
Doc: PS2001-5-2311-001 Rev: R02.00 1-201

Title page

Practical Series

PRACTICAL SERIES AUTOMATION LIBRARY
SOFTWARE DESIGN SPECIFICATION

AUTHOR: MICHAEL GLEDHILL

2-201 Doc: PS2001-5-2311-001 Rev: R02.00

Published By:

Practical Series of Publications

Published in the United Kingdom

mg@practicalseries.com

Copyright 2021 Michael Gledhill

Document No.: PS2001-5-2311-001

Document Template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto)

Licence

LICENCE This document and associated software are made available under the MIT License:

The MIT License (MIT)

Copyright © 2021 Michael Gledhill

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the “Software”), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-

LAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

Based on template: PS2001-5-nnnnn-nnn R02.00 SHORT GxP Blank (Ind-Calisto) — Indexable PDF format WebIndex:ber

Doc: PS2001-5-2311-001 Rev: R02.00 3-201

Authorisations

DOCUMENT AUTHORISATION
 NAME POSITION SIGNATURE DATE

Author
Michael

Gledhill
Lead Engineer

21 May 2022

 The signature of the author confirms that the document has been prepared in accordance with an

approved document management process, that all content is technically complete and that all relevant

material has been included.

Reviewed by
Frank

Greenwood

Project

Manager

21 May 2022

The signature of the reviewer indicates that the document has been checked for technical content and

that it complies with the technical standards, specifications and conventions.

Approved by
Frank

Greenwood

Project

Manager

21 May 2022

The signature of the Approver indicates that the document has been checked for compliance with the

quality management Procedures.

4-201 Doc: PS2001-5-2311-001 Rev: R02.00

Revision history

REVISION
 REVISION DATE REVISED BY DESCRIPTION

R02.00 21 May 2022 Michael Gledhill
Properties standardised across all documents

Changes to interrupt and functional group names

R01.00 29 Jul 2020 Michael Gledhill First release for use

Doc: PS2001-5-2311-001 Rev: R02.00 5-201

Contents

CONTENTS

1. Introduction .. 11

1.1 Scope of this document ... 12

1.2 Ownership, status & relationship to other documents 14
1.2.1 Ownership of the document ... 14
1.2.2 The status of this document .. 14
1.2.3 Relationship to other documents .. 14

1.3 Understanding and using this document 16

2. Overview ... 17

2.1 A description of the Project software 17
2.1.1 Standard modules, an overview .. 19
2.1.2 Application modules, an overview ... 21
2.1.3 Template modules ... 26
2.1.4 Documentation modules .. 27

2.2 Regulatory requirements .. 27
2.2.1 Software classification ... 28
2.2.2 Regulation and legislative requirements ... 29
2.2.3 Software standards .. 29
2.2.4 Maintenance and publication of verification certificates 29

2.3 A description of the User Documentation 30

2.4 Assumptions and limitations... 33

2.5 Nonconformity ... 33

2.6 Addressing the URS requirements .. 33

3. Programming environments and common settings 35

3.1 Engineering stations and Windows settings 36
3.1.1 Engineering station operating system and hardware specifications 36
3.1.2 ES fixed IP address ... 38
3.1.3 Naming the Engineering Station ... 39
3.1.4 Windows regional settings .. 42

3.2 TIA Portal settings .. 43
3.2.1 Applying PAL settings to TIA Portal .. 43
3.2.2 TIA Portal block overview column settings .. 45

3.3 Common CPU Properties .. 46

6-201 Doc: PS2001-5-2311-001 Rev: R02.00

4. Naming, numbering and other conventions ... 49

4.1 Block type and numbering conventions 50
4.1.1 Block numbering ... 53
4.1.2 Standard, application and template block numbering 55
4.1.3 Data block numbering ... 56
4.1.4 Instance data block numbering .. 58
4.1.5 OB (Interrupt block) numbering .. 59
4.1.6 Document block numbering .. 60
4.1.7 Block numbering summary ... 61

4.2 Module naming Conventions ... 64
4.2.1 Block type ... 64
4.2.2 Block number .. 65
4.2.3 Block class .. 65
4.2.4 Block function .. 66
4.2.5 Block description .. 67
4.2.6 Block naming restrictions ... 67

4.3 Block optimisation & IEC check ... 68

4.4 Tags, parameters, symbolic and absolute representations .. 69
4.4.1 EN and ENO parameters ... 71

4.5 Block parameter naming ... 73
4.5.1 Formal parameters ... 74
4.5.2 Temporary (local) data.. 75
4.5.3 Constants ... 76
4.5.4 Static data (function blocks only) ... 78

4.6 Naming variables in static UDTs .. 79

4.7 Naming variables in dynamic UDTs 80
4.7.1 UDTs holding recipe data .. 81

Doc: PS2001-5-2311-001 Rev: R02.00 7-201

4.8 Naming variables in static DBs ... 82

4.9 Naming variables in dynamic DBs .. 83
4.9.1 DBs holding recipe data.. 83

4.10 Tags and tag naming .. 84
4.10.1 The PAL system tags (PAL_SystemTags) ... 84
4.10.2 The PAL Input/Output tags (PAL_IOTags) .. 86
4.10.3 Project specific tag tables ... 88

4.11 Control system network device naming 89

5. Common appearance and version control ... 91

5.1 TIA Portal comment fields ... 91
5.1.1 Maximum size of a comment field ... 94

5.2 Common headers and networks .. 95
5.2.1 Block title and comment field ... 96
5.2.2 Network 1 — Block description .. 98
5.2.3 Network 2 — Current revision and modification history 103

5.3 OB 1 header and revision network 105
5.3.1 OB 1 Network 1 — Project description ... 105
5.3.2 OB 1 Network 2 — Current revision and modification history 108

5.4 General network comments ... 110

5.5 Specific network comments for sequences 111
5.5.1 Step declaration network — title and comments 112

5.6 Data block header and revision .. 114
5.6.1 Data block revision information ... 116
5.6.2 UDT block revision information .. 116

5.7 Programmable block properties .. 117

5.8 Data block and UDT properties ... 119
5.8.1 Data block properties (static and dynamic) .. 119
5.8.2 UDT properties (static and dynamic) ... 121

5.9 Hardware component comments .. 122

8-201 Doc: PS2001-5-2311-001 Rev: R02.00

6. Standard modules ... 123

6.1 SMDS contents ... 123

6.2 Standard block list and associated documentation 135
6.2.1 System function modules ... 135
6.2.2 Instrument read modules .. 135
6.2.3 Interlock and protection modules ... 136
6.2.4 Safety and safety system modules ... 137
6.2.5 Calculations and mathematics modules ... 137
6.2.6 Sequential control ... 140
6.2.7 Device drivers — Control loops ... 140
6.2.8 Device drivers — Valves ... 141
6.2.9 Device drivers — Drives ... 141
6.2.10 Message handling ... 142
6.2.11 Communication handling ... 143
6.2.12 Subroutines ... 144
6.2.13 Debug subroutines .. 145

7. Application modules ... 147

7.1 Application module numbering .. 151

7.2 Sequence annotation ... 153
7.2.1 Sequence IO matrix summary .. 162

8. Interrupt modules ... 163

8.1 Error detection OBs .. 165

9. Template modules .. 167

9.1 Templates for application modules 167

9.2 Template modules for organisation blocks 170

10. Documentation modules .. 171

11. Common approach to data handling .. 173

11.1 Conventions for using UDTs ... 173
11.1.1 Static UDT conventions ... 174
11.1.2 Dynamic UDT conventions... 176

Doc: PS2001-5-2311-001 Rev: R02.00 9-201

12. Common modes of operation ... 179

12.1 Manual mode .. 179

12.2 Bypass mode ... 181

12.3 Simulation mode .. 182

12.4 Remote/local mode .. 183

12.5 Faceplate disable mode ... 185

13. User documentation .. 187

13.1 Organising the user documentation 188
13.1.1 The use of a home page ... 192

13.2 Project specific User Documentation 193
13.2.1 User Documentation for additional items ... 194

14. Software security .. 195

14.1 The protecting of software modules 195

15. References and glossary ... 197

15.1 Document references .. 197

15.2 Glossary of terms ... 198

10-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 11-201

1. Introduction

1 Introduction

This document is the Software Design Specification (SDS) for the Practical Series Auto-

mation Library of software modules (the PAL).

This Software Design Specification has been produced by Michael Gledhill, under his

authority as the lead engineer of the Practical Series Automation Library of software

modules project (hereafter referred to as the Project).

The Project software consists of a library of software modules and templates that have

been made available for the Siemens Simatic S7-1500 range of controllers (and to a

lesser extent the S7-1200 range), what used to be referred to as Programmable Logic

Controllers or PLCs.

The PAL is configured and deployed using the Siemens Simatic TIA Portal program-

ming environment.

This document, the Software Design Specification, explains the underlying concepts

of how the software works, the fundamental structure applied to the software and the

common features and practices needed to implement the software.

The SDS is a very detailed document and assumes a degree of knowledge about PLC

programming in general and TIA Portal programming and Simatic Controllers in par-

ticular.

12-201 Doc: PS2001-5-2311-001 Rev: R02.00

1.1 Scope of this document

This document is the main design document for the Practical Series Automation Library

of software modules. It is a detailed document that explains the underlying philosophy

behind the PAL. It does the following:

1 Explains the PAL Controller programme structure

2 Establishes the common properties for S7 Controllers and asso-

ciated hardware

3 Establishes the naming and addressing conventions for Control-

ler hardware and programming devices:

 • PAL network addressing

• Controller naming

• Remote rack naming

• HMI, SCADA and server naming

• Engineering station (ES) naming

4 Establishes the block numbering mechanisms for:

 • Programmable blocks (FC, FB and OB)

• Data blocks and instance data blocks (DB and iDB)

• User data types (UDT)

Doc: PS2001-5-2311-001 Rev: R02.00 13-201

5 Establish naming conventions for:

 • Programmable block names (FC, FB and OB)

• Data blocks and instance data blocks (DB and iDB)

• User data types (UDT)

• Block parameter names

• Local variables and constants

• Tag (symbolic) names

• Data block variables

6 Explains the usage of data types within the PAL

7 Establish the standard PAL global signals

8 Specifies the structure of interrupt organisation blocks

9 Explains common library features (automatic and manual op-

erations &c.)

10 Establish PAL conventions for block optimisation

11 Explains how the operator interfaces (HMI and SCADA) to the

system work

In addition to explaining the PAL software, this Software Design Specification also

explains the user documentation mechanisms used to provide web-based information

about the PAL software; this documentation is embedded within the PAL project files

and is accessible using the user documentation facilities available within the TIA Por-

tal application.

14-201 Doc: PS2001-5-2311-001 Rev: R02.00

1.2 Ownership, status & relationship to other

documents

This document (the Software Design Specification) is a design document for the Pro-

ject, the ownership of the document (those whom control it and are able to modify it),

its status within the Project and its relationship to all other primary documents are

important factors and are explained below:

1.2.1 Ownership of the document

This Software Design Specification has been produced, and is controlled and main-

tained by the Practical Series of Publications (PSP).

This Software Design Specification and all the referenced documents produced by the

PSP are subject to the change control management procedures for this Project, these

are detailed in the Project Quality Plan (QP), [Ref. 001].

1.2.2 The status of this document

The Software Design Specification (this document) is a subordinate document to the

Functional Specification (FS) [Ref. 005] and is a deliverable item under the terms of

the Project. The Software Design Specification is an internally approved document

(approved by the Practical Series of Publications).

1.2.3 Relationship to other documents

The Software Design Specification is a subordinate design document for the Project, it

both expands and provides additional detail to the specifications given in the Func-

tional Specification (FS) [Ref. 006]. The SDS also acts as a coordinating document the

individual Software Module Design Specification documents (SMDSs) [Ref 008].

The full document flow-path for the Project including the Software Design Specifica-

tion is shown in Figure 1.1; full details of this document within this flow-path can be

found in the Project Quality Plan (QP), [Ref. 001] and Validation Plan (VP), [Ref. 002].

Doc: PS2001-5-2311-001 Rev: R02.00 15-201

Figure 1.1 Project Documentation

16-201 Doc: PS2001-5-2311-001 Rev: R02.00

1.3 Understanding and using this document

This document, the SDS, is a detailed design document, it builds upon and expands

the information provided in the Functional Specification (FS), [Ref. 005]. The docu-

ment is concerned specifically with the design and implementation of software for the

Simatic S7-1500 and S7-1200 ranges of Controller; as such, this document is intended

for those whom have a detailed knowledge of Simatic Controller and the TIA Portal

programming environment.

This document uses technical terminology common to both the programming of PLCs

in general and Simatic Controllers in particular; where such terminology is used within

the accepted engineering conventions and customs of this field, it is done so without

further explanation. For example, reference to the “Clock Memory” within a Control-

ler, is done without further explanation, the clock memory being a common and well-

known component of a Simatic Controller; those reading this document are expected

to know what the Controller clock memory is and how to configure and use it.

Doc: PS2001-5-2311-001 Rev: R02.00 17-201

2. Overview

2 Overview

This overview sets out a brief description of the Project software, its purpose and its

design.

2.1 A description of the Project software

The Practical Series Automation Library (PAL) Project is a library of software mod-

ules and templates that can be used to control and develop software for use in Siemens

Simatic Controllers to control and operate most industrial process applications.

The PLC software is designed to be applicable to virtually all industrial applications

that can generally controlled by a programmable logic controller (PLC).

PLCs are general purpose devices designed to control a wide range of process plant

and while PLC are relatively fast acting devices, they, and consequently the PAL soft-

ware, would not be considered suitable for very high-speed applications (bottling ma-

chinery, paper mills, rapid assembly equipment &c.), such system usually have their

own bespoke controller dedicated to the requirements of the particular application.

Generally, PLCs are suitable for processes that operate with a response time of more

than 100 ms. I.e. the system would not be expected to respond to some stimuli faster

than 100 ms. In practice, a Controller may (and usually will) respond faster than this;

but, a response time of 100 ms is considered to be an acceptable (and widely used) limit

for PLC control.

