-23 12-fc04004

Standard safety 4 signal E-stop zone group with status reporting

FC 04008 FC04008_StdSafeZoneNorm08 SMDS: P2001-5-2312-fc04008

Standard safety 8 signal E-stop zone group with status reporting

FC 04202 FC04202_StdSafeZoneTrip02 SMDS: P2001-5-2312-fc04202

Standard safety 2 signal E-stop latching zone group with status reporting
FC 04204 FC04204_StdSafeZoneTrip04 SMDS: P2001-5-2312-fc04204
Standard safety 4 signal E-stop latching zone group with status reporting
FC 04208 FC04208_StdSafeZoneTrip08 SMDS: P2001-5-2312-fc04208

Standard safety 8 signal E-stop latching zone group with status reporting

FC 04501 FC04501_StdSafeMsgGen SMDS: P2001-5-2312-fc04501

Standard safety message signal generation

6.2.5 Calculations and mathematics modules

FC 05001 FCO05001_StdCalcAvg SMDS: P2001-5-2312-fc05001

Standard calculation — simple average

FC 05002 FC05002_StdCalcAvgRolling SMDS: P2001-5-2312-fc05002

Standard calculation — rolling average

FC 05003 FC05003_StdCalcAvgCumulate SMDS: P2001-5-2312-fc05003

Standard calculation — cumulative average

FC 05004 FC05004_StdCalcAvgWeighted SMDS: P2001-5-2312-fc05004

Standard calculation — weighted rolling average

FC 05005 FC05005_StdCalcAvgExp SMDS: P2001-5-2312-fc05005

Standard calculation — exponential rolling average

137-201

FC 05101 FCO5101_StdCalcDiffRoC SMDS: P2001-5-2312-fc05101
Standard calculation —rate-of-change
FC 05102 FC05102_StdCalcDiffRoCAvg SMDS: P2001-5-2312-fc05102

Standard calculation — average rate-of-change

FC 05201 FC05201_StdCalcIntArea SMDS: P2001-5-2312-fc05201

Standard calculation — signal integration (area)

FC 05301 FCO05301_StdCalcValToPercent SMDS: P2001-5-2312-fc05301

Standard calculation — convert a ranged value to a percentage

FC 05302 FC05302_StdCalcPercentToVal SMDS: P2001-5-2312-fc05302

Standard calculation — convert a percentage to a ranged value

FC 05351 FC05351_StdCalcPercentToPulse SMDS: P2001-5-2312-fc05351

Standard calculation — convert a percentage to a variable mark/space square wave

FC 05352 FC05352_StdCalcPulseToPercent SMDS: P2001-5-2312-fc05352

Standard calculation — convert a variable mark/space square wave to a percentage

FC 05361 FC05361_StdCalcPulseToState SMDS: P2001-5-2312-fc0536

Standard calculation — convert a pulse train to an ON/OFF state

FC 05362 FC05362_StdCalcStateToPulse SMDS: P2001-5-2312-fc05362

Standard calculation — convert an ON/OFF state to a pulse train

FC 05363 FC05363_StdCalcPulseToFreq SMDS: P2001-5-2312-fc05363

Standard calculation — convert a square wave pulse train to a frequency

138-201

FC 05502 FC05502_StdCalcPulseDual SMDS: P2001-5-2312-fc05502
Standard calculation — pulse generator 2 (dual) state

FC 05503 FC05503_StdCalcPulseTri SMDS: P2001-5-2312-fc05503
Standard calculation — pulse generator 3 (tri) state

FC 05504 FC05504_StdCalcPulseQuad SMDS: P2001-5-2312-fc05504
Standard calculation — pulse generator 4 (quad) state

FC 05508 FC05508_StdCalcPulseOcta SMDS: P2001-5-2312-fc05508

Standard calculation — pulse generator 8 (octa) state

FC 05516 FC05516_StdCalcPulseHexa SMDS: P2001-5-2312-fc05516

Standard calculation — pulse generator 16 (hexa) state

FC 05601 FC05601_StdCalcVWaveRamp SMDS: P2001-5-2312-fc05601

Standard calculation — waveform generator ramp function

FC 05602 FC05602_StdCalcVWaveSaw SMDS: P2001-5-23 12-fc05602

Standard calculation — waveform generator continuous sawtooth wave function

FC 05603 FC05603_StdCalcWaveTri SMDS: P2001-5-2312-fc05603

Standard calculation — waveform generator continuous triangular wave function

FC 05604 FC05604_StdCalcVWaveSin SMDS: P2001-5-2312-fc05604

Standard calculation — waveform generator continuous sine wave function

FC 05605 FC05605_StdCalcWaveCos SMDS: P2001-5-2312-fc05605

Standard calculation — waveform generator continuous cosine wave function

139-201

=)}

2.6 Sequential control

[=)}

2.7 Device drivers — Control loops

FC 10001 FC10001_StdDevPID_Standard SMDS: P2001-5-2312-fc 10001
Standard device driver — control loops — standard PID loop
FC 1001 | FC1001 | _StdDevPID_Sched SMDS: P2001-5-2312-fc1001 |

Standard device driver — control loops — standard PID loop with gain scheduling
FC 10021 FC10021_StdDevPID_Split SMDS: P2001-5-2312-fc10021

Standard device driver — control loops — split range modifier

FC 10022 FC10022_StdDevPID_Poly SMDS: P2001-5-2312-fc10022

Standard device driver — control loops — polyline modifier

FC 10022 FCI10101_StdDevPID_External SMDS: P2001-5-2312-fc10101

Standard device driver — control loops — polyline modifier

FC 10501 FC10501_StdDevPID_LookUp SMDS: P2001-5-2312-fc10501

Standard device driver — control loops — polyline modifier

140-201 Doc: PS2001-5-2311-001

Rev: R02.00

6.2.8 Device drivers — Valves

FC 11001 FC11001_StdDevValvelsol : P2001-5-2312-fcl 1001
Standard device driver — valves — isolating valve

FC 11011 FCI11011_StdDevValve3Way : P2001-5-2312-fcl 1011

Standard device driver — valves — 3-way valve

FC 1110l FCI1101_StdDevValveBi : P2001-5-2312-fcl 1 101

Standard device driver — valves — bistable isolating valve

FC 11501 FC11501_StdDevValveMod : P2001-5-2312-fcl 1501

Standard device driver — valves — modulating valve

6.2.9 Device drivers — Drives

FC 12001 FC12001_StdDevDriveDOL : P2001-5-2312-fc12001

Standard device driver — drives — direct online
FC 12011 FCI12011_StdDevDriveDOLRev : P2001-5-2312-fc1201 |

Standard device driver — drives — direct online reversing

FC 12101 FC12101_StdDevDriveBi : P2001-5-2312-fc1 2101

Standard device driver — drives — bistable
FC 12111 FCI2111_StdDevDriveBiRev : P2001-5-2312-fcl2111

Standard device driver — drives — bistable reversing

FC 12501 FC12501_StdDevDriveVSD : P2001-5-2312-fc12501

Standard device driver — drives — variable speed

FC 12511 FC12511_StdDevDriveVSDRev : P2001-5-2312-fc12511

Standard device driver — drives — variable speed reversing

FC 12601 FC12601_StdDevDriveMSD : P2001-5-2312-fc12601

Standard device driver — drives — multiple speed

Doc: P$2001-5-2311-001 Rev: R02.00 141-201

6.2.10 Message handling

FC 16001 FC16001_StdMsgAnalogAlm : P2001-5-23 12-fc16001

Standard message handler — analogue alarm

FC 16002 FC16002_StdMsgAnalogVWVrn : P2001-5-23 12-fc16002

Standard message handler — analogue warning

FC 16003 FC16003_StdMsgAnalogEvent : P2001-5-23 12-fc16003

Standard message handler — analogue event

FC 16101 FC16101_StdMsgDigital Alm : P2001-5-2312-fc16101

Standard message handler — digital alarm

FC 16102 FC16102_StdMsgDigitalWrn : P2001-5-23 12-fcl1 6102

Standard message handler — digital warning

FC 16103 FC16103_StdMsgDigitalEvent : P2001-5-2312-fc16103

Standard message handler — digital event

FC 16201 FC16201_StdMsgAlmTime : P2001-5-23 12-fc16201

Standard message handler — digital time-stamped alarm

FC 16202 FC16202_StdMsgWrnTime : P2001-5-23 12-fc16202

Standard message handler — digital time-stamped warning

FC 16203 FC16203_StdMsgEventTime : P2001-5-23 12-fc16203

Standard message handler — digital time-stamped event

FC 16501 FC16501_StdMsgPrompMgr : P2001-5-23 12-fc16501

Standard message handler — prompt manager

FC 16502 FC16502_StdMsgPrompQueue : P2001-5-23 12-fc16502

Standard message handler — prompt queue

142-201 Doc: P$2001-5-2311-001 Rev: R02.00

6.2.11 Communication handling

FC 17001 FC17001_StdCommsGetSmall SMDS: P2001-5-2312-fc17001

Standard communication handler — get data from a controller (small)

FC 17002 FC17002_StdCommsPutSmall SMDS: P2001-5-2312-fc17002

Standard communication handler — put data into a controller (small)

FC 17101 FC17101_StdCommsRead65K SMDS: P2001-5-2312-fc17101

Standard communication handler — read data from a controller (65K of data)

FC 17102 FC17102_ StdCommsWrite65K SMDS: P2001-5-2312-fc17102

Standard communication handler — write data to a controller (65K of data)

FC 17401 FC17401_StdCommsSet|P SMDS: P2001-5-2312-fc17401

Standard communication handler — dynamically configure Ethernet interface

FC 17501 FC17501_StdCommsPtP_Rx SMDS: P2001-5-2312-fc17501

Standard communication handler — read data via a point-to-point interface

FC 17502 FC17502_StdCommsPtP_Tx SMDS: P2001-5-2312-fc17502

Standard communication handler — write data via a point-to-point interface

Doc: PS2001-5-2311-001 Rev: R02.00

143-201

6.2.12 Subroutines

FC 18001 FC18001_StdSubScaleAl P2001[-5-2312-fc18001

Standard subroutines — scale an analogue input signal

FC 18002 FC18002_StdSubScaleAQ P2001[-5-2312-fc18002

Standard subroutines — scale an analogue output signal

FC 18101 FCI18101_StdSubTime00ms P2001[-5-2312-fc18101

Standard subroutines — timer module (100 ms resolution)