18-201 Doc: PS2001-5-2311-001 Rev: R02.00

The PLC software was developed for, and has been deployed in, the following indus-

trial applications:

• Water and waste water treatment

• Pharmaceutical and batch production

• Brewing and fermentation

• Chemical manufacturing

• Oil and gas systems

• Power plants

• Food and beverage production

At its most fundamental level, the PAL is a library of software modules that control

aspects of an industrial plant; such modules would for example read the value of an

instrument, operate a valve or drive, perform a calculation &c.

Such software modules are referred to as standard modules, these are fixed modules

that perform a particular function and are identical across all software installations.

The PAL software structure contains application specific modules; these contain soft-

ware that is applicable to the plant being controlled, these can be simple coordinating

modules that organise the software into logical areas, marshalling modules that call

the standard modules or programmable modules that contain the control software re-

quired to control specific aspects of the process plant.

In addition, the PAL is supplied with template modules, these serve as example mod-

ules to demonstrate how the PAL modules should be used, and the best practices for

doing so.

Finally, there is a series of documentation modules that demonstrate how the modules

should be documented, commented and named.

Doc: PS2001-5-2311-001 Rev: R02.00 19-201

2.1.1 Standard modules, an overview

Standard modules carry out a particular function; an example would be a module that

controls the operation of a valve, such a module would do the following:

• Open and close the valve when commanded to do so

• Determine if the valve is in a fault condition (i.e. the valve did not

open when commanded to do so)

• Provide status information about the valve allowing other sys-

tems (SCADA, HMI &c.) to display the condition of the valve

(i.e. opened, opening, closed, closing, fault, interlocked &c.)

The module would be configurable to accommodate different types of valves and sig-

nalling arrangements:

• Different arrangements of position feedback (none, open only,

closed only or both open and closed)

• Different opening and closing times

• Handle external fault signals (typical for motorised valves)

• Accommodate different energising states (i.e. energise to open or

energise to close)

• Manage different interlock arrangements and signals

20-201 Doc: PS2001-5-2311-001 Rev: R02.00

The module would also determine how the operator could interface with the valve:

• Provide manual control (operator can take direct control of the

valve)

• Restrict specific manual control function (this ranges from full

control using simulation to override faults, to no control whatso-

ever, even restricting the display of faceplate interfaces)

• Allow or restrict the operator from changing operating parame-

ters associated with the valve

The PAL has many of this type of module; in fact these modules make up the bulk of

the PAL.

The standard modules within the PAL are fixed modules, the software within these

modules has been written, tested and validated and must not be modified or changed

in any way (to do so would invalidate the software).

The standard modules cover all aspects of a control system:

• System (internal) signal generation

• Instrumentation

• Safety and interlock systems

• Calculations

• Continuous control

• Sequence control

• Command execution logic

• Device handling (valves, drives &c.)

• Alarm handling and messages

• Communications

Doc: PS2001-5-2311-001 Rev: R02.00 21-201

There are also various standard subroutines that, while not associated with any partic-

ular piece of equipment, provide common software functions (e.g. timing functions,

string functions, format conversions &c.) that are available to all modules within the

Controller.

The different options available to a standard module are selected by passing parameters

to the module that either activate or deactivate modes of operation or pass configura-

tion values to the module (opening and closing times of a valve, operating range of an

instrument for example).

The mechanisms, data structures, numbering and naming conventions for standard

modules and the methods of passing data to the module is done in conformance with

standard practices set out within the PAL (and within this document).

2.1.2 Application modules, an overview

Application modules are project specific modules; they are written for a particular pro-

ject and are configured to match the requirements of that project.

The project (that is the Controller project that operates some aspect of a plant) is usu-

ally required to control and monitor various devices and instruments. For example,

consider a simple filtration plant (Figure 2.1), this expands on the example given in the

User Requirements Specification (§ 2.1.2) [Ref. 003].

22-201 Doc: PS2001-5-2311-001 Rev: R02.00

Figure 2.1 Filtration plant schematic

Doc: PS2001-5-2311-001 Rev: R02.00 23-201

This has the following valves:

BISTABLE MOTORISED VALVES QUANTITY 2

 DEVICE TAG DESCRIPTION

MV101 Filter 1 inlet valve

MV201 Filter 2 inlet valve

 Table 2.1 Filtration plant equipment — Motorised valves

MODULATING VALVES QUANTITY 2

 DEVICE TAG DESCRIPTION

CV102 Filter 1 outlet valve

CV202 Filter 2 outlet valve

 Table 2.2 Filtration plant equipment — Modulating valves

ISOLATING VALVES QUANTITY 6

 DEVICE TAG DESCRIPTION

VV103 Filter 1 backwash water inlet valve

VV104 Filter 1 backwash water outlet valve

VV105 Filter 1 Air inlet valve

VV203 Filter 2 backwash water inlet valve

VV204 Filter 2 backwash water outlet valve

VV205 Filter 2 Air inlet valve

 Table 2.3 Filtration plant equipment — Isolating valves

It has the following drives:

DOL DRIVES QUANTITY 2

 DEVICE TAG DESCRIPTION

BL501 Backwash blower 1

PM501 Backwash pump 1

 Table 2.4 Filtration plant equipment — Drives

24-201 Doc: PS2001-5-2311-001 Rev: R02.00

And the following instruments:

INSTRUMENTS QUANTITY 3

 DEVICE TAG DESCRIPTION

FIC101 Filter 1 outlet flow

FIC102 Filter 2 outlet flow

LIT501 Backwash tank level

 Table 2.5 Filtration plant equipment — Instruments

In summary, this filtration plant has the following types of devices and instruments:

• 2 × Bistable valves (open/close valve driven by a motor)

• 2 × Modulating valves (can be set to any position between

opened and closed)

• 6 × Isolating valves (open/close valve operated by a solenoid)

• 2 × DOL Drives (simple start/stop motors)

• 3 × Instruments

I.e. it has five different types of devices and instruments.

To programme this project using the PAL five standard modules would be needed (one

for each type of device):

• Standard module for bistable valves

• Standard module for modulating valves

• Standard module for isolating valves

• Standard module for DOL drives

• Standard module for instruments

Doc: PS2001-5-2311-001 Rev: R02.00 25-201

There would also be five project specific applications modules:

• Application module for bistable valves

• Application module for modulating valves

• Application module for isolating valves

• Application module for drives

• Application module for instruments

The first of these (for bistable valves) would call the standard bistable valve module

two times (once for MV101 and once for MV201) and each instance would link the

standard module to the particular IO and internal storage locations associated with the

motorised valve in question.

Similarly, the application module for modulating valves would call the standard mod-

ulation valve module twice (once for CV102 and once for CV202).

The isolating valve application module would call the standard module (for isolating

valves) six times (for VV103, VV104, VV105, VV203, VV204 and VV205).

And so on.

The contents of each application module is dependent on the requirements of the plant

being controlled (specifically how many of each type of device exist). I.e. the applica-

tion modules differ between different projects; the standard modules on the other hand

are the same across all projects.

In the above (filtration) example, the application modules are simply co-ordination

areas that call the required standard modules the requisite number of times; there is

clearly more to a Controller programme than this, something must decide when a valve

is to be opened, a drive started &c. and in the case of the modulating valves something

must decide what position the valve should adopt.

The type of logic that performs these actions is either continuous logic (operates all the

time) or sequential logic (operates as part of a sequence). In this case, the filter would

normally operate under continuous control (the inlet valve would open and the mod-

ulating outlet valve position adjusted to maintain a specific flow from the filter).

26-201 Doc: PS2001-5-2311-001 Rev: R02.00

At some point, the filter will be need to be cleaned (probably at a specific time of day);

the continuous logic would (when the specific time was reached) trigger a cleaning

sequence that would then take control of the filter and clean it. A typical sequence

would be:

• Isolate the filter (take it out of service and close all valves)

• Aerate the filter (open air inlet valve and start blower)

• Backwash the filter with aeration (open backwash inlet and outlet

valves and start backwash pump)

• Washout the filter (stop blower and close air inlet valve)

• Allow filter bed to settle (stop pump and close backwash valves)

• Return filter to service (open inlet and outlet valves)

These modules (continuous logic modules and sequential control modules) are also

application modules.

2.1.3 Template modules

Template modules are example modules that explain how to do things within the PAL,

a typical template module being one that shows how sequences work within the PAL.

Template modules contain a basic configuration that can be copied, expanded and

modified for the application in question; they provide a basic “skeleton” software struc-

ture that can be used repeatedly for a particular type of application.

Templates exist for most application modules and should be used wherever possible as

a model for the application module.

Templates are used to develop the software for a particular plant. Once the software is

complete (or at least past the development stage) the template modules themselves

should be deleted.

Doc: PS2001-5-2311-001 Rev: R02.00 27-201

2.1.4 Documentation modules

The PAL software is extensively commented (indeed, there is a Style Guide (SG)

[Ref. 010] dedicated to explaining how to comment PAL software); the documentation

modules contain examples of different types of comments for the various different soft-

ware modules and data structures used within the PAL.

Like the template modules, the documentation modules are used to make the develop-

ment of the software easier, and should be deleted once the software development is

complete.

2.2 Regulatory requirements

(1) The environments within which the PAL software can be used include pharmaceutical

applications; as such the software must be written to the standards necessary for Good

Manufacturing Practice (GMP), generally referred to as GxP1.

(2) The Validation Plan (VP), [Ref. 002] provides a justification and determination of val-

idation requirements of this Project. The result of this determination is that this Project

is a category 5 “bespoke” system and will comply with, and be written to, the standards

necessary for GxP. These are the most rigorous standards used for control system soft-

ware and hardware development and use.

(3) The GxP requirements are encapsulated in the International Society for Pharmaceuti-

cal Engineering (ISPE) guidelines, referred to as Good Automation Manufacturing

Practice (GAMP), currently at revision 5 (GAMP 5), [Ref. 011]. Systems that are writ-

ten to the standards in GAMP 5 are said to be compliant systems that can be validated.

(4) Validation is the process of making sure a computerised system (such as a PLC and its

software) does precisely what it was designed to do; specifically, it is the exercise of

correctly and traceably documenting every requirement of the system and making sure

that that requirement is formally and exhaustively tested.

1 GxP is a general term for good … practice, where the x stands for various things, manufac-

turing, distribution, laboratory, clinical, engineering, &c.

28-201 Doc: PS2001-5-2311-001 Rev: R02.00

2.2.1 Software classification

(1) This Project, the Practical Series Automation Library, will be written to the standards

specified in GAMP 5, it will be a validated and fully compliant GMP Project. The

precise details of the validation process are specified in the Validation Plan (VP) doc-

ument, [Ref. 002].

(2) GAMP 5 provides the following software categories (category 2 is no longer used):

CATAGORY DESCRIPTION EXAMPLE REQUIREMENTS

1

Infrastructure

Software

Layered software (i.e., upon

which applications are built)

Software used to manage the

operating environment

Operating System

Database Engines

Programming languages

Statistical packages

Spreadsheets

Record version

Verify installation

3

Non-

Configured

Software

Run-time parameters may be

entered and stored, but the

software cannot be configured

to suit the process

Firmware-

Commercial off the shelf

software

As category 1 plus:

URS

Supplier assessment

Tests against URS

4

Configured

Software

Software, often very complex,

that can be configured by the

user to meet the specific needs

of the process.

Application software code is

not altered.

Data acquisition systems:

• SCADA

• HMI

• ERP

• MRPII

As category 3 plus:

Verify supplier QMS

Design specs. (DS)

Tests against DS

Procedures for:

 • Data management

 • Maintenance

5

Custom

(bespoke)

Software

Software custom designed and

coded to suit the process.

Bespoke IT applications

Bespoke control systems

Custom ladder logic

Custom firmware

Spreadsheets (macro)

As category 3 plus:

Full life cycle docs:

 FS, DS, SDS, HDS,

 SMDS &c.

Source code review

Structural testing:

SMT, SIT, FAT,

 IQ, OQ

Table 2.6 GAMP 5 software classifications

(3) The control system and software being developed as part of this Project is

a bespoke system and, under the GAMP 5 classification system, is a cate-

gory 5 system.

Doc: PS2001-5-2311-001 Rev: R02.00 29-201

2.2.2 Regulation and legislative requirements

(1) There are two specific sets of regulations that apply to control systems in pharmaceu-

tical environments:

• CFR 21 Part 11 US Code of Federal Regulations, Title 21, Food and Drugs, Part 11 –

Electronic Records, Electronic Signatures [Ref. 013]

• EudraLex Vol 4

Annex 11

EU Regulations Volume 4: Pharmaceutical legislation – Medicinal Products

for Human and Veterinary use – Good Manufacturing [Ref. 014]

(2) Generally, if a system is compliant with GAMP 5 it will satisfy the EU Regulations

Volume 4, Annex 11.

(3) CFR 21 Part 11 is concerned with the accuracy, reliability and storage of electronic

signatures; this is more relevant to supervisory systems rather than the Controller soft-

ware of this Project; however, were applicable the PAL software will comply with

these regulations.

(4) The Practical Series Automation Library software will be written to comply with the

above regulations, the software will also conform to the standards specified below:

2.2.3 Software standards

(1) The Practical Series Automation Library software will be written to the standards set

down in the International Electrotechnical Commission (IEC) publication 61131-3: Pro-

grammable controllers - Part 3: Programming languages, listed here as [Ref. 012].

(2) All software will be written using Ladder Logic (other languages including statement

list will not be used.

2.2.4 Maintenance and publication of verification certificates

(1) The software library will be validated and will be fully GMP compliant (see § 2.2.1).

The details of the validation process are given in the Validation Plan (VP), [Ref. 002].

(2) The completed verification documents (e.g. test specification, calibration certificates,

&c.) will be made available as secure documents that clearly identify the software mod-

ule and its version number. Each document will be complete with signatures and all

attachments.

30-201 Doc: PS2001-5-2311-001 Rev: R02.00

2.3 A description of the User Documentation

TIA portal supports various mechanisms for storing user documentation for software

modules; the PAL makes extensive use of this facility.

All software modules within the PAL are extensively documented within the modules

themselves, see the Style Guide [Ref. 010] for details, this includes the block headers

and individual network comments discussed in section 5.2.

In addition, the TIA facility for user documentation (referred to as TIA User Documen-

tation) is also used. This facility allows documents to be stored in a variety of formats:

PDF documents, text documents, Microsoft Word documents and also as web pages.

Of all these formats, the PDF format offers the most flexibility, it is readily produced

from the Software Module Design Specifications [Ref. 008] (written in Word DOCX

format), can be configured to use the document headings as navigable bookmarks and

can be rendered in most standard web browser.

The PAL user documentation will also provide links to the various documents gener-

ated within this project. This includes the following:

• The User Guide [Ref. 009]

• The software Design Specification [Ref. 007]

• Individual Software Module Design Specifications [Ref. 008]

• The Style Guide [Ref. 010]

The PAL user documentation will also be developed as a full website, working under

the confines and structures imposed by the TIA User Documentation requirements.

This website provides a standard format for displaying the PAL user documentation,

it has the following appearance:

Doc: PS2001-5-2311-001 Rev: R02.00 31-201

Figure 2.2 Typical PAL user documentation web page

32-201 Doc: PS2001-5-2311-001 Rev: R02.00

The PAL user documentation website will support the following functions in addition

to the standard displaying of text:

• Utilise embedded fonts

• Be responsive to screen resolution (support for phone and tablet

devices)

• Utilise JavaScript and jQuery

• Utilise persistent “sticky” navigation to ensure ease of use

• Provide facilities for:

 • Allowing images to be overlayed on the screen

“lightbox” imaging

• Display code fragments

• Display mathematical formulae

The PAL user documentation website will be distributed within the library software

(distributed as part of the software project itself).

The PAL user documentation website will be available in its own right from with the

PSP internal intranet.

The user documentation web pages will utilise the existing Practical Series of Publica-

tions web documentation facilities; these will be restructured to accommodate the

folder organisation required by the TIA Portal User Documentation (TIA Portal des-

ignates specific folders each type of block documentation). The Practical Series of Pub-

lications web documentation facilities are designed to accommodate this type of re-

structuring.

Doc: PS2001-5-2311-001 Rev: R02.00 33-201

2.4 Assumptions and limitations

(1) The PAL software will be validated to the GxP requirements that are applicable to

Europe and specifically, the United Kingdom at the time of writing.

2.5 Nonconformity

(1) There are no nonconformities between this document and the User Requirements

Specification (URS) [Ref. 003].

(2) The URS specifies that the sequence control logic will be IEC 61131-3 [Ref. 012] com-

pliant (see the section Sequential logic control, § 4.2.2 of the URS, [Ref. 003]); and in-

deed, the associated standard modules are compliant, satisfying the requirements of the

URS.

(3) There is however, a school of thought that the IEC implementation of sequence control

logic has certain impracticalities; this is associated with the terminating phase of one

step overlapping the initialising phase of the next step (both occur in the same PLC

cycle, Section 9.3 of the Functional Specification (FS) [Ref. 005] contains a full descrip-

tion of this point). Engineering application often prefer that the sequence steps do not

overlap in any way (the steps are completely independent); to satisfy this common

engineering practice, a second, non-IEC compliant, version of the sequence logic

modules is included, these maintain the segregation between steps.

(4) The use of these modules is entirely optional.

2.6 Addressing the URS requirements

(1) Where a particular point in the SDS addresses a formal requirement raised in the URS,

the point in the SDS is given a paragraph number, this allows each point to be uniquely

identified by section number and paragraph number. These specifications will be rec-

orded in the Requirement Traceability Matrix (RTM), [Ref. 004].

(2) Paragraphs that are not numbered are not formally addressing a requirement; these

may be introductions to a section, explanatory texts, notes or clarifying statements.

34-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 35-201

3. Programming environme nts and common settings

3 Programming environments

and common settings

(1) The PAL software is written using the Siemens Simatic TIA Portal programming en-

vironment. This is a highly configurable workspace, supporting various windows, task

panes and tool bars all of which are adjustable and selectable by the user. The default

arrangement is shown below:

Figure 3.1 Default TIA Portal configuration

(2) In addition to the TIA Portal configuration settings, TIA Portal also relies on the un-

derlying Windows regional settings; there are some peculiarities with this arrangement

that need to be addressed in order to give a consistent and uniform programming ex-

perience.

(3) Finally, there are common settings that must be enabled for each CPU that is to run

the PAL software, all of which are explained in the following sections:

36-201 Doc: PS2001-5-2311-001 Rev: R02.00

3.1 Engineering stations and Windows

settings

(1) The computer upon which TIA Portal is installed is, in Siemens terminology, referred

to as an Engineering Station or ES. This usually refers to a machine that holds the

development software for the application (as opposed to just the runtime application

for, say, a supervisory system). I.e. it is the programming environment for Controllers,

HMIs and SCADA systems.

(2) This section summarises the following aspects of an Engineering Station:

1 Operating system and hardware requirements of the ES

2 Assigning a fixed IP address to the ES

3 Naming of the ES

4 Regional and date and time setting of the ES

Full details of the Engineering Station configuration including details of all software

installations is given in the ES/WDP Configuration Manual [Ref. 019].

3.1.1 Engineering station operating system and hardware specifications

(1) The PAL software requires TIA Portal (professional) version 16 or higher. Version 16

was released in early 2020 and at the time of writing is the latest version of TIA Portal.

(2) The professional version of TIA Portal is required, this is the version that supports the

S7-1500 range of Controllers. The PAL software is designed specifically to run on the

S7-1500 range of Controllers (it will also run to a lesser extent the S7-1200 range).

(3) As of version 16, TIA Portal professional only supports the Windows 10 and Windows

Server operating systems as shown in Table 3.1:

Doc: PS2001-5-2311-001 Rev: R02.00 37-201

 WINDOWS 10 (64-BIT)

Windows 10 Professional Version — build: 1809 and 1903

Windows 10 Enterprise Version — build: 1809 and 1903

Windows 10 IoT Enterprise 2015 LTSB, 2016 LTSB or 2019 LTSC

 WINDOWS SERVER (64-BIT)

Windows Server 2012 R2 Standard (full installation)

Windows Server 2016 Standard (full installation) †1

Windows Server 2019 Standard (full installation) †1

 Table 3.1 TIA Portal V16 supported operating systems

†1 The full installation referred to here is the Desktop Experience option, this is selectable during the

operating system installation process; the other “standard” option just installs a command line version

of the operating system

Note: LTSB is the long-term service branch of Windows (now renamed LTSC, long-

term service channel), this is a mechanism for restricting Windows updates to

security and bug fixes and allowing the updates to be controlled by the system

administrators. Essentially, this prevents the automatic updates implemented by

the normal Windows 10 operating system.

(4) The Siemens minimum hardware requirements, and the PSP standard specification,

for an Engineering Station running TIA Portal are:

FEATURE SIEMENS RECOMMENDED (MIN) PSP RECOMMENDED

Processor Core i5-6440EQ, 3.4 GHz Core i7-10875H, 5.1 GHz

RAM 16 GB (32 GB for large projects) 16 GB for large projects

Hard disk SSD with at least 50 GB of free space SSD with at least 512 GB of free space

Screen resolution Single 1920 x1080 px monitor Dual QHD (2560 × 1440) px monitors

Table 3.2 TIA Portal V16 hardware requirements

38-201 Doc: PS2001-5-2311-001 Rev: R02.00

3.1.2 ES fixed IP address

(1) TIA Portal always uses an Ethernet network to connect to individual Controllers. The

Controllers and any supervisory systems (HMIs or SCADA) systems will all have fixed

IP addresses; this is standard engineering practice with control systems (control system

networks require individual devices to communicate with each other in a very specific

way and via IP addresses. Unlike office networks where the given IP address of an

individual machine is not particularly important).

(2) Figure 3.2 shows an expanded version of the PAL network architecture, complete with

an Engineering Station and Supervisory System:

Figure 3.2 Expanded PAL network architecture

Doc: PS2001-5-2311-001 Rev: R02.00 39-201

(3) Within this arrangement there are five devices connected via the Ethernet network,

these devices all have fixed IP address within the Ethernet Class C address range

(192.168.1.nnn). The addresses are assigned as follows:

(4)
DEVICE NAME IP ADDRESS DESCRIPTION

CON100 192.168.1.100 Controller 1 — CPU 1515-2PN

CON101 192.168.1.101 Controller 2 — CPU 1511-1PN

OS200 192.168.1.200 Operator station (supervisory system)

ES240 192.168.1.240 Engineering Station (development system)

 Table 3.3 Device names and IP addresses

(5) The Engineering Station, the PC upon which the full TIA Portal professional develop-

ment software is installed, has the fixed IP address of 192.168.1.240 and as such must

be assign this fixed IP address within its Windows operating system.

(6) The ES/WDP Configuration Manual [Ref. 019] gives full details of how to set a fixed

IP address for and Engineering Station.

3.1.3 Naming the Engineering Station

(1) All PCs that form part of the control system should have a network accessible name.

(2) If the PC in question is to run either the WinCC Professional development environ-

ment or the WinCC Professional runtime environment, then the following point

should be observed:

 Importance of setting a PC name

 If WinCC Professional is to be installed on a PC, it is very important to set the name of the

PC BEFORE installing the TIA Portal software; in particular, before installing the WinCC

Professional component. WinCC will hard code the PC name at the time of installation

into the Microsoft SQL database manager setup.

It is very difficult to change the name of the PC after this without re-installing TIA Portal.

(3) The Engineering Station PC will have been assigned a unique name (as part of the

Windows installation process); However, Siemens (particularly WinCC) applications

40-201 Doc: PS2001-5-2311-001 Rev: R02.00

have stricter naming conventions than is permissible in Windows. For Siemens appli-

cations the following rules apply:

 Siemens computer name restrictions

 • The following characters are not permitted:

 . , ; : ! ? " ' ^ ~ _ + = / \

| @ * # $ % & § ° () [] { }

< > ˝ ΄ space

 • All character must be uppercase

 • The first character must be a letter

 • The computer name must be less than 12 characters

(4) The restrictions for Windows are less severe:

 Windows computer name restrictions

 • The following characters are not permitted:

 ? " * : / \ < > |

 • The name cannot start with a full stop .

 • Keep the computer name less than 15 characters

(5) The general rules for naming a PC that is to run the PAL the software are:

1 Use a dash instead of spaces

2 Only use the characters [A-Z], the numbers [0-9] and the

dash/hyphen [-]

3 The name must be less than 12 characters long

4 Start the name with a letter

Doc: PS2001-5-2311-001 Rev: R02.00 41-201

The Siemens PC naming convention

(6) There is a commonly accepted convention for naming the main equipment within a

Siemen control system; it is to start the name with an abbreviation of what the device

is (e.g. ES, OS, CON &c.) followed by the last octet (byte) of the device IP address.

(7) In Figure 3.2, the Engineering Station has the IP address 192.168.1.240, the last octet

of the IP address is thus, 240 and the PC name given to the Engineering Station would

therefore be:

ES240

(8) The following abbreviations are commonly used:

 ABBREVIATION DEVICE

AS
Automation System, another name for a PLC (generally used with

distributed control systems like PCS 7)

ES
Engineering Station, the PC that runs the full development software

(in this case TIA Portal)

OS
Operator Station, a supervisory system (HMI or SCADA). If the

system is a server/client arrangement, OS refers to a client

CON A Controller

SV A server, usually a supervisory system server

PN
Profinet node, usually a remote IO rack, these have a different

numbering arrangement (see § 4.11)

 Table 3.4 Device naming abbreviations

(9) The ES/WDP Configuration Manual [Ref. 019] gives full details of how to name and

configure an Engineering Station.

42-201 Doc: PS2001-5-2311-001 Rev: R02.00

3.1.4 Windows regional settings

(1) TIA Portal is not responsive to the regional settings selected within windows2. TIA

Portal only uses the REGION AND LANGUAGE settings for ENGLISH (UNITED STATES).

(2) Where other regions are used — ENGLISH (UNITED K INGDOM) for example, then

TIA Portal will ignore this and use the default setting for ENGLISH (UNITED STATES).

This tends to mean that dates always default to the American format of mm/dd/yyyy,

and this is generally not acceptable.

(3) The only way to change this is to set the region and language to ENGLISH (UNITED

STATES) and then change the defaults to something more English (British) in nature.

(4) The ES/WDP Configuration Manual [Ref. 019] gives full details of how to set the re-

gional settings for an Engineering Station.

2 This is an omission on the part of TIA Portal, all Windows programmes should adopt the

region settings selected by Windows — it is however consistent with earlier versions of

Siemens programming packages: Simatic Manager (Step 7) and PCS 7; both of which ignored

the Windows regional settings.

Doc: PS2001-5-2311-001 Rev: R02.00 43-201

3.2 TIA Portal settings

(1) The PAL software will be entirely developed using the Siemens Simatic TIA Portal

Professional (Version 16) programming environment.

(2) To provide a common interface format, the PAL uses the default settings for TIA Por-

tal as much as possible. However, there are a few areas where these settings need to be

changed to match the requirements of the PAL.

(3) The ES/WDP Configuration Manual [Ref. 019] gives full details of TIA Portal should

be configured for an Engineering Station. The following sections summarise these set-

tings:

3.2.1 Applying PAL settings to TIA Portal

(1) Certain changes are needed to make the PAL appear in the correct format within TIA

Portal (give TIA Portal a common appearance that matches the requirements of the

PAL, variable naming length &c.), other changes are made to give a more consistent

and convenient arrangement when using TIA Portal.

(2) To make the changes, again open the settings page: select OPTIONS → SETTINGS.