FC 18104 FC18104_StdSubTimels P2001-5-2312-fc18104

Standard subroutines — timer module (| s resolution)

FC 18111 FCI8111_StdSubTimelLong P2001-5-2312-fc18I 11

Standard subroutines — timer module, long duration timer

FC 18151 FCI18151_StdSubTimeEventRTC SMDS: P2001-5-2312-fc18151

Standard subroutines — event duration timer (using the RTC)

FC 18201 FC18201_StdSubCounter P2001-5-2312-fc18201

Standard subroutines — count up/down function

FC 18901 FC18901_StdSubStrintToASC SMDS: P2001-5-2312-fc18901

Standard subroutines — string function — convert an integer to ASCII

FC 18902 FC18902_StdSubStrReal ToASC SMDS: P2001-5-2312-fc18902

Standard subroutines — string function — convert a real to ASCI|

FC 18911 FC1891 |_StdSubStrASCtolnt SMDS: P2001-5-2312-fc18911

Standard subroutines — string function — convert an ASCII string to an integer value

FC 18912 FC18912_StdSubStrASCtoReal SMDS: P2001-5-2312-fc18912

Standard subroutines — string function — convert an ASCII string to a real value

144-201 Doc: PS2001-5-2311-001

Rev: R02.00

FC 18921 FC18921_StdSubStrCaseConv SMDS: P2001-5-2312-fc18921

Standard subroutines — string function — case conversion

FC 18931 FC18931_StdSubStrConcat SMDS: P2001-5-2312-fc18931

Standard subroutines — string function — concatenate strings

FC 18932 FC18932_StdSubStrSplit SMDS: P2001-5-2312-fc18932

Standard subroutines — string function — split a string

FC 18933 FC18933_StdSubStrFind SMDS: P2001-5-2312-fc18933

Standard subroutines — string function — find a string within a string

6.2.13 Debug subroutines

FC 19001 FC19001_StdDebugValvelsol P2001-5-2312-fc19001

Standard debug subroutines — simulation — isolating valve

FC 19002 FC19002_StdDebugValveBi SMDS: P2001-5-2312-fc19002

Standard debug subroutines — simulation — bistable isolating valve

FC 19003 FC19003_StdDebugValveMod SMDS: P2001-5-2312-fc19003

Standard debug subroutines — simulation — modulating valve

FC 19011 FC1901 | _StdDebugDriveDOL P2001-5-2312-fc1901 |

Standard debug subroutines — simulation — drive DOL

FC 19012 FC19012_StdDebugDriveBi P2001-5-2312-fc19012

Standard debug subroutines — simulation — drive bistable

FC 19013 FC19013_StdDebugDriveVSD SMDS: P2001-5-2312-fc19013

Standard debug subroutines — simulation — drive variable speed

FC 19014 FC19014_StdDebugDriveMSD SMDS: P2001-5-2312-fc19014

Standard debug subroutines — simulation — drive multiple speed

Doc: PS2001-5-2311-001 Rev: R02.00

145-201

FC 19101 FC19101_StdDebuglnstFlow SMDS: P2001-5-2312-fc19101

Standard debug subroutines — simulation — instrument flow

FC 19102 FC19102_StdDebuglnstLevel SMDS: P2001-5-2312-fc19102

Standard debug subroutines — simulation — instrument level

FC 19103 FC19103_StdDebuglnstTemp SMDS: P2001-5-2312-fc19103

Standard debug subroutines — simulation — instrument temperature

FC 19104 FC19104_StdDebuglnstPress SMDS: P2001-5-2312-fc19104

Standard debug subroutines — simulation — instrument pressure

FC 19151 FC19511_StdDebuglInst| Order SMDS: P2001-5-2312-fc1951 1

Standard debug subroutines — simulation — instrument |st order response

FC 19152 FC19512_StdDebuglnst2Order SMDS: P2001-5-2312-fc19512

Standard debug subroutines — simulation — instrument 2"d order response

FC 19153 FC19513_StdDebuglnstPoly SMDS: P2001-5-2312-fc19513

Standard debug subroutines — simulation — polyline response

FC 19701 FC19701_StdDebugSeqBreak SMDS: P2001-5-2312-fc19701

Standard debug subroutines —sequence breakpoint

FC 19999 FC19999_StdDebugForceStop SMDS: P2001-5-2312-fc19999

Standard debug subroutines — Force CPU stop

146-201 Doc: PS2001-5-2311-001

Rev: R02.00

0]

@

3

“)

Application modules

The PAL software consists mainly of standard modules; these are the library modules
ofthe PAL. The application modules are project specific modules that call the standard

modules as needed by the project in question.

It is the application modules that provide the structure for Controller software.

While it is true that the application modules are different for each Controller project;
the actual arrangement and numbering of the application modules does form part of
the PAL. It is the application modules that are called from the main program cycle

organisation block (OB 1) and this determines the structure of the software.

The complete OB 1 PAL structure is shown in Figure 7.1. This shows application

block calls to the thirteen functional groups.

0B 1
Main program cycle

FC24000_AppSafe
Coordinating application block

FC25000_AppCale
Coordinating application block

FC26000_AppCont
Coordinating application block

| i @i

J

Figure 7.1 Complete OB 1 PAL structure

Doc: PS2001-5-2311-001 Rev: R02.00

FC28000_AppCmd
Coordinating application block

FC30000_AppDev
Coordinating application block

FC36000_AppMsg
Coordinating application black

FC37000_AppComms
Coordinating application black

FC39000_AppDebugEoC
Coordinating application black

147-201

) All of these functional groups with the exception of the system functions
(FC21000 AppSys) are optional (the requirements for these applications depends en-
tirely on the purpose of the Controller); most Controllers will have a subset of these
functional groups.

® Application modules are specific to the software project in question and are pro-
grammed specifically for that project, they are not fixed modules like the standard
modules.
@) There are three categories of application modules:
@ Coordinating Coordinating application blocks exist for each func-

tion group and are used to organise all the block
calls within that particular function group.

@ Marshalling Marshalling modules subdivide the coordinating
application modules into logical groupings within
the functional group.

(® Programming Programming modules contain extensive program-
ming statements, rather than the configuration ex-
ercises used with coordinating and marshalling
modules.

Programmed module contains software specific to
the purpose of the Controller in question and con-
tain substantial logical statements and software

® All the application modules within OB 1 are coordinating application modules, these
are the highest level of application module and all such modules have numbers ending
in 000.

148-201

3TNAON ONINWVYYDOYd

|euondo

[euondo

ER[aYeleIN]

XXX2Jesddy 1014704

XXX3Jesddy | 00¥704

ONITIVHSYV|A

>[eDddy 0005204

ayesddy™ 0004704

3TNAOIN ONILYVNIAY4OO0D

SONBWAYIBW @ SUONE|NJ[ED

swsAs A1ajeg

dNOY5H NOILDONNS

149-201

Rev: R02.00

PS2001-5-2311-001

Doc:

FUNCTION GROUP

Sequential control logic

Command handling

Device driver — control loops

Device Driver — Valves

Device Driver — Drives

Messages

Communication handling

COORDINATING MODULE

FC27000_AppSeq

FC28000_AppCmd

FC30000_AppDevPID

FC31000_AppDevValves

FC32000_AppDevDrives

FC36000_AppMsg

FC37000_AppComms

MARSHALLING MODULE

Allocated if sequences can be
grouped into meaningful areas

FC28001_AppCmdName

FC28101_AppCmdName

FC30001_AppDevPID_Standard

FC3001 I_AppDevPID_Sched

FC31001_AppDevValvelsol

FC31501_AppDevValveMod

FC32001_AppDevD

FC32501_AppDevD

FC36001_AppMsgAnalog

FC36101_AppMsgDigital

FC36501_AppMsgPrompts

FC37001_AppCommsArea

FC37101_AppCommsArea

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

PROGRAMMING MODULE

FC27011_AppSeqName

FC27012_AppSeqName

FC2801 1_AppCmdName

FC28012_AppCmdName

FC28111_AppCmdName

FC3601 |_AppMsgAnalogArea

FC361 1 1_AppMsgDigitalArea

FC3651 | _AppMsgPromptsArea

FC3701 |_AppCommsArea

FC37111_AppCommsArea

Typical application module allocation

Table 7.1

Rev: R02.00

PS2001-5-2311-001

Doc:

150-201

7.1 Application module numbering

0 Application modules are always functions (FCs) without parameters, they are num-
bered according to functional group, this is summarised as follows:

FUNCTION GROUP APPLICATION MODULE
FUNCTION GROUP NUMBER (FG) NUMBER RANGE

Safety systems 24 FC 24nnn

Calculations & mathematics 27 FC 25nnn

Command handling FC 28nnn
Reserved N/A
Device drivers (control loops) FC 30nnn
Device drivers (valves) FC 31nnn
Device drivers (drives) FC 32nnn
Device drivers (Reserved) FC 33nnn
Device drivers (Reserved) FC 34nnn
Device drivers (Reserved) FC 35nnn
Message handling FC 36nnn
Communication handling FC 37nnn
(subroutines) N/A
Debug (end of cycle) FC 39nnn
Table 72 Application module numbering by function group
@ Each function group has a single coordinating module and this always has the block

number FGOOO where FG is the function group number.

©) Where marshalling modules are used to subdivide the functional groups, but program-
ming modules are not used (this is specifically: instruments and device drivers) the
marshalling modules adopt the last three digits of the standard modules that they con-
tain; for example, the following would be the complete set of marshalling modules for
the drives, device driver:

Doc: P$2001-5-2311-001 Rev: R02.00 151-201

)

®)

(6

Y]

®

©)

COORDINATING MODULE MARSHALLING MODULES STANDARD MODULES CALLED

FC32000_AppDevDrives FC32001_AppDevDriveDOL FC12001_StdDevDriveDOL
FC3201 |_AppDevDriveDOLRev FCI1201 |_StdDevDriveDOLRev
FC32101_AppDevDriveBi FC12101_StdDevDriveBi
FC32111_AppDevDriveBiRev FCI12111_StdDevDriveBiRev
FC32501_AppDevDriveVSD FC12501_StdDevDriveVSD
FC32511_AppDevDriveVSDRev FCI12511_StdDevDriveVSDRev
FC32601_AppDevDriveMSD FC12601_StdDevDriveMSD

Table 7.3 Marshalling application module numbering example for instruments and device drivers

In Table 7.3 the last three digits of the marshalling application module number matches
the last three digits of the standard module block number that is called from within the
marshalling block.