(3) The following changes should be made:

GENERAL

AREA OPTION SETTING

General settings User name
By default, this is the username of the current

windows user. If this is not correct, change it here

Start view

• Most recent

• Portal

• Project

Select project

View for objects in

overview

• Details

• List

• Thumbnail

Select details

44-201 Doc: PS2001-5-2311-001 Rev: R02.00

PLC PROGRAMMING → LAD/FBD (LADDER/FUNCTION BLOCK DIAGRAM)

AREA OPTION SETTING

Operand field Maximum width Set to 26 characters

ONLINE & DIAGNOSTICS → DEFAULT CONNECTION PATH FOR ONLINE ACCESS

AREA OPTION SETTING

Default connection

path for online access
Type of PG/PC interface Select pn/ie

Default connection

path for online access
PG/PC interface

Select the PC network card being used to connect

to the controller (e.g. Intel PRO/1000)

V ISUALISATION SETTINGS

AREA OPTION SETTING

Screens Settings editor Select snap to grid

Screens Grid Set grid size X & Y to 2 (this is the smallest size)

Screens
Standard screen size

(RT Professional)

Set to match resolution of target monitor e.g.:

width 2560

Height: 1440

Resize screen Size adaptation of objects

Disable both, tick the boxes next to:

Disable “fit to size” for text objects

Disable “fit to size” for graphical objects

Table 3.5 Default TIA Portal settings adjustments for the PAL

Doc: PS2001-5-2311-001 Rev: R02.00 45-201

3.2.2 TIA Portal block overview column settings

(1) The block overview screen shows a summary of whatever is selected in the project tree.

The most used application of the overview screen is to view the blocks within a project.

(2) The configuration adopted for the overview screen is not project specific, once set TIA

Portal will apply it to each subsequent project that is opened.

(3) The following column settings should be selected:

Figure 3.3 Show/hide columns Figure 3.4 Show/hide columns dialogue box

(4) The correct order for the columns (from left to right) is:

1 Name

2 Title

3 Address

4 Type

5 Language

6 Optimized block access

7 Modified

8 Family

9 Version

10 Author

11 User-defined ID

12 Load memory

13 Work memory

46-201 Doc: PS2001-5-2311-001 Rev: R02.00

3.3 Common CPU Properties

(1) The PAL is not associated with a particular CPU; it will work on any S7-1500/1200

CPU. It does however require that certain property settings associated with the selected

CPU are activated (and some deactivated). Those settings are described below.

(2) The CPU properties are accessed from the DEVICE CONFIGURATION entry in the TIA

Portal PROJECT TREE (Figure 3.5).

(3) In the project tree select DEVICE CONFIGURATION 1, this opens an image of the Con-

troller rack in the central area, right click the CPU 2 and from the dropdown menu

select PROPERTIES 3, this opens the PROPERTY SETTINGS window in the centre-bottom

area 4.

Figure 3.5 CPU properties

Doc: PS2001-5-2311-001 Rev: R02.00 47-201

(4) As with TIA Portal, the PAL keeps most CPU settings at the default values. The ones

that must be changes are:

PROFINET INTERFACE (X1)

AREA OPTION SETTING

Interface networked

with
Click add new subnet This will change the network to PN/IE_1

IP Protocol
Tick Set IP address in the

project

Enter the correct IP address and subnet for the

Controller

SYSTEM AND CLOCK MEMORY

AREA OPTION SETTING

System memory bits
Enable the use of system

memory byte

This is unticked by default but it is very

important that it remains unticked

Clock memory bits
Enable the use of clock

memory byte
Ensure this box is ticked

Clock memory bits
Address of the clock memory

byte (MBx)
Set to the value 10

PROTECTION AND SECURITY

AREA OPTION SETTING

Connection

mechanisms

Permit access with PUT/GET

communications from remote

partner

Ensure this box is ticked

Table 3.6 Default CPU setting adjustments for the PAL

48-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 49-201

4. Naming, numbering and other conventions

4 Naming, numbering and other

conventions

(1) The following give details of the conventions used to name the various components of

the PAL software:

1 Numbering conventions

2 Block naming conventions

3 Parametric naming conventions

4 Naming conventions for variables and constants

5 Symbolic naming of IO and system tags

6 Project specific tags

(2) Some of these conventions are addressed in detail within the Functional Specification

(FS) [Ref. 005], in these cases, the details are summarised (for completeness) in the

following section; other conventions are explained here for the first time and are ex-

plained in more detail.

50-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.1 Block type and numbering conventions

(1) The PAL uses the block types and data structures available within the Simatic Con-

trollers, these are summarised as follows:

1 Organisation block (OB) Interrupt driven block called in re-

sponse to a specific event detected

by the Controller operating system

2 Function (FC) A subroutine (with or without pa-

rameters) used to structure the soft-

ware or handle recurring or com-

plex functions

3 Function block (FB) Similar to an FC but with an allo-

cated retentive data area

4 Data blocks (DB) User configurable storage areas,

generally used to store information

required by the standard and appli-

cation modules

5 Instance data blocks (iDB) Specialised form of a data block,

used by FBs to store the retentive

data required by the block

6 User data type (UDT) User defined data structures that

can be stored in DBs and iDBs or

passed as parameters to FCs and

FBs

7 System blocks These are predefined blocks that

perform specific functions; the

blocks are built into each Controller

or loadable via TIA Portal

(2) A broad outline of each of these block types and data structures is given in the follow-

ing sections:

Doc: PS2001-5-2311-001 Rev: R02.00 51-201

Organisation Blocks (OBs)

(3) Organisation blocks (OBs) serve as the interface between the Controller operating sys-

tem and the user programme; OB 1, for example, the main organisation block is called

at the start of every Controller cycle and is the only user block that the Controller will

execute automatically (all other user blocks must be called by elements within the user

programme).

(4) Other OBs are called in response to certain events: hardware interrupts, timed inter-

rupts, Controller faults &c. and are given specific numbers, these are discussed in detail

in Section 8.

Functions (FCs)

(5) Functions (FCs) are used to subdivide a programme into meaningful sections or are

used to handle frequently recurring or complex functions; a typical example would be

to have a FC that control a specific device (a valve for example) and then repeatedly

call this FC for each such device in the system.

(6) Using FCs to divide a programme into sections is common practice and makes for

better structuring of the software; allowing the software to be more easily navigated

and faults to be readily identified.

(7) This subdivision of the Controller programme will be widely applied within the PAL

and will have the prescribed structure detailed in Section 4.1.

(8) FCs will form the vast majority of blocks within the PAL.

Function Blocks (FBs)

(9) Function blocks are a special version of functions that are automatically assigned a

data block within which they can store function block specific data.

(10) In practice, FBs are not used in the PAL. However, where third-party software is re-

quired (to interface to specific equipment) these are often provided as FBs and their

use is permitted.

(11) The PAL does not restrict the use of FBs in any way, it simply does not require any

itself for the library modules within it.

52-201 Doc: PS2001-5-2311-001 Rev: R02.00

Data blocks (DBs)

(12) DBs are configurable by the user, but do not contain programming instructions (unlike

the programmable blocks of the previous section), they hold data specified by the user

(variables, constants, working values &c). The data stored in a DB can be anything

and of any supported type (Booleans, integers, byte, floating point numbers, strings

&c.). The structure and configuration of a DB is entirely at the discretion of the user;

DBs are a very flexible and convenient mechanism for storing user information.

Instance data blocks (iDBs)

(13) Instance data blocks are a used by function blocks (FBs) as retentive data storage areas.

These preserve data between successive calls of the block and are a requirement when

using function blocks. Each call of a function block requires its own iDB.

User Data Types (UDTs)

(14) The PAL will rely heavily on the use of data structures to pass information between

modules. UDTs are used to define the internal structure of DBs and can be passed as

parameters into functions (FCs) and function blocks (FBs). Within the Siemens Con-

troller these data structures are variously called User Defined Data Types or User Data

Types or PLC Data Types).

(15) These terms are interchangeable, all meaning a data structure (a collection of named

variables made up of standard data types, grouped together in a named structure). The

original name (predating TIA Portal) was User Defined Data Type (UDT), with the

advent of TIA Portal this became either a User Data Type (again UDT) or PLC Data

Type (PDT). They all mean the same thing (a data structure).

(16) For clarity, the term UDT (User Data Type) will be used to specify a user defined data

structure (or any of the other names it uses).

Doc: PS2001-5-2311-001 Rev: R02.00 53-201

Built-in system blocks

(17) The Simatic Controllers and the TIA Portal programming environment have built in

system blocks that perform specific functions (for example, a PID control loop,), these

blocks will always be used in preference to developing a new block with similar func-

tionality.

(18) These built-in system blocks are pre-configured functions (FCs) and function blocks

(FBs) written and issued by Siemens, they are given numbers in the range 1-999 (this

is a reserved numbering range, reserved for third-party software, and is not occupied

by any of the PAL modules).

(19) Where system function blocks are used, these, like all FBs, will require an instance DB

(see § 4.1.4); these function blocks will generally be contained (called from) within a

standard module, and this standard module will be a function FC, this standard mod-

ule can be considered a wrapper for the system function block. To accommodate the

need for an instance DB required by the contained system function block, the instance

DB to be used will be passed as a parameter to the standard function.

(20) Some system blocks have their own system data structures (referred to as system data

types), these are similar to UDTs but are predefined within the TIA Portal program-

ming environment, where such system data types are required, they will be installed

and issued as part of the PAL software).

4.1.1 Block numbering

(1) The Controller blocks have the following number ranges

BLOCK TYPE PERMISSIBLE NUMBER RANGE PAL NUMBER RANGE IN USE

FB, FC 1-65535
1-60999

(61000 onwards reserved for doc modules)

DB 1-59999 1-59999

OB 1-32767 (not inclusive) 1-122

UDT Unlimited (symbolic addressing is used) 1-59999

Table 4.1 Controller block and UDT number ranges

(2) These number ranges have been split further to allocate different number ranges to the

different block and data block functions within the PAL. The PAL will use the follow-

ing number ranges for the specified module classifications:

54-201 Doc: PS2001-5-2311-001 Rev: R02.00

NUMBER RANGE FC/FB CLASSIFICATION ABBREVIATION DB/UDT CLASSIFICATION

00001-19999 Standard modules Std Static data storage

20001-39999 Application modules App Dynamic data storage

40000-59999 Template modules (application) Tmt Instance data blocks

60000-60999 Template modules (interrupts) Tmt N/A

61000-65535 Documentation modules Doc N/A

Table 4.2 Block and number allocations for the PAL

(3) The PAL software itself is structured according to Figure 4.1

Each entry in this structure is referred to as a function group; All

non-documentation software modules within the PAL (be they

standard modules, application modules, or template modules)

are grouped into subcategories or functional groups that iden-

tify more closely the purpose of each module.

These functional groups also determine the execution order of

the PAL software. The PAL has a predetermined order of pro-

gramme execution; this is shown in Figure 4.1. This shows the

complete PAL programme structure.

The structure of Figure 4.1 is the complete structure of the PAL

software and is applicable to any software developed using the

PAL. Not all Controller programmes will require all these steps

(it depends on the application in question). However, where a

step is used, it must follow the execution order shown in Figure

4.1

Each of the functional groups in Figure 4.1 usually has both an

application block and at least one standard module associated

with it.

Table 4.3 expands on this arrangement.

Figure 4.1 PAL structure

Doc: PS2001-5-2311-001 Rev: R02.00 55-201

4.1.2 Standard, application and template block numbering

(1) The PAL functional groups are allocated numbers within the block types as follows:

FUNCTION GROUP
STANDARD

MODULE NUMBER
APPLICATION

MODULE NUMBER
TEMPLATE

MODULE NUBER

Debug (start of cycle) N/A FC 20nnn FC 40nnn

System functions FC 01ppp FC 21nnn FC 41nnn

Read instruments FC 02ppp FC 22nnn FC 42nnn

Interlock & protection FC 03ppp FC 23nnn FC 43nnn

Safety systems FC 04ppp FC 24nnn FC 44nnn

Calculations & mathematics FC 05ppp FC 25nnn FC 45nnn

Continuous control N/A FC 26nnn FC 46nnn

Sequential control FC 07ppp FC 27nnn FC 47nnn

Command handling N/A FC 28nnn FC 48nnn

Reserved N/A N/A N/A

Device drivers (control loops) FC 10ppp FC 30nnn FC 50nnn

Device drivers (valves) FC 11ppp FC 31nnn FC 51nnn

Device drivers (drives FC 12ppp FC 32nnn FC 52nnn

Message handling FC 16ppp FC 36nnn FC 56nnn

Communication handling FC 17ppp FC 37nnn FC 57nnn

(subroutines) FFC 18ppp N/A N/A

Debug (end of cycle) FC 19ppp FC 39nnn FC 59nnn

Table 4.3 Functional group summary nnn indicates any number in the range 0 to 999; thus,

37nnn is any number in the range 37000-37999

ppp indicates any number in the range 1 to 999; thus,

02ppp is any number in the range 02001-02999

(2) Standard blocks are self-contained units of software, they do not use subroutines, they

may however use the built-in system blocks. Certain standard modules are associated

with or work in partnership with other standard modules (certain communication

mechanisms require both a send and receive module and the sequence modules have

more than one component).

56-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.1.3 Data block numbering

(1) Data blocks are the primary mechanism for storing data within the PAL and for pass-

ing data between blocks.

(2) Depending on the nature of the module, there may be a considerable amount of such

data and all this data will be stored in data blocks. Within the PAL, this data will fall

into two categories:

1 Static data

2 Dynamic data

(3) Static data specifies constant (preset) values that have some meaning for the block in

question (e.g. the opening time of a valve, the hysteresis of an alarm setpoint, limit

switch arrangements for a valve &c.). Static data does not change (the data is usually

configured during the commissioning of the plant and then remains fixed and unchang-

ing for the lifetime of the plant).

(4) Dynamic data is live, operating data (e.g. if a valve is in the process of opening, the

elapsed time of the operation will be stored in a dynamic data area).

(5) This data, whether static or dynamic must be passed to the block as parameters. To do

this, the data will be configured as data structures within the data blocks. These data

structures will be configured as user data types (UDTs). Each block will generally have

two such structures, one for static data and one for dynamic data; these structures will

be unique to the block in question.

(6) Static data will be passed to a block via an INPUT parameter (i.e. read only), this is data

that is required by the block, but will not be modified by it. This static data will be

stored in a data block using a UDT data structure, the INPUT parameter to which this

data is linked, will use the same UDT as its data type.

Note: Other data may also be passed in this way, specifically, this will be information

that will not be modified by the block, system information for example.

(7) Dynamic data will be passed to the block via an INOUT parameter (i.e. read/write

data), this is data that is required by the block, and that will be modified by it. This

Doc: PS2001-5-2311-001 Rev: R02.00 57-201

dynamic data will be stored in a data block using a UDT data structure, the INOUT

parameter to which this data is linked, will use the same UDT as its data type.

(8) Static and dynamic data will always be stored in separate data blocks, designated as

static and dynamic and these will have their own numbering ranges:

(9)
DB NUMBER RANGE TYPE OF DATA

00000-19999 Static data

20000-39999 Dynamic data

 Table 4.4 PAL static and dynamic data block numbering ranges

(10) Where a standard module has a static data assignment or a dynamic data assignment

or both (this is most cases), then UDTs will be defined to hold the static data and the

dynamic data. The static UDT will be given the same number as the standard block

with which it is associated, the dynamic data will have the same number plus 20000.

(11) For example, if FC 10001 is used, the static UDT will have number 10001 and the

dynamic UDT will have number 30001.

(12) Similarly, the data blocks that hold the static and dynamic data will have the same

numbers as the UDT.

(13) Extending the previous example, FC 10001 would have static UT 10001 and Dynamic

UT 30001, these would be stored in DB 10001 (static data) and DB 30001 (dynamic

data).

58-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.1.4 Instance data block numbering

(1) Where a function block (FB) is used, this will have an associated instance data block

(iDB), this is a requirement of the Simatic Controller software itself.

(2) Generally, only third-party software will use FBs, all standard and application modules

will be stored in functions (FCs) that do not require instance data blocks.

(3) The instance data block assigned to a particular function block will be in the numbering

range:

(4)
DB NUMBER RANGE TYPE OF DATA

40000-59999 Instance data blocks

 Table 4.5 PAL instance data block numbering range

(5) The actual number can be freely allocated within this range; i.e. the instance DB num-

ber does not have to match the FB number, the numbering should however reflect

logical grouping of the instance DBs.

Doc: PS2001-5-2311-001 Rev: R02.00 59-201

4.1.5 OB (Interrupt block) numbering

(1) Interrupt blocks are of two types: general event interrupts (non-fault) that detect spe-

cific events within the Controller (e.g. a time of day, hardware interrupt &c.) and fault

interrupts that detect errors and other adverse conditions). The following give a full list

of both types of interrupt blocks:

(2) General, non-error interrupts:

OB NUMBER PAL MODULE NAME DESCRIPTION

OB 1 OB00001_IntINrmMainProgram
Controller main program cycle

Called at the start of each Controller cycle

OB 10 OB00010_IntINrmNTimeOfDay
Time of day Interrupt

Called by time and day of week

OB 20 OB00020_IntINrmNTimeDelay
Time delay Interrupt

Called after a specified delay has expired

OB 30 OB00030_IntINrmNCyclic
Cyclic Interrupt

Called at specified intervals

OB 40 OB00040_IntINrmNHardware
Hardware Interrupt

Called when a specified signal is detected

OB 100 OB00100_IntINrmNStartUp
Start-up Interrupt

Called when the CPU transitions to RUN

Table 4.6 Non-error interrupt modules and organisation blocks

(3) Fault (error) condition interrupts:

OB NUMBER PAL MODULE NAME DESCRIPTION

OB 80 OB00080_IntIErrECycleTimeErr
Error Interrupt

Maximum cycle time exceeded

OB 82 OB00082_IntIErrEModuleDiag
Error Interrupt

Module diagnostics signal received (module fault)

OB 83 OB00083_IntIErrEModuleChange
Error Interrupt

Module changed, removed or installed

OB 86 OB00086_IntIErrERackErr
Error Interrupt

Pack failure or fault

OB 40 OB00121_IntIErrEProgramErr
Error Interrupt

Programming fault or error

OB 100 OB00122_IntIErrEIOErr
Error Interrupt

IO card access fault

Table 4.7 Fault interrupt modules and organisation blocks

60-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.1.6 Document block numbering

(1) The PAL software is extensively documented and makes us of various naming con-

ventions for variables, constants &c.

(2) The standards and conventions for documenting the PAL software is detailed in a sep-

arate document: the Style Guide [Ref. 010].

(3) The Style Guide, defines a series of rules, guidelines and practices that produce a con-

sistent (and pleasing) programming style. It is the basis for all documentation within

the PAL modules and templates.

(4) The practices specified in the style guide are summarised within the documentation

modules, these are intended to be proforma examples of comments, variable and con-

stant naming and block parameterisation.

Doc: PS2001-5-2311-001 Rev: R02.00 61-201

4.1.7 Block numbering summary

(1) There are five types of software modules included with the PAL:

1 Standard modules Library modules that carry out a

particular function, for example reading

and scaling an instrument connected to

the Controller.

2 Application modules Project specific modules that coordinate

the use of the standard modules and

apply appropriate logic and signal

conditioning relevant to the project in

question

3 Template modules Example modules that show how

application modules should be

constructed and how standard modules

should be used

4 Document modules Modules containing information

explaining how to document project

specific modules and examples of such

documentation

5 Interrupt modules These are specifically the organisation

blocks used to process different types of

interrupt operations and fault detection

(2) Within the PAL these individual types of modules are assigned to functions (FCs). The

interrupt modules are exclusively assigned to organisation blocks (OBs).

(3) The PAL also supports user data types (UDTs), these are used to define and organise

the data needed by each standard module, generally a standard module will have both

static data (holding the fixed, configuration information for the module) and dynamic

data (the live, changing data required by the module).

62-201 Doc: PS2001-5-2311-001 Rev: R02.00

(4) The data required by the standard modules (and defined in the UDTs) is held in data

blocks, these being designated static data blocks (holding multiple instances of the static

UDT) and dynamic data blocks (holding multiple instances of the dynamic UDT).

(5) A third type of data block, the instance data block, is needed whenever a function block

(FB) used.

(6) In summary, the following types of data structures and data blocks are supported by

the PAL:

1 Static user data type Data structures specific to each stand-

ard module that hold fixed, unchang-

ing, configuration data for the module

2 Dynamic user data type Data structures specific to each stand-

ard module that hold live, variable, op-

erational data for the module

3 Static data block A data block that holds the multiple in-

stances of the static UDT associated

with the standard module (one instance

per call of the module)

4 Dynamic data block A data block that holds the multiple in-

stances of the dynamic UDT associated

with the standard module (one instance

per call of the module)

5 Instance data block A data block that holds function block

data for a standard module that is allo-

cated to a function block (FB) rather

than a function (FC), there is one in-

stance data block allocated to each in-

stance in which the FB is used

Doc: PS2001-5-2311-001 Rev: R02.00 63-201

(7) The type of module is identified by block number allocated to it. This is summarised

in the following table:

BLOCK TYPE NUMBER RANGE CLASS DESCRIPTION

OB OB00001-00122 Int Interrupt handling modules

FC/FB FC/FB00001-19999 Std Standard modules

FC/FB FC/FB20001-39999 App Application modules

FC FC40000-60999 Tmt Template modules

FC FC61000-65535 Doc Document modules

UDT UT00001-19999 St_ Static data structure

UDT UT20001-39999 Dy_ Dynamic data structure

DB DB00001-19999 St_ Static storage data block

DB DB20001-39999 Dy_ Dynamic storage data block

iDB DB40000-59999 iDB Instance data blocks (associated with FBs)

Table 4.8 Full range and type of module numbering for the PAL

(8) Each of these number ranges is broken down further in relations to the subdivisions

within the PAL software structure.

64-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.2 Module naming Conventions

(1) Within the PAL all modules (blocks and UDTs) are given a name; that name has a

particular structure that includes the block type (above), the block number (address), a

block class, a block function attribute and a description formatted as follows:

BBnnnnn_CccFffffDddddddd

Where:

 ITEM MEANING DETAILS

 BB Block type 2 characters

 nnnnn Block number 5 digits (in the range 00000-59999)

 Ccc Block class 3 characters (see block class below)

 Fffff Block function 5 characters max (see block function below)

 Dddddddd Block description Short description of the block

 Table 4.9 Block naming components

Each of these is summarised in the following sections:

4.2.1 Block type

(1) There are four common types of block associated with Siemens Controllers, three pro-

grammable blocks (functions, function blocks and organisation blocks), and global

data storage blocks (data blocks). There are also instance data blocks that hold infor-

mation for specific function blocks. Finally, the PAL treats User Data Types as blocks

(UDTs are not blocks, but the PAL always associates then with a specific block and

names them accordingly).

Doc: PS2001-5-2311-001 Rev: R02.00 65-201

(2) Each of these block types (and the UDTs) is given a two-letter abbreviation, the block

identifier (BB) that uniquely identifies its type within the software:

 BLOCK ID MEANING

 FB Function block

 FC Function

 OB Organisation block

 DB Data block

 ID Instance data block

 UT User data type

 Table 4.10 Two letter block abbreviations

(3) All block names (and UDT names) will start with one of these block identifier abbre-

viations.

4.2.2 Block number

(1) The block number (nnnnn) is simply the five-digit block number (with leading zeros)

given by the functional groupings, Table 4.3 and the general block numbering arrange-

ments, Table 4.2

4.2.3 Block class

(1) The block class (Ccc) is abbreviated as follows:

 ABB. CLASS MEANING

 Std Standard Standard block

 App Application Application block

 Int Interrupt Interrupt block

 Tmt Template Template block

 Doc Documentation Documentation block

 Dy_ Dynamic Data block and UDT only (contains live, dynamic, data)

 St_ Static Data block and UDT only (contains static data)

 Rc_ Recipe (semi static) Data block and UDT only (data is loaded from a recipe)

 Table 4.11 Block naming classes

66-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.2.4 Block function

(1) The block function (Fffff) is abbreviated as follows:

 ABB. FUNCTION MEANING

 Sys System System block

 Inst Instrumentation Instrument block

 ILock Interlocks Interlock, permissive and trip logic

 Safe Safety Safety systems

 Calc Calculations Calculation and mathematics

 Cont Continuous Continuous control logic

 Seq Sequence Sequential control logic

 Cmd Command Command handling

 Dev Device drivers Device drivers

 Msg Messages Alarm, warning, event and prompt handling

 Comms Communications Communication handling

 Sub Subroutines Subroutine functions

 INrm Normal Interrupts Normal (non-error) interrupt functions

 IErr Error Interrupts Error interrupt functions

 Debug Debug Debug functions

 Gen General General (or global) usually applicable to documentation

 Table 4.12 Block naming Functions

Doc: PS2001-5-2311-001 Rev: R02.00 67-201

4.2.5 Block description

(1) The block description (Dddddddd) does not have a prescribed list of naming options;

it is simply a short form description of what the block does. Examples are:

 ABB. MEANING

 AnalogRead Analogue read

 ValveMod Modulating valve

 DriveVSD Variable speed drive

 Table 4.13 PAL block naming — description

(2) Block descriptions are always written without spaces using camel case3; typically, block

descriptions should be 12 characters or fewer in length.

4.2.6 Block naming restrictions

(1) The basic restrictions on naming blocks within the PAL are:

1 The Class abbreviation is three characters long and starts with a

capital letter

2 The Function abbreviation is no more than five characters long

and must start with a capital letter

3 The Description does not have a restriction on the number of

characters but should generally be kept short

4 Each separate word in the description is capitalised with all other

letters in lowercase (this includes the first word)

5 The overall length of the name (including class, function and de-

scription) must be 20 characters or less

6 Only the characters [a-z], [A-Z], the numbers [0-9], the dash/hy-

phen [-] and the underscore [_] are permitted

3 Camel case is the practice of joining words together and capitalising the start of each word,

it is more formal known as medial capitals).

68-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.3 Block optimisation & IEC check

(1) Within the PAL, all blocks (OB, FB, FC and DB) should be set to use OPTIMIZED

BLOCK ACCESS, this is selected from the block properties

(2) The block properties are accessed by right clicking the block (either in the project tree

or on the overview screen) and selecting PROPERTIES from the dropdown list, this opens

the properties dialogue box, block access is under the ATTRIBUTES section:

Figure 4.2 Optimized block access

(3) By default, OPTIMIZED BLOCK ACCESS is activated in TIA Portal and generally, this is

the arrangement that is wanted, it allows for symbolic addressing of data within block

parametric interfaces and in data blocks. It gives faster access within the Controller to

data elements.

(4) There are occasions (usually for non-Simatic supervisory systems) where data blocks

need to be addressed absolutely, under these circumstances it is permissible to disable

OPTIMIZED BLOCK ACCESS for the blocks in question

(5) The IEC CHECK box must be ticked for all standard modules (by default it is unticked),

this ensures that the block is compliant with all aspects of IEC modules given in

IEC6113-3 [Ref. 012], particularly in reference to library module standards.

Doc: PS2001-5-2311-001 Rev: R02.00 69-201

4.4 Tags, parameters, symbolic and absolute

representations

(1) Tags, parameters and symbols are terms that are commonly renamed, interchanged

and generally misused in PLC programming. To clarify things, this section explains

the correct usage and application of the terms. They are shown in context below:

Figure 4.3 Tags, parameters, symbols and absolute addresses

(2) Figure 4.3 shows tags with both symbolic and absolute representation and parameters,

both formal and actual.

(3) Tags are symbolically named items within the Controller. Most tags are associated with

an element that has an absolute address; such elements being inputs, outputs, internal

memory, timers, counters &c.

(4) In Figure 4.3, item 2 is a tag with the symbolic name V001_OPENED_LIM and the

absolute address I1.0 (this is shown as item 1, and preceded with a % sign — indi-

cating an absolute address).

(5) Some tags (particularly those associated with data blocks) do not have an associated

absolute address (item 4); such tags are identified purely by their symbolic name.

(6) Parameters: both functions (FCs) and function blocks (FBs) support the passing of

information to and from the block with the use of parameters. These parameters are

defined within the block itself and are apparent when the block is called as the

70-201 Doc: PS2001-5-2311-001 Rev: R02.00

parameter name shown within the block (item 3) in Figure 4.3; the parameters have

a short connection point outside the block to which logic instructions or tags can be

attached.