Where programming application modules are (or may be) used, the numbering system
is more flexible. Here, marshalling modules may be used (optionally) to organise the
programming modules into specific areas or subgroups that have some meaning for
the Controller program in question (these may be plant areas or logical areas that have
some relevance in terms of the program itself).

The allocation of marshalling modules under these circumstances is at the discretion
of the programmer. Good practice dictates that large gaps are left in the numbering
allocation of the marshalling modules (if there are fewer than ten marshalling modules
within the functional group, it is recommended that each marshalling module has an
increment of 100 from the previous module e.g. FC28001, FC28101, FC28201 &c.).

Programming application modules called from within these marshalling modules
should adopt the three most significant digits of the marshalling module, thus extend-
ing the previous example, the marshalling module FC28101 could support within it
the programming modules numbered FC28102 to FC28199 (98 modules in total).

Again, it is good practice to leave a gap between programming modules, for example,
incrementing by 10 such that the programming modules would be numbered FC28111,
FC28121, FC28131 &c.

Where programming application modules are called directly from the coordinating
module, then there are no marshalling modules and the programming modules can
have any number in the functional group (excepting FGO09, this being the number of
the coordinating module, FC28000 in the previous example)

152-201

0]

@

7.2 Sequence annotation

One particular form of programming application module is that which contains a se-
quence.

The Functional Specification (FS) /Ref. 005/, annotated the steps and transitions of a
sequence using a step-transition diagram of a sequential flow chart (sometimes referred
to as a GRAFCET?® diagram), and example of which is shown below in Figure 7.2:

T1 0000

T'IO'I'IO

Figure 7.2 Step transition diagram

8 GRAFCET, GRAPHe de Commande Etape-Transition, French. Literally, “stage-transition
command graph” a diagrammatic mechanism for showing steps and transitions within a se-

quence.

153-201

©) Such step-transition diagrams can be time consuming and difficult to produce, requir-
ing a graphical drawing or CAD package to render the diagrams. An alternative ar-
rangement is to use sequential IO matrices, these can be produced on a spread sheet
and list all the devices controlled by the sequence; identifying each step and the re-
quired state of each device within that step.

) Consider the backwash sequence discussed in the example of § 2.1.2, a single filter
from this example is shown below:

MV101

RAPID GRAVITY
FILTER RG101

r—> DRAIN
VV104

INLET
WORKS

_ OUTLET
" TANK

E0LAA
SOLAA

BL501

BACKWASH
TANK

Figure 7.3 Step transition diagram

®) This is the full list of devices associated with filter RG101:

MVI0I Filter | inlet valve

CvV102 Filter | outlet valve

VVI103 Filter | backwash water inlet valve
VV104 Filter | backwash water outlet valve
VVI105 Filter | Air inlet valve

BL501 Backwash blower |

PM501 Backwash pump |

Table 7.4 Equipment associated with fitler RG101

154-201

® The backwash sequence for the filter had the following plain English description:
. Isolate the filter (take it out of service and close all valves)
. Aerate the filter (open air inlet valve and start blower)

. Backwash the filter with aeration (open backwash inlet and outlet
valves and start backwash pump)

. Washout the filter (stop blower and close air inlet valve)
° Allow filter bed to settle (stop pump and close backwash valves)
. Return filter to service (open inlet and outlet valves)
@) This sequence would more formally be documented using a Sequential Input/OQutput
(IO) Matrix as follows:
w
w |8
. Q 2_ ®
Filter RGI10I| Backwash Sequence 2EINE Ik
_|19]Z]e|3|5|%
NORMAL OPERATION =12z (80z 88
Step description (green) and transition conditions (blue) % g g g g § g
Step slglelg|z|2|e
Sequence Idle
00000 Wait for timed backwash start signal
(RG101_BW_start = true)
IDLE

Starting
Generate backwash started message

Generate message. Activate Cmd_Run

No transition condition

STARTING Msg_RG1010_00I: Filter | backwash started

155-201

o

® | a

. g 3
Filter RG101 Backwash Sequence ANk
(9|2]e 3|5 |¢%
NORMAL OPERATION =51z ls|z|8 |
s |s|als|s |8 B
s 5|5 |55 (3|3
step Step description (green) and transition conditions (blue) g % g é g g g

Running
Close inlet and outlet valves

Close all filter valves
All valves are confirmed closed
NB. VV103, VV104, VVI05 will already be closed
Open air inlet valve
Open VVI105

VVI105 is confirmed open

Start air blower

Start BL501

Wait for aeration time RG101_BW_AirTime

Open backwash inlet and outlet valves

Open VV103 and VV104

VV103 and VV104 are confirmed open

Start backwash pump (filter is now cleaning, both backwash pump and blower are running

Start PM501

Wait for clean time RG101_BW_CleanTime

Stop aeration, stop blower

Stop BL50|

BL501 is confirmed stopped

156-201

Filter RGI10Il Backwash Sequence
NORMAL OPERATION

Step description (green) and transition conditions (blue)

Step

Start close air inlet valve

Close VV105

VVI105 is confirmed closed

Filter is washing out

No additional actions

Wait for washout time RG101_BW_WashOutTime

Stop backwash pump

Stop PM501

PM501 is confirmed stopped

Close backwash valves

Close VV103 and VV104

VV103 and VV104 are confirmed closed

Filter is settling

No additional actions

Wait for settling time RG101_BW_SettleTime

Open filter inlet valve

Open MVIO0I

MVI101 is confirmed open

SAJBA 13)U|

101AW

3SOT1D 3SO1D ENezls)

ENezls)

QAJBA 323INO

T0IAD

3SO1D 3SO1D 3SO1D 3SO1D

3SO1D

SAJBA 39]Ul ysemddeg

€01AA

ENezls) 3SOT1D

ENezls)

SAJBA 39[3N0 ysemdeg

YOIAA

ENezls) 3SOT1D

ENezls)

SAJBA IB|UI 1Y

SOIAA

3SO1D ENexe) 3SO1D

3SO1D

J3MO|q ysemddeg

10574

dOl1S dOl1S dOl1S

dOl1S

10SWd dwnd ysemsdeg

dOl1S

dOl1S

dOl1S

dOl1S

157-201

Filter RGI10I| Backwash Sequence
NORMAL OPERATION

SAJBA 13]Ul ysemd]deg

SAJBA 39|U|
9AJEA 313INO

Step description (green) and transition conditions (blue)

10IAW
CIAD
€01AA

Step

Open filter outlet valve (under PID control)
Activate CV102 PID Control

FICI01 is reading above minimum flow
FIC101 >= FiltMinFlow

3SOT1D

Trigger completing
Activate Cmd_Complete

No transition condition

3SO1D

SAJBA 39[3N0 ysemdeg

YOIAA

3SOT1D

3SO1D

SAJBA IB|UI 1Y

SOIAA

3SOT1D

ENezls)

J3MO|q ysemdeg

10974

dOl1s

dOl1S

10SWd dwnd ysemdeg

dOl1Ss

dOl1S

Completing

Generated backwash complete message

Generate message. Activate Cmd_Completed

FICI0I is reading above minimum flow
FIC101 >= FiltMinFlow

Msg_RG1010_002: Filter | backwash complete

Completed
Completed, return to IDLE state

Activate Cmd_RetIdlee
29000

No transition condition

RUNNING

158-201

® If a fault occurs during the sequence, all backwash operations will stop and the filter
will be placed in an isolated condition until the operator either issuesa RESUME com-
mand, in which case the backwash sequence will restart from step 01000 (from the
beginning).

) The operator could also ABORT the backwash, under which condition the filter will
be returned to service.

(9 A fault condition is any condition affecting the devices associated with the filter or
backwash equipment:

° MV1010 fault

CV102 fault

o VV103 fault

° VV104 fault

o VV105 fault

° BL501 fault

PM501 fault

Note: If, during a backwash, a low alarm is generated by LIT501 indicating a low level
in the backwash tank, this is not considered a fault; there is sufficient capacity in
the backwash tank at this point to complete the backwash. LIT501 low alarm
would however, prevent a backwash sequence from starting

(n The hold, resume and abort logic for the sequence is as follows:

159-201

o

® | a

o 2 =~
Filter RG101 Backwash Sequence ANk
(9|2]e 3|5 |¢%
FAULT OPERATION =51z ls|z|8 |k
s |s|s|s|s|% |2
s 5|5 |55 (3|3
Step Step description (green) and transition conditions (blue) g % g é g g g

Error Holding

Stop backwash pump and blower

Stop PM501 and BL501 [e e i c
40000 zZ Zz Z z z
O 0 o o o A
Wait for 10 seconds % % % % % bt I I |
o| o
(1) (1) (1) (1) Q 'l o
ERROR £ & £ & &
HOLDING)) O o) o

Close all valves

Close VV103, VV104, VV105, MVI0Il and CV102

40010 . oO|l0o|0o |0 O vn| v
Wait for 10 seconds Ll = = - 3| 3
O |0 |0 |0 Ol o| o
wv wv wv wv wv o el
HOLDING

Close all valves

Activate Cmd_ErrHeld

000 N tansiion condi olalalalolglg
|0 transition condition o o o o o O O
wv wv wv wv wv o o

HOLDING

Error Held

Close all valves

Generate message

45000 A
olo|o|o|o|alo
(%) n n n n g g
ERROR Msg_RG1010_003: Filter | backwash failed HELD N IR I I
HOLDING g _003: Filter | backwash failed; sequence

Error Resuming
Restart the backwash sequence (trigger RUN command and return to step 10000)

Generate message. Activate Cmd_Run

Msg_RG1010_003: Filter | backwash restarted

160-201

o

® | A

o H =~
Filter RG101 Backwash Sequence AR AL
1922|313 |%
ABORT OPERATION =525 |2|8 ¢
s |s|s|s|5|% |2
s|s|s|5 |5 |28 |3
Step Step description (green) and Transition conditions (blue) g % g é g g g

Aborting

Return filter to service, open filter inlet valve

Open MVI0I

MVI101 is confirmed open

ENezle)
ENezle)
3SO1D
dOl1S
dOl1S

Open filter outlet valve (under PID control)

Activate CV102 PID Control

FIC101 is reading above minimum flow
FIC101 >= FiltMinFlow

3SOT1D
3SOT1D
3SOT1D
dOl1s
NNY

Trigger aborted

Activate Cmd_Aborted

No transition condition

ENezls)
3SO1D
3SO1D
dOl1S
NNY

Aborted

Generated backwash complete message

Generate message. Activate Cmd_RetIdle
65000

No transition

ABORTED Msg_RG1010_004: Filter | returned to service backwash not complete

161-201

0]

@

7.2.1 Sequence 10 matrix summary

TITLE
Additional notes

Step description (green) and transition conditions (blue)
Step
DESCRIPTION OF ACTIONS
STEP
PROMPT TRANSITION CONDITIONS
ST MESSAGES NOTES
STATE

STEP SUMMARY OR DESCRIPTION

DESCRIPTION OF ACTIONS

PROMPT TRANSITION CONDITIONS

MESSAGES NOTES

Device descriptions

Device tags

REQUIRED STATES FOR THIS STEP

REQUIRED STATES FOR THIS STEP

Sequence IO matrices are the preferred mechanism for documenting sequence, the use
of spread sheets for this operation makes such documentation easier to generate and

maintain.