(7) These connection points have different colours depending upon the data type of the

connection: all Boolean connection points are coloured black; these connections can

have logical instructions connected to them.

(8) All other data type connections (integers, real, strings, UDTs, &c) are coloured orange;

these connections are to direct data points (e.g. some variable within a data block, a

constant or local variable or even a hardcoded value) and do not support the connec-

tion of instructions.

The block parameter itself, item 3 is referred to as the formal parameter. The tag at-

tached to the parameter (item 2 in this case) is called the actual parameter.

(9) As a convention within this document, formal parameters are referred to as just “pa-

rameters”, where a distinction is made with actual parameters; the actual parameter

will be referred to as an “actual parameter”. This distinction is often not necessary; it

is usually made clear by the context of the subject under discussion.

(10) Standard modules are true library modules and conform to the standards required of

such modules, in terms of the Siemens Simatic programming standards this is:

• Library modules must not use global data access (of memory bits,

IO signals, timers, counters &c.)

• Library modules must not directly access data blocks or instance

data blocks

(11) It is for this reason that the common system logic and timing signals (see § 4.10.1) are

passed parametrically to the block in the SYS_SIGNALS parameter; all standard modules

have this parameter

Doc: PS2001-5-2311-001 Rev: R02.00 71-201

4.4.1 EN and ENO parameters

(1) Within the TIA Programming environment all functions and function blocks have the

Boolean connections EN (enable in) and ENO (enable out). By default the ENO

connections are configured in TIA Portal to always return a true value (the signals

are said to be disabled); this means that blocks can be daisy chained together in a line

(the EN of downstream block being connected to the ENO of the preceding block):

Figure 4.4 Daisy chaining blocks with ENO disabled

(2) With ENO disabled, block 2 will always execute (ENO being set constantly to a true

value). In programming terms, it is identical to the following:

Figure 4.5 Equivalent call mechanism with ENO disabled

72-201 Doc: PS2001-5-2311-001 Rev: R02.00

(3) If the ENO is not disabled (right click the block and select generate ENO from the

dropdown), then the function can influence the state of the ENO; it could set it to a

false value and if this were the case block 2 of Figure 4.4 would not be executed.

(4) The PAL maintains the TIA Portal default of disabling ENO on all blocks. This allows

blocks to be daisy chained together in the manner of Figure 4.4.

(5) The EN is used to enable the calling of the block (or instruction) to which it is con-

nected. If the EN connection is false, the block will simply not be executed (and

neither will any downstream blocks if they are daisy chained).

(6) The use of EN is permitted under the PAL, although none of the blocks within the

PAL use it themselves. Blocks written by the user can use the EN as they see fit (even

to call the PAL standard blocks). The only caveat being that daisy chained blocks will

not be executed if any upstream EN signal is false.

(7) Generally, it is better practice to use the structure of Figure 4.5; this is more unequiv-

ocal and is the structure used within the PAL templates.

(8) Some instructions also have the EN and ENO functions; these are often used within

the PAL.

Note: In Figure 4.5 the always true signal (_True) is used before calling multiple

blocks, this is a requirement of TIA Portal, branches can only be inserted after an

instruction; it is a short hand way of grouping block calls and is used extensively

within the PAL software.

Doc: PS2001-5-2311-001 Rev: R02.00 73-201

4.5 Block parameter naming

(1) Both functions (FCs) and function blocks (FBs) support the passing of information to

and from the block with the use of parameters. These parameters are defined within the

block and are apparent when the block is called as the parameter name shown within

the block itself.

(2) The parameters are specified by editing the interface of the block from within the block

editor (the BLOCK INTERFACE):

Figure 4.6 Formal parameter declarations

74-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.5.1 Formal parameters

(1) The formal parameters are divided into four groups:

1 INPUT

2 OUTPUT

3 INOUT

4 RETURN

(2) The fourth group (RETURN) is not generally used within the PAL (or indeed within

wider PLC programming circles). It is included to make the blocks compatible with

the IEC requirements for programming languages. By default, the RETURN parameter

is given the same symbolic name as the block and is declared as a VOID data type (VOID

types are essentially “empty” data types that have no value and cannot hold a value).

If the RETURN parameter is declared as a void, it will not be visible when the block is

called.

(3) The RETURN parameter is not used within the PAL, but the PAL does permit its use,

however, it is not common practice to use this parameter; where it is used it is generally

employed to return fault codes from the function.

(4) The remaining parameter types (INPUT, OUTPUT and INOUT) are widely used

throughout the PAL (particularly by the standard blocks).

(5) The PAL naming convention for formal parameters is as follows:

1 Parameter names use uppercase characters only

2 Only the characters [A-Z], the numbers [0-9] and the under-

score [_] can be used

3 Spaces are represented by the underscore character

4 The parameter name must not start with a number or under-

score (do not use consecutive occurrences of the underscore)

5 The parameter name must be 15 characters or less in length

Doc: PS2001-5-2311-001 Rev: R02.00 75-201

(6) All parameters must have a comment in the block interface to explain the function of

the parameter. This is important; the text in the comment field will appear as a tool tip

when hovering over the parameter on a called version of the block.

4.5.2 Temporary (local) data

(1) Local (or temporary) data (point 5 in Figure 4.6) is used to store temporary or inter-

mediate data locally to the block within which it is defined. The data is not accessible

to any other block (i.e. any data stored within the TEMP area is not accessible externally

to the block).

(2) Local data is not permanent; data within a local variable is only present until the end

of the block is reached. The data has to be reinitialised (or recalculated) each time the

block is executed.

(3) Where local data is used within a PAL block it is always given a symbolic name start-

ing with either the prefix wrk (for a working or intermediate value), act (for an actual

value), cal to denote a calculation has taken place or seq if it is part of a sequential

control block. The rest of the name is given in camel case. E.g.:

 actElapsedTime

 wrkPermActEn

 calDeadbandPercentage

 seqThisStep

(4) Two other prefixes rev and lic are also used, these store revision and licensing infor-

mation and are common to all blocks.

76-201 Doc: PS2001-5-2311-001 Rev: R02.00

(5) The basic restrictions on local variable names within the PAL are:

1 The name must be prefixed with rev, lic, act, wrk, cal or

seq

2 The rest of the name must be written in camel case

3 The name (including prefix) must be no more than 24 charac-

ters

4 Only use the characters [a-z], [A-Z], the numbers [0-9] and the

underscore character [_]

(6) All local data must have a comment in the block interface to explain the function of

the variable.

4.5.3 Constants

(1) Constants are declared in the CONSTANT area of the BLOCK INTERFACE (point 6 in

Figure 4.6). These are defined with a data type and an INITIAL VALUE. This INITIAL

VALUE is the value given to the constant. Constant values are constant (somewhat obvi-

ously) and cannot be changed within the block (any attempt to write a value to a con-

stant will be reported as an error).

(2) Constants can only be used within the block where they are defined; they are not avail-

able to other blocks.

(3) Where a constant is used within a PAL block it is always given a symbolic name start-

ing with the prefix k_. The rest of the name is given in uppercase. E.g.:

 k_MIN_TIME

 k_SECONDS_PER_HOUR

Doc: PS2001-5-2311-001 Rev: R02.00 77-201

(4) The basic restrictions on constant names within the PAL are:

1 The name must be prefixed with k_ (all lowercase)

2 The rest of the name must be written in uppercase

3 The name (including prefix) must be no more than 21 charac-

ters

4 Only use the characters [k], [A-Z], the numbers [0-9] and the

underscore character [_]

5 The underscore character should be used in place of a space to

separate words

(5) All constants must have a comment in the block interface to explain the function and

usage of the constant.

78-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.5.4 Static data (function blocks only)

(1) Function blocks (FBs) support the use of static (local) data. Static data is permanent

data that is stored in the instance data block associated with the function block. Static

data is retained permanently between repeated calls of the block (the data will be pre-

sent until changed by some operation within the block).

(2) Static data is specified by editing the interface of the block from within the block itself

(the BLOCK INTERFACE), similar to the formal parameters of Figure 4.6

(3) Where static data is used within a PAL block it is always given a symbolic name start-

ing with the prefix St_. The rest of the name is given in camel case. E.g.:

 St_LastState

 St_PreviousCount

(4) The basic restrictions on static variable names within the PAL are:

1 The name must be prefixed with St_

2 The rest of the name must be written in camel case

3 The name (including prefix) must be no more than 24 charac-

ters

4 Only use the characters [a-z], [A-Z], the numbers [0-9] and the

underscore character [_]

(5) All static data must have a comment in the block interface to explain the function of

the variable.

Doc: PS2001-5-2311-001 Rev: R02.00 79-201

4.6 Naming variables in static UDTs

(1) Static UDTs are static only in terms of how they are used within the PAL, all UDTs

are of a read/write nature (it is not possible to declare a constant within a UDT — as

is the case with FCs and FBs).

(2) Static UDT data should not be overwritten by any operation within the PAL (there is

an exception for recipe data, see § 4.7.1.).

(3) Entries within a static UDT are given symbolic names in uppercase:

Figure 4.7 Example static UDT

E.g.:

 CONFIG_ALM_H_EN

 CONFGIG_FP_OFF

80-201 Doc: PS2001-5-2311-001 Rev: R02.00

(4) The basic restrictions on static UDT element names within the PAL are:

1 The name must be written in uppercase

2 The name must be no more than 21 characters

3 Only use the characters [A-Z], the numbers [0-9] and the under-

score character [_]

4 The underscore character should be used in place of a space to

separate words

(5) All elements must have a comment in the block interface to explain the function and

usage of the element.

(6) All elements within a static UDT should be declared as SETPOINTS (the SETPOINT box

should be ticked).

4.7 Naming variables in dynamic UDTs

(1) Dynamic UDTs can be freely overwritten by blocks within the PAL, (there are no

restrictions).

(2) Entries within a dynamic UDT are given symbolic names in camel case.

Figure 4.8 Example dynamic UDT

Doc: PS2001-5-2311-001 Rev: R02.00 81-201

E.g.:

 Status_BypassOn

 Mode_AutMan

(3) The basic restrictions on dynamic UDT element names within the PAL are:

1 The name must be written in camel case

2 The name must be no more than 25 characters

3 Only use the characters [a-z], [A-Z], the numbers [0-9] and the

underscore character [_]

(4) All elements must have a comment in the block interface to explain the function and

usage of the element.

(5) All elements within a dynamic UDT must not be declared as SETPOINTS (the

SETPOINT box should always be unticked).

4.7.1 UDTs holding recipe data

(1) Under certain (very limited) circumstances, the data in a static UDT can be overwrit-

ten. These circumstances arise when some form of recipe handling is being performed.

(2) Recipes consist of preconfigured data sets that are selected by the operator and then

loaded into the Controller (via some external device such as a SCADA or HMI). Such

recipe data sets are permitted to overwrite (overload) a static UDT (essentially the static

UDT is being selected for a particular set of production requirements).

(3) Once a recipe has overloaded a static UDT, the data in that UDT is then fixed (and

will not be overwritten) until the operator selects a different recipe.

(4) Data blocks that hold static UDTs that are under the control of a recipe are given the

class Rc_ (rather than St_), the UDT retains the St_ designation and retain the prop-

erties specified in § 4.6 (i.e. all uppercase &c.).

82-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.8 Naming variables in static DBs

(1) Static DBs are static only in terms of how they are used within the PAL, all DBs are

of a read/write nature (it is not possible to declare a constant within a DB — as is the

case with FCs and FBs).

(2) Static DB data must not be overwritten by any operation within the PAL (there is an

exception for recipe data, see § 4.9.1.).

(3) Entries within a static DB are given symbolic names in uppercase.

(4) The basic restrictions on static DB element names within the PAL are:

1 The name must be written in uppercase

2 The name must be no more than 21 characters

3 Only use the characters [A-Z], the numbers [0-9] and the under-

score character [_]

4 The underscore character should be used in place of a space to

separate words

(5) All elements must have a comment in the block interface to explain the function and

usage of the element.

(6) All elements within a static DB should be declared as SETPOINTS (the SETPOINT box

should be ticked).

Doc: PS2001-5-2311-001 Rev: R02.00 83-201

4.9 Naming variables in dynamic DBs

(1) Dynamic DBs can be freely overwritten by blocks within the PAL, (there are no re-

strictions).

(2) Entries within a dynamic DB are given symbolic names in camel case.

(3) The basic restrictions on dynamic DB element names within the PAL are:

1 The name must be written in camel case

2 The name must be no more than 25 characters

3 Only use the characters [a-z], [A-Z], the numbers [0-9] and the

underscore character [_]

(4) All elements must have a comment in the block interface to explain the function and

usage of the element.

(5) All elements within a dynamic DB must not be declared as SETPOINTS (the SETPOINT

box should always be unticked).

4.9.1 DBs holding recipe data

(1) Under certain (very limited) circumstances, the data in a static DB can be overwritten.

These circumstances arise when some form of recipe handling is being performed.

(2) Recipes consist of preconfigured data sets that are selected by the operator and then

loaded into the Controller (via some external device such as a SCADA or HMI). Such

recipe data sets are permitted to overwrite (overload) a static DB (essentially the static

DB is being selected for a particular set of production requirements).

(3) Once a recipe has overloaded a static DB, the data in that DB is then fixed (and will

not be overwritten) until the operator selects a different recipe.

(4) Data blocks that hold recipe data that are under the control of a recipe are given the

class Rc_ (rather than St_), the individual elements within the DB will retain the prop-

erties specified in § 4.8 (i.e. all uppercase &c.).

84-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.10 Tags and tag naming

(1) Tags are a mechanism for giving symbolic names to absolutely addressable elements

within the Controller itself (timers, counters, inputs, outputs, bit memories &c.).

(2) Where possible, the PAL uses data blocks to store information and it does not use

timers and counters4 at all. It does however use some (but not very many) bit memories

(the number of bit memories available to the S7-1500 range of CPUs is 16384 bytes of

data or 131,072 bits) and it also uses symbolic addressing for IO signals.

(3) The system tags and the IO tags are stored in separate tag tables (as follows):

4.10.1 The PAL system tags (PAL_SystemTags)

(1) The PAL uses bit memories to store certain global system signals (these are the signal

generated for use by FC 01001, the STDSYSGLOBALDATA block).