Sequence IO Matrices are easy to adapt and use as test documents, the requirements

for each step being easily determined.

162-201

0]

@

O}

“)

Interrupt modules

Programme execution within the PAL (and in all Simatic Controllers) is entirely event
driven, some event must take place in order to execute any software. Such events are
detected by the Controller operating system and in response to the specific event, the
Controller triggers a specific organisation block.

The main example of this is the cyclic triggering of OB 1, OBl is triggered automati-
cally by the Controller operating system at the start of each scan after the process image
has been updated.

Two forms of interrupt organisation block exist: the first being operational interrupts
that occur in response to some normal, expected event (a time of day, a hardwired
signal &c.). The second form is in response to an unexpected event, an error or a fault
condition (a card failure, a programming error &c.).

The following tables list the two types of interrupt organisation blocks

NORMAL INTERRUPTS
OB NUMBER PAL MODULE NAME DESCRIPTION

Controller main program cycle

OBl ©B0000!_IntINrmMainProgram Called at the start of each Controller cycle
§ Time of day Interrupt
OB 10 OBO00010_IntINrmNTimeOfDay ATy Gl e ey s
X Time delay Interrupt
OB 20 OB00020_IntINrmNTimeDel
—InciNrmNTimeDelay Called after a specified delay has expired
OB 30 OB00030_IntINrmNCyclic Timed cyclic Incerrupt

Called at specified intervals

Table 8.1 Standard (normal) interrupt modules and organisation blocks

Doc: PS2001-5-2311-001 Rev: R02.00 163-201

®)

6

@

ERROR INTERRUPTS

OB NUMBER PAL MODULE NAME DESCRIPTION

OB 80 OB00080_IntlErrECycleTimeErr

OB 82 OB00082_IntlErrEModuleDiag

OB 83 OB00083_IntlErrEModuleChange

Error Interrupt
Maximum cycle time exceeded

Error Interrupt
Module diagnostics signal received (module fault)

Error Interrupt
Module changed, removed or installed

Table 8.2 Fault interrupt modules and organisation blocks

Irrespective of the type of interrupt and with the exception of the main cycle organisa-
tion block (OB 1), all interrupt OBs carryout a certain set of (minimum) activities.

All such OBs record the time of their last call in the DB21661 Dy SysGlobalData
data block. The time is stored in the DTL format (DateTimelLong data type). The DTL
format provides the following data (stored as unsigned integers):

NAME TYPE

YEAR UInt

MONTH USInt
DAY USInt
WEEKDAY USInt
HOUR USInt
MINUTE USInt
SECOND USInt

NANOSECOND USDInt

Table 8.3 Execution time record of an OB

DESCRIPTION

Year (1970-2262)

Month (01-12)

Day (01-31)

Day of week (I-7 where | = Sunday, 7 = Saturday)
Hour (00-23)

Minute (00-59)

Second (00-59)

Nanoseconds (000,000,000- 999,999,999)

All organisation blocks with the exception of OB 1 must do this, and the software as-
sociated with the time stamp is stored in the first network following the current revision
and modification history (this will usually be network 3), the time stamp is recorded

as follows:

164-201

Doc: PS2001-5-2311-001

Rev: R02.00

0]

@

(©)]

)

)

Network 3: Store time of execution

-
Read the real time clock at the time of the bleck call and store the resultin the
system global data block DB21001_Dy_SysGlobalData

RD_LOCT
DTL

EN ENO
RET_VAL Fwrkint
out "DB21001_Dy_SysGlobalData® DB35_CallTime

Figure 8.1 Step transition diagram

8.1 Error detection OBs

Error interrupt OBs (see Table 8.2) detect specific faults that can occur within a Con-
troller. Such faults are exceptions, and are not expected to occur during the normal
operation of the Controller.

By default, if an error occurs (say a remote IO module panel is turned off), then the
Controller CPU will automatically enter the STOP mode, all Controller outputs will
be turned off and user programme will no longer be executed.

By most definitions, this is an extreme reaction, and while the failure of a remote 10
rack may drastically affect the operation of the plant, it is generally better to keep the
Controller running and reporting the existence of the fault rather than just entering
STOP mode.

To prevent this reaction, the appropriate error organisation block must be present
within the Controller (in the case of the previous example, the OB in question would
be OB86, rack failure or fault). If the block is present (even if it does not contain any
code) the CPU will not enter STOP mode.

By default, the PAL contains a full set of error interrupt OBs, and, unless there is a
specific reason not to do so, all should be installed in the target software project. This
prevents the CPU stopping under all error conditions.

165-201

BLANK PAGE

166-201 Doc: PS2001-5-2311-001 Rev: R02.00

0]

@

(©)]

Q]

0]

@

(O]

Template modules

A full set of template modules are supplied with the PAL software. These template
modules give worked examples of how the standard and application modules should be
used in a control system project.

The template modules provide an example of each type of application module, demon-
strating how each application module is to be used and how it calls its associated stand-
ard modules. There are also template modules for each type of interrupt OB.

The template modules are based around an example Fermenter project, this Fermenter
project is the basis of the User Guide (UG) /Ref. 009] documentation that is issued as
part of the training documentation associated with this project.

The Fermenter project is a relatively simple project, but covers all aspects of the PAL
software, and provides a comprehensive guide to using all aspects of the PAL software.

9.1 Templates for application modules

There is a template module associated with each of the application modules. Each
template module gives an example of how its associated application module should be
used and coded. Where application modules are numbered 20,000 to 39,999, the tem-
plate modules are numbered 40,000 to 59,999; thus, template module 42,000 is an ex-
ample of how application module 22,000 is to be used.

All template modules will be fully documented and will reflect the PAL documenta-
tion standards given in the Style Guide (SG) /Ref 010)].

The following table gives the associated numbering between template modules and
application modules:

167-201

TEMPLATE ASSOCIATED APPLICATION
FUNCTION GROUP MODULE NUBER MODULE NUMBER

Safety systems FC 44nnn FC 24nnn

Calculations & mathematics FC 45nnn FC 25nnn

Command handling FC 48nnn FC 28nnn
Device drivers (control loops) FC 50nnn FC 30nnn
Device drivers (valves) FC 5Innn FC 31nnn
Device drivers (drives) FC 52nnn FC 32nnn
Message handling FC 56nnn FC 36nnn
Communication handling FC 57nnn FC 37nnn
Debug (end of cycle) FC 59nnn FC 39nnn
Table 9.1 Template module and application module associations
) The Fermenter project represented in the template modules and detailed in the User

Guide /Ref’ 009] contains the following set of blocks:

TEMPLATE MODULES ASSOCIATED
COORDINATING MARSHALLING PROGRAMMING APPLICATION MODULE

FC44000_TmtSafe FC24000_AppSafe
FC44101_TmtSafeZonel FC24101_AppSafeZonel
FC45000_TmtCalc FC25000_AppCalc
FC45001_TmtCalcAvg FC25001_AppCalcAvg
FC45700_TmtCalcNabla FC25700_AppCalcNabla

168-201 Doc: PS2001-5-2311-001 Rev: R02.00

TEMPLATE MODULES ASSOCIATED
COORDINATING MARSHALLING PROGRAMMING APPLICATION MODULE

FC48000_TmtCmdHandler FC28000_AppCmdHandler
FC48001_TmtCmdPID FC28001_AppCmdPID
FC48101_TmtCmdVivisol FC28101_AppCmdVivisol
FC48151_TmtCmdVIvMod FC28151_AppCmdVIivMod
FC48201_TmtCmdDriveDOL FC28201_AppCmdDriveDOL

FC48251_TmtCmdDriveVSD FC28251_AppCmdDriveVSD
_TmtDevDriver FC30000_AppDevDriver
FC50001_TmtDevPID FC30001_AppDevPID
FC51001_TmtDevVivisol FC31001_AppDevVivisol
FC51501_TmtDevVIivMod FC31501_AppDevVivMod
FC52001_TmtDevDrvDOL FC32001_AppDevDrvDOL
FC52501_TmtDevDrvVSD FC32501_AppDevDrvVSD
FC56000_TmtMsgHandling FC36000_AppMsgHandling
FC56101_TmtMsgClassify FC36101_AppMsgClassify
FC57000_TmtCommsHandling FC37000_AppCommsHandling
FC55101_TmtCommsCon2 FC35101_AppCommsCon2
FC59000_TmtDebugEOS FC39000_AppDebugEOS
FC59101_TmtDebugSim FC39101_AppDebugSim
FC59201_TmtDebugSeq FC39201_AppDebugSeq

Table 9.2 Full list of template modules and associated application modules

Doc: PS2001-5-2311-001 Rev: R02.00 169-201

0]

@

©)

9.2 Template modules for organisation blocks

The PAL utilises organisation blocks for fault and interrupt handling. Each such or-
ganisation block has a template module that can be copied into the relevant OB to
provide the necessary functions required by the PAL, these templates form the basis of
each interrupt block providing the basic functions and minimum requirements needed
by each.

The template modules for organisation blocks are numbered in the FC 60000 to
FC 60999 range, specifically they have the default OB number plus 60000, thus the
OB 35 template module is given the number FC 60035.