(2) The PAL uses three bytes of the bit memory range for specific global signals (Table

4.14). The bytes used are MB0, MB1 and MB10. MB10 is populated by the clock memory

signal (generated within the CPU).

(3) The PAL stores all these tags in their own tag table:

PAL_SystemTags

4 The number of timers and counters available within Siemens Controllers is restricted (alt-

hough it is better than it was) typically being 2048 of each. The PAL generally replaces the

timers with edge triggered pulse counters of which there can be any number and they can

be stored in data blocks. Counters are replaced with specific blocks that again store counts

in data blocks and again any number of which are supported.

Doc: PS2001-5-2311-001 Rev: R02.00 85-201

(4) It contains the following tags:

Name Type Ad-
dress

Description

_SysSignals Int %MW0 System signals (logic and timing signals for direct access)

_SysSignals01 Byte %MB0 System memory byte 01 — Logic and scan synchronised pulses

_False Bool %M0.0 System Logic Bit — Always FALSE

_True Bool %M0.1 System Logic Bit — Always TRUE

_50ms Bool %M0.2 System Timing — 50 ms Pulse Scan synchronised

_100ms Bool %M0.3 System Timing — 100 ms Pulse Scan synchronised

_200ms Bool %M0.4 System Timing — 200 ms Pulse Scan synchronised

_500ms Bool %M0.5 System Timing — 500 ms Pulse Scan synchronised

_1s Bool %M0.6 System Timing — 1 s Pulse Scan synchronised

_2s Bool %M0.7 System Timing — 2 s Pulse Scan synchronised

_SysSignals02 Byte %MB1 System memory byte 02 — Scan signals and common square waves

_CycleTick Bool %M1.0 System Timing — Cycle tick (active odd cycles, alternates with _CycleTock)

_CycleTock Bool %M1.1 System Timing — Cycle tock (active even cycles, alternates with _CycleTick)

_CycleFirst Bool %M1.2 System Timing — First cycle detected

_100msSqW Bool %M1.3 System Timing — 100 ms square wave Scan synchronised

_200msSqW Bool %M1.4 System Timing — 200 ms square wave Scan synchronised

_500msSqW Bool %M1.5 System Timing — 500 ms square wave Scan synchronised

_1sSqW Bool %M1.6 System Timing — 1 s square wave Scan synchronised

_2sSqW Bool %M1.7 System Timing — 2 s square wave Scan synchronised

_ClockMem Byte %MB10 Clock Memory (populated by the CPU)

_ClockMem_100msSqW Bool %M10.0 Clock Memory — 10.0 Hz square wave 0.1 s Period

_ClockMem_200msSqW Bool %M10.1 Clock Memory — 5.00 Hz square wave 0.2 s Period

_ClockMem_400msSqW Bool %M10.2 Clock Memory — 2.50 Hz square wave 0.4 s Period

_ClockMem_500msSqW Bool %M10.3 Clock Memory — 2.00 Hz square wave 0.5 s Period

_ClockMem_800msSqW Bool %M10.4 Clock Memory — 1.25 Hz square wave 0.8 s Period

_ClockMem_1000msSqW Bool %M10.5 Clock Memory — 1.00 Hz square wave 1.0 s Period

_ClockMem_1600msSqW Bool %M10.6 Clock Memory — 0.62 Hz square wave 1.6 s Period

_ClockMem_2000msSqW Bool %M10.7 Clock Memory — 0.50 Hz square wave 2.0 s Period

Table 4.14 PAL system bit memory usage

(5) The PAL_SystemTags tag table is a fixed tag table and is a fundamental part of the

PAL. It must not be modified.

86-201 Doc: PS2001-5-2311-001 Rev: R02.00

(6) Similarly, the bit memories contained in the bytes MB0, MB1 and MB10 are reserved by

the PAL and must not be reallocated, renamed or used in any other tag table.

(7) All PAL system tags contained within the PAL_SystemTags tag table are identified by

a leading underscore character (_).

(8) The PAL system tags are named according to the following conventions:

1 Each tag is prefixed with the underscore [ _ ] character

2 The remaining tag name is written in camel case

3 The name (including prefix) must be no more than 24 characters

4 It is permissible to separate parts of the name with an underscore

[_] character (e.g. _ClockMem_100msSqW)

5 Units (such as milliseconds, ms) are not capitalised

6 The dash/hyphen [-] is not to be used (use the underscore instead)

7 Only use the characters [a-z], [A-Z], the numbers [0-9], and the

underscore [_]

(9) All PAL system tags have a brief explanation of what the tag does stored in the com-

ment field of the tag.

4.10.2 The PAL Input/Output tags (PAL_IOTags)

(1) The inputs and outputs associated with a project are unique to that project (they obvi-

ously depend on the plant being controlled). The PAL does not prescribe in anyway

what IO can be used. It does however have certain rules for how that IO should be

named and where the tags should be stored.

(2) Taking the later point first, the PAL stores all the IO tags in their own tag table:

PAL_IOTags

Doc: PS2001-5-2311-001 Rev: R02.00 87-201

(3) The following is an example of an IO tag table:

SYMBOL TYPE ADDRESS DESCRIPTION

ESTOP_HEALTHY Bool %I0.0 Emergency stop healthy/pressed

M001_RUNNING Bool %I0.1 M001 is running/stopped

M001_TRIPPED Bool %I0.2 M001 is heathy/tripped

M002_RUNNING Bool %I0.3 M002 is running/stopped

M002_FAULT Bool %I0.4 M002 is heathy/inverter fault

M001_ROTATION Bool %I0.5 M001 rotation sensor (proximity PD001)

CV001_OPENED_LIM Bool %I0.6 CV001 opened limit switch active/inactive

CV001_CLOSED_LIM Bool %I0.7 CV001 closed limit switch active/inactive

V001_OPENED_LIM Bool %I1.0 V001 opened limit switch active/inactive

V001_CLOSED_LIM Bool %I1.1 V001 closed limit switch active/inactive

V002_OPENED_LIM Bool %I1.2 V002 opened limit switch active/inactive

V002_CLOSED_LIM Bool %I1.3 V002 closed limit switch active/inactive

V003_OPENED_LIM Bool %I1.4 V003 opened limit switch active/inactive

V003_CLOSED_LIM Bool %I1.5 V003 closed limit switch active/inactive

V004_OPENED_LIM Bool %I1.6 V004 opened limit switch active/inactive

V004_CLOSED_LIM Bool %I1.7 V004 closed limit switch active/inactive

M001_START_CMD Bool %Q0.0 M001 start command

M002_ENABLE_CMD Bool %Q0.1 M002 enable command

CV001_ENABLE_CMD Bool %Q0.2 CV001 enable command

V001_OPERATE_CMD Bool %Q0.3 V001 operate command (energise)

V002_OPERATE_CMD Bool %Q0.4 V001 operate command (energise)

V003_OPERATE_CMD Bool %Q0.5 V001 operate command (energise)

V004_OPERATE_CMD Bool %Q0.6 V001 operate command (energise)

M002_SPEED_ACT Int %IW268 M002 actual speed

CV001_POS_ACT Int %IW270 CV001 actual position

M002_SPEED_DEM Int %QW264 M002 demanded speed

CV001_POS_DEM Int %QW266 CV001 demanded position

Table 4.15 PAL IO tag table (example)

(4) There are some general rules for naming IO tags:

1 The IO tag name is in uppercase

2 The IO tag name must be no more than 24 characters

3 Only use the characters [A-Z], the numbers [0-9] and the under-

score character [_]

4 The underscore character should be used in place of a space to

separate words

(5) The Functional Specification § 6.2 [Ref. 005] contains more details about the naming

of IO tags.

88-201 Doc: PS2001-5-2311-001 Rev: R02.00

4.10.3 Project specific tag tables

(1) The PAL defines two tag tables:

Tag table name Function

User
configurable

PAL_SystemTags
Contains the global system signals generated

as part of the PAL system logic
No

PAL_IOTags
Contains all the IO signal tags connected to

the controller
Yes

 Table 4.16 PAL tag tables

(2) Of these, only the first one (PAL_SystemTags) is actually required; it is perfectly pos-

sible for a Controller to not have any IO signals (it may be some form of communica-

tions coordinator for example).

(3) If the Controller does have IO, then the IO tags must be stored in a tag table called

PAL_IOTags.

(4) The user is at liberty to create any other tag tables that may be required (there are a lot

of memory bits available should the user wish to make use of them). These tag tables

are referred to as project specific tag tables.

(5) Project specific tag tables should be prefixed with PROJ_ (to differentiate from the PAL

tag tables that are prefixed PAL_) as follows:

PROJ_FunctionDescriptionTags

(6) It is recommended that the project specific tag tables end with the word Tags, but this

is not compulsory.

(7) The user can create as many project specific tag tables as required.

Note: Tag tables must not contain duplicate symbolic names or attempt to use an abso-

lute address that has already been allocated in some other tag table.

Doc: PS2001-5-2311-001 Rev: R02.00 89-201

4.11 Control system network device naming

(1) All devices that are in some way connected to a Controller via an Ethernet or Profinet

network must be named.

(2) The naming of an Engineering Station was discussed in § 3.1.3; and similar procedures

should be followed for naming other PC based systems that may be connected to the

Controller (supervisory systems for example).

(3) In addition, all Controllers and any remote IO installations must also be named. The

following table summarises the general abbreviations for naming devices (this is an

expanded version of Table 3.4):

 ABBREVIATION DEVICE

CONnnn A Controller

ESnnn
Engineering Station, the PC that runs the full development software

(in this case TIA Portal)

ESWnnn Ethernet network switch or router

HMInnn
HMI a panel mounted computer-based system similar to a SCADA

system, but with restricted in capabilities.

OSnnn
Operator Station, a supervisory system (SCADA). If the system is a

server/client arrangement, OS refers to a client

PNnnn Profinet node, usually a remote IO rack, or Profinet enabled device

PNmmm_nnn Profinet node on a separate subnet

PSWnnn Profinet network switch or router

PSWmmm_nnn Profinet network switch or router on a separate subnet

SVnnn A server, usually a supervisory system server

 Table 4.17 Device naming abbreviations Where nnn is the last octet of the IP address

mmm is the second to last octet of the IP address

(4) An example (fully expanded) network arrangement for the test rig (expanded to in-

clude a supervisory system with clients and an Engineering Station) is shown below:

90-201 Doc: PS2001-5-2311-001 Rev: R02.00

Figure 4.9 Expanded network with device names

(5) In Figure 4.6 Figure 4.9, all network addressable devices (those devices with an IP

address) have been named (shown in red).

(6) If more than one Profinet network were in use, then these would have different sub-

nets, the Profinet network shown here has subnet 192.168.0.nnn, a second Profinet

network would have a different subnet, e.g. 192.168.101.nnn. Devices on the first

subnet would be labelled (for example) PN000_130 or PSW000_120 &c. Device on the

second subnet would have addresses with 101 as the first set of digits (for example

PSW101_120 &c.).

(7) Where only one Profinet network is present, it is not necessary to use the dual num-

bering system.

(8) It is not necessary to distinguish between the Ethernet subnet and the Profibus subnet,

there is no duplication of unique device name between these two networks.

Doc: PS2001-5-2311-001 Rev: R02.00 91-201

5. Common appe arance and versi on control

5 Common appearance and

version control

(1) All the blocks in the PAL have a common style and appearance. This is to give the

blocks a similar look and feel and ensures that the same type of information is available

within each block and that this information is located with a degree of commonality

that makes finding and interpreting the block easy and predictable.

(2) This section looks at common elements of programmable blocks (FC, FB and OB):

1 Definition of the title line for a block

2 A standard PAL block header

3 Common networks and how they are used

4 The block description network for a typical block

5 A current revision and modification history template for a typ-

ical block

6 Special examples of the above for the main execution block

(OB 1)

(3) The Style Guide (SG) [Ref. 010] provides additional detail on the topics covered here.

5.1 TIA Portal comment fields

(1) TIA Portal supports comment fields within blocks and within individual networks

within a block.

(2) These comment fields are not particularly sophisticated and cannot be customised;

they use a fixed font at non-adjustable point size. The font in question is Siemens TIA

Portal Basic and it uses a fixed-point size of 9 pt that cannot be changed.

(3) The font is a proportional sans-serif font; it is shown Figure 5.1:

92-201 Doc: PS2001-5-2311-001 Rev: R02.00

[Normal characters]
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

[Quotes & punctuation]
… ' " ′ ″ ⁂ § ¶ • ° † ‡ ® © ℗ ™

[Index numbers]
①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮⑯⑰⑱⑲⑳

[Box drawing characters]
─│┌┐└┘ ├┬┴┤┼
━┃┏┓┗┛ ┣┳┻┫╋

▁▔ ▏▕ ╱╲╳ ┄┅┆┇

[Block elements]
▁▂▃▄▅▆▇█ ▀ ▌▐ ▄ █▉▊▋▌▍▎▏ ░▒▓

[Geometric shapes]
◼◽◾■□⬔⬕▢◧◨◩◪◫▣▤▥▦▧▨▩▪▫▬▭▮▯▰▱
◆◇⬖⬗⬘⬙◈◉◊○◌◍◎●⦁•◐◑◒◓◔◕◖◗◦⬠⬡
◢◣◤◥◿◸◹◺▲△▶▷◀◁▼▽⧐⧏►▻◄◅▸▹▾▿◂◃▴▵

[Arrows]
←↑→↓↔↕↖↗↘↙↞↟↠↡↢↣↤↥↦↧↨↯↰↱↲↳↴↵↶↷↺↻⏎

Figure 5.1 Siemens TIA Portal basic font

(4) There are two restrictions with the use of this font, the first is the fixed-point size is

quite small (and it cannot be made bigger), the second is the fact that it is a proportional

font.

(5) The older programming package, Simatic Manager (the forerunner to TIA Portal), had

a similar comment arrangement; however, it used a non-proportional5 font (Lucida con-

sole):

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

,.;:…!¡?¿-—‘‚„' “”" ′ ″ ‹›«»()[]{}& *

─│┌┐└┘├┬┴┤┼

Figure 5.2 Lucida Console font

5 Proportional fonts have letters that are different widths, the M character is wider than the

I character. With non-proportional fonts all characters are the same width (like text written

on a typewriter).