The following lists all the template modules for organisation block and their associated
OB number:

TEMPLATE MODULE ASSOCIATED OB INTERRUPT TYPE
FC60001_TmtINrmNMainProgram OB0000!_IntINFmNMainProgram Controller main program cycle
Called at the start of each Controller cycle

)) Time of day Interrupt
FC60010_TmtINrmNTimeOfDay OB00010_IntINrmNTimeOfDay Called by time and day of week

) . Time delay Interrupt
FC60020_TmtINrmNTimeDelay OB00020_IntINrmNTimeDelay T e e

X . Timed cyclic Interrupt

FC60030_TmtINrmNCyclic OB00030_IntINrmNCyclic

Called at specified intervals

Error Interrupt

F T EModuleCh B | EModuleCh
C60083_Trme oduleChange ©OB00083_Int oduleChange Module changed, removed or installed

Error Interrupt

FC60086_Tmt ERackErr OB00086_Int ERackErr)
— = Rack failure or fault

Start-up Interrupt
Called when the CPU transitions to RUN

FC60100_Tmt EStartUp OBO00100_Int EStartUp

Error Interrupt

FC60121_Tmt EProgramErr OBO00I21_Int EProgramErr)
- - Programming fault or error

Error Interrupt

FC60122_TmtlErrEIOErr OBO00122_IntlErrEIOErr
10 card access fault

Table 9.3 Template modules for organisation blocks

170-201 Doc: PS2001-5-2311-001 Rev: R02.00

0]

@

3

)

1 O Documentation modules

The PAL software is extensively documented and makes use of various naming con-
ventions for variables, constants &c.

The standards and conventions for documenting the PAL software are detailed in Sec-
tion 4 and are further discussed in the Style Guide /Ref. 010].

The practices specified in the style guide are summarised within the documentation
modules, these are intended to be proforma examples of comments, variable and con-
stant naming and block parameterisation.

The document modules have the following allocations:

NUMBER CLASS FUNCTION

Example block comments, containing the following:

e Block title e Body text
FCé61000 Doc e Block description (typical) e Table, equations & figures
e Revision and modification history e Special characters
e Headings, list and indented text e Network comments
FC62001 Doc Block allocations and block naming conventions
FC62002 Doc Tag, variable and constant naming conventions

FC65000 Template project documentation

Table 10.1 Document modules for the PAL

Doc: P$2001-5-2311-001 Rev: R02.00 171-201

BLANK PAGE

172-201 Doc: PS$2001-5-2311-001 Rev: R02.00

0]

@

3

)

0]

@

1 1 Common approach to data
handling

All standard modules receive all their data via parameters, these can be simple IO and
discrete signals passed as individual items to the block, or can be more complex data
structures that form the STATIC_DATA and DYNAMIC_DATA passed to the block in the
form of UDTs.

This section concentrates on the STATIC DATA and DYNAMIC_DATA.

The purpose of this separation of static and dynamic data is that the static data is con-
stant and can be verified against a known “offline” version of the software to establish
that the data is correct, the dynamic data is “live data” and is constantly changing and
such verification would be meaningless.

By separating static data from the dynamic data, it provides and additional means of
verifying the software installed in a Controller is the correct version of the software.

11.1 Conventions for using UDTs

As a general rule, all standard modules have both static and dynamic data passed to
them via the STATIC_DATA and DYNAMIC_DATA parameters, this data is different for
every standard module. The static data for an isolating valve is entirely different to the
static data required when reading an instrument, even closely associated devices (an
isolating valve and a bistable valve for example) have differences in the data structures.

In all cases, a standard module will have a unique static data structure with the same
number as the standard module, and will have a unique dynamic data structure with
the same number as the standard module Plus 20000. For example, the isolating valve
module has the block number FC11001, and this uses a static UDT with number
UT11001 and a dynamic UDT with the number UT310001.

173-201

©) While all static UDTs are different from each other and all dynamic UDTs also differ
from each other, there are commonalities in terms of function. For example, compare
some of the signals generated for an isolating valve and for a DOL drive:

ISOLATING VALVE DOL DRIVE

SYMBOL SIGNAL MEANING SYMBOL SIGNAL MEANING
[% Status_Closed Closed O Status_Stopped Stopped
% Status_Opening Opening % Status_Starting Starting
% Status_Opened Opened e Status_Running Running
& Status_Closing Closing O Status_Stopping Stopping
[% Status_Fault Fault ® Status_Fault Fault

Table 11.1 Commonality of signals

@ Although the signals are different, the valve using closed/open terminology and the

drive stopped/running terminology, there is clearly a commonality of function, all sig-
nals are status signals for example, they show the status of the device. And to this end,
each signal starts with the word status_ to indicate this.

© This approach is adopted thorough out the static and dynamic data structures:

11.1.1 Static UDT conventions

(1) Static UDT entries (variables and constants) are in uppercase, using the following con-
ventions (see § 4.6):

(1) The name must be written in uppercase
©) The name must be no more than 21 characters

® Only use the characters [A-Z], the numbers [0-9] and the under-
score character [_]

® The underscore character should be used in place of a space to
separate words

174-201

@

3

Q]

Further, each entry name is in the format:

FUNC_NAME
Where:
ITEM MEANING DETAILS
FUNC Function Up to 8 characters
NAME Variable name

The name component can be any meaningful name given to the variable; the name
should be chosen such that the total name of the variable (FUNC_NAME) is no more than
21 characters.

Examples are:
CONFIG_ALM_H_EN
RANGE_RAW_MIN

TIME_OPEN_MAX

175-201

© The FUNC component of the name has various preset values:

FUNC VALUE DESCRIPTION

CONFIG_ Configuration of an option, usually a Boolean switch value that turns a particular
mode or function on or off

INFO_ Provides some form of information about the object (such as a tag name or
instrument units &c.) usually in the form of a string

RANGE _ Specifies a range for a value, for example, it could specify the minimum and
maximum range of a scaled analogue signal

REVINFO_ Contains revision information

SP_ Setpoint, identifies a particular analogue value (such as the alarm setpoint for an
instrument). Setpoints are usually real numbers

TIME_ Identifies a timed operation value (for example, the maximum time it takes a valve
to open)
K A constant used for some specific purpose

Table 1.2 Static UDT function names

11.1.2 Dynamic UDT conventions

M Static UDT entries (variables and constants) are in uppercase, using the following con-
ventions (see § 4.6):

) The name must be written in camel case
©) The name must be no more than 25 characters

® Only use the characters [a-z], [A-Z], the numbers [0-9] and the
underscore character [_]

@ Further, each entry name is in the format:
func_Name
Where:
ITEM MEANING DETAILS
func Function Up to 8 characters
Name Variable name

176-201

@) The name component can be any meaningful name given to the variable; the name
should be chosen such that the total name of the variable (func_Name) is no more than
25 characters.

) Examples are:
status_Alm_H
mode_SimOn
time_Opening
actual Vvalue
® The func component of the name has various preset values:
FUNC VALUE DESCRIPTION
actual_ Indicates an actual value (such as the true reading of an instrument)
batch_ Indicates the variable belongs to a batch process (usually storing an ID number
that indicates which batch process has control of the device)
cal_ A calculated value
ctrl_ A control signal (used to directly control the device, an output for example or a
signal which may be applied to an output under specific conditions)
status_ Status, indicates the status of the device for use elsewhere within the software
(e.g. status_Open indicates a valve is in the open state)
mode_ Indicates an operating mode (e.g. mode_Manual indicts the device is under
manual control)
msg_ Identifies the variable as a message (alarm, warning or event)
prompt_ Identifies the variable as a prompt (a special form of a message that requires a
user response)
result_ Indicates the result of a calculation or other evaluation process
revInfo Revision information
time_ Identifies a variable that store a timer value (this is the actual value of a running
timer)
PXXXX_ The $ indicates that the variable is an internal working value for the module in

question (for example $pret would indicate a positive edge retention variable).
Variable beginning with $ should not be used externally to the standard module.

Table 11.3 Dynamic UDT function names

177-201

BLANK PAGE

178-201 Doc: PS2001-5-2311-001 Rev: R02.00

0]

0]

@

(O]

)

4

1 2 Common modes of operation

Devices and instruments that have some form of interface that can be linked to a su-
pervisory system have several common modes of operation, the PAL accommodates
the following modes of operation (usually, but not exclusively selected by the operator
via a supervisory system).

. Automatic/manual mode

. Bypass mode for interlocks

o Simulation mode

. Remote/local operation

. Disabling supervisory system faceplates

12.1 Manual mode

Manual mode is applicable to devices (rather than instruments): control loops, valves
and drives.

Manual mode allows the operator to take control of a device and override the auto-
matic operations of the Controller software.

If a device is in automatic mode, the Controller software determines the state of the
device and the device will respond accordingly, if the software requires that a valve be
open, the valve will be opened automatically by the software (usually within the com-
mand handling function group).

If the operator switches a device to manual mode, then the requirements of the Con-
troller software are ignored and the valve will only respond to commands from the
operator.

The exception to this rule is that if a device is in manual and an interlock condition
arises that requires the valve to be in a particular state (interlock, permissive or trip),

179-201

(O]

@

®

®)

(109)

then this will take priority over the manual operation and the device will be driven to
the state required by the interlock condition (for example if a valve is in manual mode
and has been opened by the operator when an interlock condition arises that requires
the valve to close, then the valve will close, overriding the manual command. Once
the interlock condition is removed, the valve will go back to the manual state required
by the operator).

Interlock conditions can also be overridden, see the bypass mode, § 12.2.

Switching a device from automatic mode to manual mode is a bumpless action; that is
to say, when the device enters manual mode, the state applied to the device will be the
last state that it had in automatic mode (for example, if a drive were running under
automatic control, when that drive was switched to manual mode, it would continue
to run — the manual state adopts the same state as the last automatic state).

The following data points are associated with the simulation mode:

SIGNAL FUNCTION TYPE DETAILS
Prevents manual mode being activated under all | = manual mode disabled
CONFIG_MAN_DIS ¢ Bool :
- - circumstances 0 = manual mode permitted
—a T Activates rT1anu.aI mode, if active, the device will adopt Bool = automatic mode on (manual off)
- the state given in ctrl_ManState 0 = manual mode on (auto off)

Sets the device to a particular state if mode_AutMan is
ctrl_Man_State set to manual (if mode_AutMan = off). For example for Bool
a valve this would be ctrl_Man_OpenClose)

| = set manual device to state |
0 = set manual device to state 2

Sets the device to a particular state if mode_AutMan is

|
ctrl_Aut_State set to automatic (if mode_AutMan = on). For example Bool

set manual device to state 2

. 0 = set manual device to state |
for a valve this would be ctrl_Aut_OpenClose)
s . . . I = manual mode active
status_Man Status indication, shows if manual mode is active Bool) X
0 = manual mode inactive
s | = automatic mode active
status_Aut Status indication, shows if automatic mode is active Bool N . X
0 = automatic mode inactive
Table 12.1 Manual mode signals

Manual mode can only be selected by the operator, usually via a supervisory system.

If manual mode is disabled (configuration signal CONFIG_MAN_DIs is set to 1), then the
manual mode cannot be turned on under any circumstances and the standard module
will set the device permanently to automatic mode.

180-201

0]

@

3

Q]

®)

©)

12.2 Bypass mode

Bypass mode is applicable to devices (rather than instruments): control loops, valves
and drives.

Bypass mode overrides any interlock, permissive or trip that may be active.
Note: Emergency stop signals cannot be bypassed

If bypass mode is active, the interlock, permissive or trip signal will be ignored and the
device will operate as if the interlock, permissive or trip signal were not active. Bypass
mode can be activated in both automatic mode and in manual mode.

The following data points are associated with bypass mode:

SIGNAL FUNCTION TYPE DETAILS

Prevents bypass mode being activated under all | = bypass mode disabled

CONFIG_BYPASS_DIS . Bool _ .
- - circumstances 0 = bypass mode permitted
mode_Bypasson Actl\(ate-s bypas‘s mo:l:le, if active an interlock, permissive Bool | = bypass mode on
or trip signal will be ignored (bypassed) 0 = bypass mode off
status_BypassOn Status indication, shows if manual mode is active Bool | = bypass mode active

0 = bypass mode inactive

Table 12.2 Bypass mode signals

Bypass mode is selected by the operator, usually via a supervisory system or via a key
switch type operation.

If bypass mode is disabled (configuration signal CONFIG_BYPASS_DIs is set to 1), then the
bypass mode cannot be turned on under any circumstances and the standard module
will ignore any attempt to do so.

181-201

U]

@

3

)

®)

6

Y]

12.3 Simulation mode

Both instrument and devices can be switched to a simulation mode. If an instrument is
switched to simulation mode, the actual reading from the instrument is replaced by a
simulated value provided by the operator.

If a device is switched to simulation mode, any feedback signals (such as limit switch
signals from a valve) are automatically simulated and follow the demanded state of the
device.

It is possible when in simulation mode for a device to be given a specific set of signals
(i.e. to simulate a valve being closed, open or to have no limit switch signals) instead
of the simulating the actual state of the device

Simulation mode is generally used during testing, but can also be applied in a process
environment if a fault condition is detected within an instrument or device; this sce-
nario allows the plant to continue operating (albeit under some degree of manual con-
trol) until the equipment is repaired or replaced.

The following data points are associated with the simulation mode:

SIGNAL FUNCTION TYPE DETAILS
| = no simulation,

CONFIG_SIM _DIS Prevents simulation mode being activated under all circumstances Bool) . .
- - 0 = simulation permitted

Activates simulation mode, if active for an instrument the scaled

. reading of the instrument (Value) will be set to SimValue | = simulation mode on,
mode_SimOn Bool X)
If active for a device, the device will adopt either the demanded 0 = simulation mode off

state or any of the state signals below

Scaled instrument reading (Value) will be set to this if simulation Real Simulated instrument value in
ea

mode_SimValue
=>4 . mode is on (CONFIG_SIM_OFF = 0 and mode_Sim0On = I) engineering units

. NN - . . . | = sim mode active
status_SimOn Status indication, shows if simulation mode is active Bool X i i
0 = sim mode inactive

Table 12.3 Simulation mode signals

Simulation mode can only be activated by the operator usually via a supervisory sys-
tem.

If simulation mode is disabled (configuration signal CONFIG_siM_Dis is set to 1), then the
simulation mode cannot be turned on under any circumstances, the option is greyed
out on the supervisory system faceplate and the block will constantly reset the
mode_SimOn signal.

182-201

0]

@

3

Q]

)

(O]

@

12.4 Remote/local mode

Remote and local operating modes refer to the supervisory system that has control of
the instrument (i.e. which system can write to the device and change the operating
mode of the device).

This type of mode is usual present where a plant has a remote central control location
(a control room) that normally controls the device (remote control), but also has a field
panel with a local HMI that an operator in the field can select to take over control of
the device (local control) for maintenance purposes.

The modes are as follows (and are mutually exclusive, only one will be active):

Remote Only the remote system in the control room can control
the device
Local A local system has taken control of the device and the

remote system can no longer issue commands to it

Remote/local disabled The system does not use remote/local modes and any
(ALL mode) supervisory system can issue commands to the device

Remote/local control is generally handled by the supervisory systems themselves;
however, the supervisory systems need a storage area per device to record which mode
that device is in, local control is often activated by a panel key-switch, that changes the
state of several devices from remote to local (usually all the devices controlled by the
local panel).

The block simply identifies the remote/local mode from the mode signals and config-
uration signals provided to the block.

For systems that do not use remote/local modes (any supervisory system can control
the device, or control is determined by operator privileges), the remote/local modes
can be disabled (conFIG_RL_EN is set to false) and the device is effectively in ALL
mode (any system can control the device).

If remote/local operation is in use, the supervisory system that does not have control
will still display all the information from the device, but will not be able to control the

183-201

®

©

device (it could not for example, activate simulation mode) and all control function

(faceplate functions) will be greyed out.

The following signals are associated with remote/local/all modes:

SIGNAL

CONFIG_RL_EN

mode_RemoteOn

mode_LocalOn

status_RemoteOn

status_LocalOn

status_RLOff

FUNCTION

Allows Remote and Local modes to be selected. If set to
zero, the device does not have remote and local operation
and both mode_RemoteOn and mode_LocalOn are set to
zero (is in ALL mode).

Activates remote mode and resets local mode

(CONFIG_RL_ENABLE must be set to)

Activates local mode and resets remote mode

(CONFIG_RL_ENABLE must be set to)

Status indication, active if device is in remote mode
(mode_RemoteOn = I)

Status indication, active if device is in local mode
(mode_LocalOn =1)

Status indication, ALL mode is active (mode_RemoteOn =
0 and mode_LocalOn = 0)

Table 12.4 Remote/local mode signals

TYPE

Bool

Bool

Bool

Bool

Bool

Bool

By default, remote/local is disabled — ALL mode is selected.

184-201

DETAILS

| = Remote/local can be selected
0 = All mode is active

= remote mode on, 0 = remote
mode off

| = local mode on,
0 = local mode off

| = remote mode on, 0 = remote
mode off

| = local mode on,
0 = local mode off

| = ALL mode on,
0 = ALL mode off

0]

@

3

12.5 Faceplate disable mode

It is possible to disable the supervisory system faceplate for any device or instrument,
as follows:

SIGNAL FUNCTION TYPE DETAILS
Disable the supervisory system faceplate; if this signal is active, clicking the block
CONFIG_FP_DIS icon or device symbol will not activate the device faceplate pop-up. l.e. the Bool
operator will never be able to issue instructions to the device

| = Faceplate disabled
0 = normal

Table 12.5 Faceplate disable signal

If the faceplate is disabled (CoNFIG_FP_DIs = 1), the supervisory system will not allow the
device faceplate to be opened (normally achieved by clicking the block icon or device
symbol), this in turn prevents the operator from affecting the device in anyway, it
would not, for example, be possible to put the device into simulation mode.

Similarly, if the faceplate is disabled, the standard module will set the device to auto-
matic mode (if applicable), will set remote/local mode to ALL and will disable all
other modes (simulation, bypass, manual &c.).

185-201

BLANK PAGE

186-201 Doc: PS2001-5-2311-001 Rev: R02.00

0]

@

3

Q]

®)

()

1 3 User documentation

TIA portal supports various mechanisms for storing the user documentation of soft-
ware modules; the PAL makes extensive use of this facility.

All software modules within the PAL are extensively documented within the modules
themselves, see the Style Guide /Ref- 010] for details, this includes block headers and
individual network comments.

In addition, the TIA facility for user documentation (referred to as 714 User Documen-
tation) is also used. This facility allows documents to be stored in a variety of formats:
PDF documents, text documents, Microsoft Word documents and also as web pages.

Of all these formats, the PDF format offers the most flexibility, it is readily produced
from the Software Module Design Specifications /Ref. 008/ (written in Word DOCX
format), can be configured to use the document headings as navigable bookmarks and
can be rendered in most standard web browser.

The PAL user documentation will also provide links to the various documents gener-
ated within this project. This includes the following:

° The User Guide [Ref. 009]

. The software Design Specification [Ref. 007]

° Individual Software Module Design Specifications /Ref. 008]
o The Style Guide [Ref. 010]

The PAL user documentation will also be developed as a full website, working under
the confines and structures imposed by the TIA User Documentation requirements.
This website provides a standard format for displaying the PAL user documentation.

187-201

0]

@

3

)

4

6

Y]

13.1 Organising the user documentation

When a project is created in TIA Portal (for example the PAL project), TIA Portal
stores the project in new directory with the given name of the project. The project is a
series of files and directories all stored within a root directory with the given name of
the project itself.

For example, this is the project directory structure for a TIA Portal project, in this case
from one of the proof-of-concept projects from the early stages of the PAL project:

] = | PS2001-PAL-000.111-Da - a X
Home Share View (]
« - N <« PS2001-PAL » 51Source Code » 31SWTIAPAL » PS2001-PAL-000.111 » ~ 0 Search PS2001-PAL-000.111-Da 0

PS2001-PAL-Build-SW A Name Date moditied Type Size
31 SWTIA PAL AdditionalFiles 202 518
PS2001-PAL-000.125-Dbs M
PS2001-PAL-D000D Logs
P52001-PAL-D00OT System
PS2001-PAL-D0002 P

P52001-PAL-D0O002A-000-801

Vi

File folder
File folder
File folder
File folder
File folder
File folder
File folder
XRef File folder
PS2001-PAL-D0002 I PS2001-PAL-000.111-Da.ap16 Siemens TIA Porta... 2KB
PS2001-PAL-D0004 [] PS2001-PAL-000.111-Da.info 2020/10/24 10:07 INFO File 1KB
PS2001-PAL-D000S

10 items =

Figure 13.1 Step transition diagram

P52001-PAL-DDD02A-001-000

All of these folders within the TIA project are created by TIA Portal when the project
itself is created.