Doc: PS2001-5-2311-001 Rev: R02.00 93-201

(6) The advantage of the non-proportional font was that it was easy to make lists (e.g. lists

of parameters) that all lined up correctly.

(7) The proportional font can make TIA Portal comments look untidy:

Figure 5.3 Lining columns using spaces (without tabs)

(8) In Figure 5.3 the columns are aligned using spaces, the discrepancies are most clearly

seen with the Ms and underscores, they do not correctly line-up (the orange lines are

vertical and show the misalignment).

(9) It is possible to accurately align these columns within TIA Portal comments (even with

the proportional font in question). The Siemens TIA Portal Basic font characters

all have varying widths; however, they are all either a whole multiple of the normal

space character or a multiple of the normal space character plus ⅓ of a normal space,

or a multiple of the normal space character plus ⅔ of a normal space.

(10) Additional whitespace characters are available to the TIA Portal font that accommo-

date the ⅓ and ⅔ of a normal space: a six-per-em space that has a width of ⅔ of a

normal space and a three-per-em space that has a width of 1⅓ of a normal space.

(11) The consequence of this is that with judicious use of the normal space, three-per-

em space and the six-per-em space it is possible to always get a perfect fit.

94-201 Doc: PS2001-5-2311-001 Rev: R02.00

(12) Here is the same column arrangement aligned correctly with the additional whitespace

characters (again the orange lines are vertical to show the alignment):

Figure 5.4 Lining columns using additional whitespaces characters

5.1.1 Maximum size of a comment field

(1) A comment field for any network can hold approximately 65000 characters including

spaces and line break characters.

(2) This equates to approximately 670 lines of text, and with (a typical) 19.2 words per

line, this is in the region of 13,000 words per comment field.

(3) Where these restrictions provide insufficient space for the comments, it is permissible

to add an empty network and continue the comments in the comment field for that

network.

Doc: PS2001-5-2311-001 Rev: R02.00 95-201

5.2 Common headers and networks

(1) Each programmable block within the PAL (FB, FC or OB) has several common areas

at the start of the block:

1 Block title and comment field

This holds a plain English title for the block and a generic

copyright message along with links to the PAL documentation

2 Network 1 — Detailed description of the block

This contains a full and detailed functional description of the

block including its parameters and data structures

3 Network 2 — Current revision and modification history

This holds a full list of modification made to the block along

with the revision number, data and the author of the revision

(2) These networks can be considered a standard requirement of all blocks within the PAL;

all blocks must contain these elements and be in accordance with the requirements

discussed in the following sections.

(3) Taking each of these elements in turn:

96-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.2.1 Block title and comment field

(1) The first item in any programmable block (FB, FC or OB) is the block title field with

a comment area underneath, highlighted in Figure 5.5:

Figure 5.5 Block title

(2) The block title line contains the block title in the form

Class Module [FUNCTION] — Description

(3) For example, the block title for the isolating valve module (FC11001) is:

Block title: Standard Module [DEVICE DRIVER] — Isolating Valve

(4) Generally, the block title should be no more than 80 characters (including spaces) and

should be in title case (i.e. all principle6 words are capitalised), with the function field

in capitals.

(5) The block title comment field contains a standard copyright message for the PAL, de-

tails of how to access the specific User Documentation for the block and a link to the

full PAL documentation It is shown below:

PRACTICAL SERIES AUTOMATION LIBRARY (PAL)  —  COPYRIGHT 2020 – M. GLEDHILL (MIT LICENCE)

 ———— ◆ ————

FULL ONLINE DOCUMENTATION IS AVAILABLE AT: https://practicalseries.com/2001-pal/index.html

(6) The block title comment field is common to all blocks that are issued with the PAL.

6 Principal word are words that are not:

• Articles (a, an, the)

• Conjunctions (and, or, but &c.)

• Prepositions (in, with, on &c.)

Doc: PS2001-5-2311-001 Rev: R02.00 97-201

(7) The following is a typical example of a block title and comment field

Figure 5.6 Example block title and comment field

98-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.2.2 Network 1 — Block description

(1) The first network in the block (always numbered Network 1) immediately follows the

block title and comment field. The network itself is not used; it is just an empty net-

work. Its importance is purely as a comment field containing a description of the block.

(2) Network 1 is always given the title Block description. The main function of Net-

work 1 is to hold a full description of what the block does, how it does it and the pa-

rameters and data structures used within the block. The block description should con-

tain the following sections:

Title

Overview

1 Block technical summary

2 Functional description

3 Detailed block description

4 Supervisory system interface

5 Parameters

6 Data structures and usage [and instance DBs]

7 Constants and Temporary (local) data

8 Block calls and associations

9 Example usage

10 Test and verification path

(3) Each of these areas has its own section in the block description.

(4) The typographical styles used to specify titles, headings, subheadings and area dividers

are discussed further in the Style Guide (SG) [Ref. 010].

(5) Network 1 itself, is simply an empty ladder network:

Doc: PS2001-5-2311-001 Rev: R02.00 99-201

Figure 5.7 Block description with an empty network

(6) The contents of the block description are based upon the software module design spec-

ification (SMDS) [Ref. 008] for the module in question.

(7) The following is an abbreviated extract from an example block description:

100-201 Doc: PS2001-5-2311-001 Rev: R02.00

Doc: PS2001-5-2311-001 Rev: R02.00 101-201

102-201 Doc: PS2001-5-2311-001 Rev: R02.00

Doc: PS2001-5-2311-001 Rev: R02.00 103-201

5.2.3 Network 2 — Current revision and modification history

(1) Network 2 contains the current revision of the software module. This network is not

empty; it contains the current revision number of the block, the revision date and the

author’s initials. These are hard coded in the network.

(2) Network 2 always has the title: Current revision and modification history.

The network comment field contains the modification history of the block (up to and

including the current revision).

(3) The comment network has the following appearance:

Figure 5.8 Network 2 — Current revision and modification history

104-201 Doc: PS2001-5-2311-001 Rev: R02.00

(4) All blocks within the PAL have the block revision number stored in Network 2. Each

field of the revision data is stored as a string, the four revision fields are:

1 Block number (e.g. FC02001)

2 Revision number of the block

3 Revision date in the format YYYY-MM-DD

4 Author of the revision, initials and surname

(5) The revision numbering mechanism is detailed in the Software Control Mechanism

(SCM) [Ref. 018].

Doc: PS2001-5-2311-001 Rev: R02.00 105-201

5.3 OB 1 header and revision network

(1) OB 1 (the main organisation block) is considered a special organisation block in terms

of the Practical Series Automation Library (and in terms of most Siemens Controller

software). It is the block that executes all the rest of the controller software.

(2) As such it contains information about the whole project rather than just a software

module. The revision data is also project specific (not module specific).

5.3.1 OB 1 Network 1 — Project description

(1) The OB 1 block description contains a summary of the project, rather than of a partic-

ular module, as well as copyright, licence, file and project details &c. as follows:

• Copyright details

• Customer details

• Project name

• Project number

• Controller type(e.g. CPU-1515-2PN)

• Controller name (The CPU name assigned in TIA Portal)

• IP (Ethernet) address

• TIA project name

• Software status (e.g. Development, Release &c.)

• Project overview(a summary of the project and its purpose)

• Document references

• Completed modules (list of)

• Licence(details of any software licence)

106-201 Doc: PS2001-5-2311-001 Rev: R02.00

Doc: PS2001-5-2311-001 Rev: R02.00 107-201

108-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.3.2 OB 1 Network 2 — Current revision and modification history

(1) OB 1 Network 2 contains the current revision of the whole software project (rather than

of a particular block). The whole project is issued at a particular release and this is

independent of individual module revisions — most modules do not change their revi-

sion when the project as a whole is reissued at a new release, the new release may be

to include new blocks or it may be to include a change or correction to a particular

block (in which case the revision of the affected block would change, but not the oth-

ers).

(2) Like all other software blocks, Network 2 in OB 1 has the title: Current revision

and modification history. The network comment field contains the modification

history of the software project as a whole (up to and including the current revision).

(3) OB 1 stores more revision information than is done with the general software block

revision data (see § 5.2.3) and it stores it in a data block.

(4) In all other blocks, the revision, the revision date and author’s initials are hard coded

as statements that simply transfer the data to a temporary area within the block.

(5) In OB 1 the data is loaded in the same way, but this time it is transferred to the system

data block (DB21001_Dy_SysGlobalData). This allows the data to be read elsewhere

within the software or by an external device (such as a SCADA or HMI system). In

short, OB 1 makes the current revision of the project available to anything that has

access to the controller.

(6) In the case of OB 1 revision data, the block number is replaced with the project num-

ber.

(7) Figure 5.9 contains an example of the OB 1 Current revision and modification history

network and comments:

Doc: PS2001-5-2311-001 Rev: R02.00 109-201

Figure 5.9 Network 2 — OB 1 Current revision and modification history

110-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.4 General network comments

(1) All coded networks within the PAL should be given a title and be commented (all

networks have a title and comment field). The following shows a typical example:

Figure 5.10 A typical network with comments

Doc: PS2001-5-2311-001 Rev: R02.00 111-201

(2) All networks must have a title (even if they are a continuation of a previous network).

The title should be written in sentence case, uppercase and title case are permissible

where the author requires emphasis but generally, use sentence case.

(3) The network title should summarise the function of the network and it should be fairly

short, keep it to less than 60 characters (not including spaces).

(4) The Style Guide (SG) [Ref. 010] give full details for constructing network comments.

5.5 Specific network comments for sequences

(1) Sequences have a particular arrangement of comments that differs somewhat from the

normal network comments of non-sequential blocks.

(2) Sequences are divided into discrete steps and each step has a unique (five digit) number

in the range 00000 to 65000. Each step occupies several networks, each network having

one of the following functions:

• DECLARATION — (single network) manages the step, its opera-

tion and its timers

• ACTIONS — (multiple networks) split into INITIALISING,

PROCESSING and TERMINATING phases, each phase can carry out

a specific or multiple actions

• TRANSITIONS — (multiple networks) determines the conditions

needed to leave the current step and proceed to another. Each step

can have up to eight transition conditions

112-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.5.1 Step declaration network — title and comments

(1) The declaration network contains a detailed description of the step: its function, phase

operations and transition conditions. An example is shown in Figure 5.11.

(2) The network title consists of two full block ( █ ) characters (Unicode 2588h) followed

by the text STEP XXXXX — DECLARATION (STATE) where XXXXX is the five-digit step

number. The text in brackets reflects the state logic of the step (STARTING, RUNNING,

STOPPING, ABORTING &c.).

(3) The full block characters at the start make the start of each step identifiable if the net-

works are collapsed in TIA Portal.

(4) The most notable feature of the network comment is the large five-digit step number

at the top. This form of step number is used to make the first (declaration) network of

each step easily identifiable.

(5) The large number is preceded by a line of 44 top half block characters (▀), Unicode

character 2580h, followed by a blank line. The number is followed by a blank line and

then 44 bottom half block characters (▄), Unicode character 2584h.

(6) The number is produced in the Excel spread sheet: Dot Matrix Generator (DMG)

[Ref. 018], select the DOT MATRIX GENERATOR work sheet and type the required num-

ber in cell A7, copy the result from cells D8:D14 and paste it into the network comment

field (the spread sheet itself contains full instructions).

(7) The spread sheet can also convert uppercase letters to the same dot matrix form.

(8) The Style Guide (SG) [Ref. 010] give full details for constructing sequence network

comments.

Doc: PS2001-5-2311-001 Rev: R02.00 113-201

Figure 5.11 Sequence declaration comments

114-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.6 Data block header and revision

(1) Data blocks do not have a similar facility to the comment field available to program-

mable blocks (FCs, FBs and OBs); however, each line within a data block has a com-

ment line (just one line high) that can be adapted to hold a block description:

Figure 5.12 Comments within a DB

Doc: PS2001-5-2311-001 Rev: R02.00 115-201

(2) Within the PAL , the first entry within the data block is given to an array of 80 Boolean

elements (10 bytes of data) called:

_DB_Header

(3) This array does not contain any useful data (each entry in the array is set to zero and

is never used by the PAL — in this respect, it is just wasted space at the start of the

DB); it does however, provide 80 blank lines that can be used to hold a block title,

block description and a (rudimentary) current revision and history area.

(4) In Figure 5.12 the large blank area in _DB_Header (lines 31 to 81 in the leftmost col-

umn numbers) has been edited out to keep the image to a practical size.

(5) The _DB_Header declaration itself (line 2) acts as the block title for the DB (similar to

the block title for a block, see § 5.2.1).

(6) The DB block title (line 2) should be in title case and be no more than 80 characters

(not including spaces) long.

(7) Beneath this is something analogous to the title of a block description network (see

§ 5.2.2).

(8) The title entry is on the next line (line 5) and consists of the uppercase word TITLE :

followed by the title itself. The title must be in all uppercase characters.

(9) Line 8 holds the type of the data block; this is either static, dynamic or recipe.

(10) This is followed by a brief description of the block and its function.

(11) Finally, there is a modification history (similar to that of Network 2 for a programma-

ble block, see § 5.2.3)

116-201 Doc: PS2001-5-2311-001 Rev: R02.00

5.6.1 Data block revision information

(1) The revision information for the data block is hardcoded into the variable revInfo,

this is of type UT01000_St_SysRevision and contains the following information:

1 Block number (e.g. DB02001)

2 Revision number of the block

3 Revision date in the format YYYY-MM-DD

4 Author of the revision, initials and surname

(2) The revision numbering mechanism is detailed in the Software Control Mechanism

(SCM) [Ref. 018].

5.6.2 UDT block revision information

(1) All UDTs start with the same variables used in the data block for revision and licencing

information:

1 revInfo of type UT01000_St_SysRevision

(2) Again, these contain hardcoded values for the revision and licence information. The

UDT do not contain a comment area that holds the modification history.

Doc: PS2001-5-2311-001 Rev: R02.00 117-201

5.7 