The folders themselves are required by TIA Portal and the contents of those folders
should not be directly modified or changed externally to TIA Portal (any attempt to
do so will render the project corrupt).

The one folder that is directly accessible to the user is the UserFiles folder; it is this
folder that holds the user documentation files that can be opened within TTA Portal.

Such user documentation is accessed from within TIA Portal by selecting a block
within the project tree and pressing <shift> F1, if a user document can be found for
the selected block, it will be automatically opened.

To access the user documentation, the documents must be stored in a particular loca-
tion. For English language documentation (that used by the PAL), the structure is:

188-201

Project folder

AdditionalFiles

IM
Logs
System
T™MP
UserFiles
|— UserDocumentation
de-DE
—_ en-US
— Data Blocks
— Function Blocks
— Functions
 — Organization Blocks
— es-ES
fr-FR
— it-1T
— zh-CH
Vci
XRef

Figure 13.2 User documentation folder structure

The directory UserDocumentation
must be created under the automati-
cally created UserFiles.

The UserDocumentation contains
subdirectories that correspond to the
language selected as the main user
language for TIA Portal, the lan-
guage should be set to English.

This means that for the PAL, all the
document data is stored under the
en-US directory.

The other directories that can be
used are:

LANGUAGE FOLDER NAME
English en-US

Chinese zh-CH

French fr-FR

German de-DE

Italian it-IT

Spanish es-ES

Table 13.1 User documentation language folders

To use any of the other folders, the
TIA Portal User interface language
must be changed, this also requires
that support for those languages was
installed during the installation of
TIA Portal.

Again, the PAL expects the lan-
guage to be English and requires
only the en-US directory.

189-201

®

©

(10)

The folders under the en-US directory contain the documentation for each type block
within the project, the documentation for each FC is stored in the Functions direc-
tory, documentation for data blocks is stored the Data Blocks folder &c. The full list
of block related folders is:

FOLDER NAME CONTAINS

Data blocks Documentation for data blocks (DBs)
Function blocks Documentation for function blocks (FBs)
Functions Documentation for functions (FCs)
Organization blocks Documentation for organisation blocks (OBs)

Table 13.2 Folders for each type of block documentation

Note: The organisation block folder (Organization blocks) must be spelt with a
Z (not an S as is more common in Great Britain).

Although the blocks all start with a capital letter, TIA Portal is not case sensitive
in regard to the folder names.

The PAL user documentation is in the form of web pages; all web pages are PDF®
documents and end with the extension . pdf.

The document for a particular module or block must be stored in the relevant folder
and the document given the same name as the block itself. For example, the System
Global Data module wuses the function FCO01001 and has the name
FC01001 StdGlobalData, this can be seen in the project tree below:

9 PDF: Portable document format, now standardised as ISO 32000, is a file format developed
by Adobe in 1992 to present documents, including text formatting and images, in a manner
independent of application software and hardware.

190-201

(I

(12)

(13)

(14)

(15)

Project tree i
Devices

i

¥] PS2001-PAL000.112-Da
K¢ Add new device
i Devices & networks
~ [PLC100 [CPU 15152 PN]

errupt [0B40]
48 WMoin [0B1]
4 (Fco1001_stdsysGlobalDat)[FC1001] |
48 FC02001_StdinstAnalogRead [FC2001]
48 FC11001_stdDewvalvelsol [FC11001]

Figure 13.3 Function name

The corresponding document file for FC01001 must be stored in the Functions folder
and must have the same name as the block to which it is related. In this case the full
path and file name are:

UserFiles/UserDocumentation/en-US/Functions/FC01001_StdGlobalData.pdf

The file name for the block documentation is FC01001 StdGlobalData. pdf;i.e. the
same name as the block with the . pdf extension.

By highlighting the block in the TIA Portal and pressing <sHIFT> F |, TTA Portal will
open the file FCO1001_StdGlobalData.pdf in the default web browser (or in the
application associated with the file type, e.g. Adobe reader).

The PAL has user documentation for all the software modules contained within it,
selecting any block within the project tree will open a pdf document for that module,
this will be the Software Module Design Specification (SMDS) for that module.

The PAL user documentation also contains other documentation relevant to the li-
brary, and these documents can be accessed from any of the block document files. The
additional documents that can be accessed are:

o The User Guide /Ref. 009]
. The software Design Specification /Ref 007]

o The Style Guide [Ref. 010/

191-201

0]

@

3

13.1.1 The use of a home page

If a document (in the case of the PAL a pdf web page) for a module does not exist,
when <SHIFT> F| is selected for that module, TIA Portal will generate an error mes-
sage highlighting its absence.

To avoid this, a default document can be placed in the language folder (en-US in this
case). The document must be called home (with which ever extension is being used),
in the case of the PAL this is home. pdf.

If no specific document can be found for the particular module, TIA Portal will open
the default home document instead.

192-201

13.2 Project specific User Documentation

O All the software modules issued as part of the PAL have their own User Documenta-
tion files that can be accessed via TIA Portal.

@ A project developed using the PAL software may require its own documentation (par-
ticularly for the application modules that are specific to that particular project). The
user can freely add documentation to any of the folders of Table 13.2 to provide doc-
umentation for any modules developed for a particular project.

@ These documents do not have to be in pdf format, TIA Portal will open any of the
following types of document:

() Microsoft Word (. docx)

@ Web page (.html or . htm)

Portable document format (. pdf)
Microsoft PowerPoint (. ppsx or . pptx)
Rich text format (. rtf)

Text documents (. txt)

Q ©@ © 6 ©

Microsoft Excel (. x1sx)
Microsoft XML paper selection (. xps)

Note: The TIA Portal suggests the . chm files (complied HTML help files) are also
supported, this has been found to be incorrect, TIA Portal does not support . chm
files and they should not be used as User Documentation

“ If multiple file formats exist, TIA Portal will open them in the order listed above, ()
first (this is broadly the alphabetical order of the file extensions).

193-201

0]

@

3

13.2.1

User Documentation for additional items

The PAL limits its User Documentation to the documentation of each block within it
(and some other documents that are accessed via the block User Documentation).

TIA Portal allows other aspects of a project to be accessible via the User Documenta-
tion facilities; the folders of Table 13.2 can be expanded to include other parts of the
project tree. The full list is

FOLDER NAME

Data blocks
Function blocks
Functions
Organization blocks
Projects

Folders

ShortCut

Library Types
Master Copies

Libraries

Table 13.3

CONTAINS

Documentation for data blocks (DBs)

Documentation for function blocks (FBs)

Documentation for functions (FCs)

Documentation for organisation blocks (OBs)

Documentation for the project node (top line) within the project tree
Any folder within the project tree (e.g. Software units or Program blocks)
Any link within the project tree (e.g. Add new block or Add new device)
A “type” in the library

Master copies within the master library

Individual libraries in the library task card

Folders for each type of block documentation, full list

Again, any document file in the additional folders must have the same name as the

object it represents e.g.:

/Projects/projectname.pdf

/Folders/Program blocks.pdf

194-201

0]

@

(©)]

0]

@

1 4 Software security

The software within a Controller has the facility to be password protected; this is a
function of the Controller and the TIA Portal programming environment. By default,
the PAL software will not be password protected.

The released, validated modules within the software library will not be password pro-
tected in anyway, the purpose of the software is that it is a reusable library and will be
deployed on new projects as they arise, the software thus, needs to be accessible.

The storage of the released (validated) version of the software library in its entirety will
be protected on the company servers, the software will be downloadable at the current
released version (along with its documentation), this will be a read-only process. The
software library will be under change control management (CCM) and only authorised
personnel will be able to modify the software.

14.1 The protecting of software modules

The Validation Plan (VP), /Ref. 002] risk assessments require that certain modules and
types of modules will have protection activated at certain points during the Project
(usually after formal testing). This protection will use the TIA Portal operation referred
to as “write protect”, it does not affect the content of the module, it simply prevents it
from being changed either intentionally or inadvertently.

Write protect will be applied to specific modules at specific point in the Project. The
final released (and verified) version of the software will have all the write protect re-
strictions removed.

195-201

BLANK PAGE

196-201 Doc: PS2001-5-2311-001 Rev: R02.00

15

15.1

References and glossary

Document references

The following documents are referenced in this manual:

REF
001

002
003
004
005
006
007
008
009
010
01l

012

013

014

015
016
017
018
019

DOCUMENT NO.
PS2001-5-0101-001

PS2001-5-0121-002
PS2001-5-1101-001
PS2001-5-1111-001
PS2001-5-2101-001
PS2001-5-2211-001
PS2001-5-2311-001

PS2001-5-2312-fcNo.

PS2001-5-7111-001
PS2001-5-2313-011
GAMP 5

IEC6113-3

CFR 21, Part |1
Eudralex Vol 4
Annex ||
ISO 8601
PS2001-5-2319-901
PS2001-5-2301-001
PS2001-5-2302-01 |
PS2001-5-234101-001

Table 15.1Table of references

AUTHOR
PSP

PSP
PSP
PSP
PSP
PSP
PSP
PSP
PSP
PSP
ISPE

IEC

US CFR
EU
Regulations
ISO
PSP
PSP
PSP
PSP

TITLE/DESCRIPTION
Quality Plan (QP)
Validation Plan (VP)
User requirements specification (URS)
Requirement Traceability Matrix (RTM)
Functional Specification (FS)
Hardware Design Specification (HDS)
Software Design Specification (SDS) (THIS DOCUMENT)
Software Module Design Specifications (SMDSs)
User Guide (UG)
Style Guide (SG)
Good Automated Manufacturing Practice

Programmable controllers - Part 3:
Programming languages

US Code of Federal Regulations, Title 21, Food and Drugs,
Part | | — Electronic Records, Electronic Signatures

Vol 4: Pharmaceutical legislation — Medicinal Products for
Human and Veterinary use — Good Manufacturing

Date and time format

Dot matrix generator

Register of software modules and revisions
Software Control Mechanism (SCM)

ES/WDP Configuration Manual

197-201

15.2 Glossary of terms

ABBREVIATION
AC

Al

AQ
ASCII
BS

BS EN
CAD
CFR
CPU
CSS
DC
DB

DI
DNS
DOL
DQ
DS
DTL
EEMUA
EoC
EN
ERP
ES
Eudralex
EU
FAT
FB

FC
FMS
FS
GAMP
GMP

198-201

DESCRIPTIONS
Alternating Current
Analogue Input
Analogue Output
American Standard Code for Information Interchange
British Standard
British standards (BS) adoption of a European Standard (EN)
Computer Aided Design
Code of Federal Regulations
Central Processing Unit
Cascading Style Sheet
Direct Current
Data Block
Digital Input
Domain Name System
Direct Online
Digital Output
Design Specification (general reference to any design document)
Date Time Long
Engineering Equipment and Materials Users' Association
End of Cycle
European Standards
Enterprise Resource Planning
Engineering Station
European Union Drug Regulation Authority Legislation
European Union
Factory Acceptance Test
Function Block
Function
Fieldbus Message Specification
Functional Specification
Good Automated Manufacturing Practice

Good Manufacturing Practice

ABBREVIATION
GRAFCET
GxP
HDS
HMI
HTML
ID
iDB
IEC
IEC61131-3
IET

JavaScript
iQuery
LAD
Ladder
LTSB
MDF
MIT
MRPII
NC
NO
OB
0Q
OsL
PAL
P&ID
PC
PDF
PDT

DESCRIPTIONS

GRAPHe de Commande Etape-Transition (sequence documentation)

Collective abbreviation for GMP and GXP
Hardware Design Specification

Human Machine Interface

Hypertext Mark-up Language

Instance data block or Identifier

Instance Data Block

International Electro-technical Commission

IEC standard for the syntax and semantics for PLC programming
Institution of Engineering and Technology

Interface Module

Input/Output

Internet Protocol

Installation Qualification

International Society for Pharmaceutical Engineering
International Standards Organisation

Information Technology

A web-based scripting language

A library of JavaScript objects, commonly used in web development

Ladder Logic (PLC programming language)
Ladder Logic (PLC programming language)
Long-Term Service Branch
Medium-density Fibreboard
Massachusetts Institute of Technology (Licence)
Management Resource Planning 2
Normally Closed (type of valve)

Normally Open (type of valve)
Organisation Block

Operational qualification

Operating State Logic

Practical Series Automation Library

Piping and Instrumentation Diagram
Personal Computer

Portable Document Format

PLC Data Type

199-201

ABBREVIATION
PG

Pl

PID

Pl

PIP

PIPI
PIPQ
PIQ
PLC
PN/IE
ProfiBus
Profinet
PSP
QHD
QMS

200-201

DESCRIPTIONS
Programmer (or programming device, see ES)
Process Image
Proportional, Integral, Derivative — a common type of control loop
Process Image of Inputs
Process Image Partition
Process Image Partition of Inputs
Process Image Partition of Outputs
Process Image of Outputs
Programmable Logic Controller (another name for a Siemens
Profinet/Industrial Ethernet
Process Field Buss
Process Field Net
Practical Series of Publications
Quad High Definition
Quality Management System
Quality Plan
Colour standards (Reichs-AusschuB fiir Lieferbedingungen und Giitesicherung)
Random Access Memory
Rate of Change
Resistance Temperature Device
Run Time
Requirements Traceability Matrix
Supervisory Control and Data Acquisition
Software Control Mechanism
Software Design Specification
System Data Type
Style Guide
Software Integration Test document
Software Module Design Specification
Software Module Test document
Start of Cycle
Structural Query Language
Solid State Drive

Statement List (PLC programming language)

ABBREVIATION
TIA

TC
TCP/IP
UbDT

UG

Ul or U/I
UK

URS

Us

USB

uT

VAC
VDC

VP

VSD

WinCC
Table 15.2

Glossary

DESCRIPTIONS
Totally Integrated Solutions (TIA Portal, a Siemens programming tool)
Thermocouple (when referring to 10 cards)
Transmission Control Protocol/Internet Protocol
User Data Type
User Guide
Voltage and current (when referring to 10 cards)
United Kingdom
User requirements specification
United States of America
Universal Serial Bus
User Data Type (alternative abbreviation)
Voltage (alternating current)
Voltage (direct current)
Validation Plan
Variable Speed Drive
A Siemens Simatic SCADA system

201-201

	Title page
	Licence
	Authorisations
	Revision history
	Contents
	1. Introduction
	1.1 Scope of this document
	1.2 Ownership, status & relationship to other documents
	1.2.1 Ownership of the document
	1.2.2 The status of this document
	1.2.3 Relationship to other documents

	1.3 Understanding and using this document

	2. Overview
	2.1 A description of the Project software
	2.1.1 Standard modules, an overview
	2.1.2 Application modules, an overview
	2.1.3 Template modules
	2.1.4 Documentation modules

	2.2 Regulatory requirements
	2.2.1 Software classification
	2.2.2 Regulation and legislative requirements
	2.2.3 Software standards
	2.2.4 Maintenance and publication of verification certificates

	2.3 A description of the User Documentation
	2.4 Assumptions and limitations
	2.5 Nonconformity
	2.6 Addressing the URS requirements

	3. Programming environments and common settings
	3.1 Engineering stations and Windows settings
	3.1.1 Engineering station operating system and hardware specifications
	3.1.2 ES fixed IP address
	3.1.3 Naming the Engineering Station
	The Siemens PC naming convention

	3.1.4 Windows regional settings

	3.2 TIA Portal settings
	3.2.1 Applying PAL settings to TIA Portal
	3.2.2 TIA Portal block overview column settings

	3.3 Common CPU Properties

	4. Naming, numbering and other conventions
	4.1 Block type and numbering conventions
	Organisation Blocks (OBs)
	Functions (FCs)
	Function Blocks (FBs)
	Data blocks (DBs)
	Instance data blocks (iDBs)
	User Data Types (UDTs)
	Built-in system blocks
	4.1.1 Block numbering
	4.1.2 Standard, application and template block numbering
	4.1.3 Data block numbering
	4.1.4 Instance data block numbering
	4.1.5 OB (Interrupt block) numbering
	4.1.6 Document block numbering
	4.1.7 Block numbering summary

	4.2 Module naming Conventions
	4.2.1 Block type
	4.2.2 Block number
	4.2.3 Block class
	4.2.4 Block function
	4.2.5 Block description
	4.2.6 Block naming restrictions

	4.3 Block optimisation & IEC check
	4.4 Tags, parameters, symbolic and absolute representations
	4.4.1 EN and ENO parameters

	4.5 Block parameter naming
	4.5.1 Formal parameters
	4.5.2 Temporary (local) data
	4.5.3 Constants
	4.5.4 Static data (function blocks only)

	4.6 Naming variables in static UDTs
	4.7 Naming variables in dynamic UDTs
	4.7.1 UDTs holding recipe data

	4.8 Naming variables in static DBs
	4.9 Naming variables in dynamic DBs
	4.9.1 DBs holding recipe data

	4.10 Tags and tag naming
	4.10.1 The PAL system tags (PAL_SystemTags)
	4.10.2 The PAL Input/Output tags (PAL_IOTags)
	4.10.3 Project specific tag tables

	4.11 Control system network device naming

	5. Common appearance and version control
	5.1 TIA Portal comment fields
	5.1.1 Maximum size of a comment field

	5.2 Common headers and networks
	5.2.1 Block title and comment field
	5.2.2 Network 1 — Block description
	5.2.3 Network 2 — Current revision and modification history

	5.3 OB 1 header and revision network
	5.3.1 OB 1 Network 1 — Project description
	5.3.2 OB 1 Network 2 — Current revision and modification history

	5.4 General network comments
	5.5 Specific network comments for sequences
	5.5.1 Step declaration network — title and comments

	5.6 Data block header and revision
	5.6.1 Data block revision information
	5.6.2 UDT block revision information

	5.7 Programmable block properties
	5.8 Data block and UDT properties
	5.8.1 Data block properties (static and dynamic)
	5.8.2 UDT properties (static and dynamic)

	5.9 Hardware component comments

	6. Standard modules
	6.1 SMDS contents
	Abstract (overview)
	Section 1 — Block technical summary
	Section 2 — Functional description
	Section 3 — Detailed block description
	Section 4 — Supervisory system interface
	Section 5 — Parameters
	Section 6 — Data structures and usage (and instance data blocks)
	Section 7 — Constants and temporary (local) data
	Section 7.1 — Constants
	Section 7.2 — Temporary (local) data
	Section 8 — Block calls and associations
	Section 8.1 — Block calls from within this module
	Section 8.2 — Blocks associated with this module
	Section 8.3 — System block calls and system data types
	Section 8.4 — Special properties and requirements
	Section 9 — Example usage
	Section 10 —Test and verification path

	6.2 Standard block list and associated documentation
	6.2.1 System function modules
	6.2.2 Instrument read modules
	6.2.3 Interlock and protection modules
	6.2.4 Safety and safety system modules
	6.2.5 Calculations and mathematics modules
	6.2.6 Sequential control
	6.2.7 Device drivers — Control loops
	6.2.8 Device drivers — Valves
	6.2.9 Device drivers — Drives
	6.2.10 Message handling
	6.2.11 Communication handling
	6.2.12 Subroutines
	6.2.13 Debug subroutines

	7. Application modules
	7.1 Application module numbering
	7.2 Sequence annotation
	7.2.1 Sequence IO matrix summary

	8. Interrupt modules
	8.1 Error detection OBs

	9. Template modules
	9.1 Templates for application modules
	9.2 Template modules for organisation blocks

	10. Documentation modules
	11. Common approach to data handling
	11.1 Conventions for using UDTs
	11.1.1 Static UDT conventions
	11.1.2 Dynamic UDT conventions

	12. Common modes of operation
	12.1 Manual mode
	12.2 Bypass mode
	12.3 Simulation mode
	12.4 Remote/local mode
	12.5 Faceplate disable mode

	13. User documentation
	13.1 Organising the user documentation
	13.1.1 The use of a home page

	13.2 Project specific User Documentation
	13.2.1 User Documentation for additional items

	14. Software security
	14.1 The protecting of software modules

	15. References and glossary
	15.1 Document references
	15.2 Glossary of terms

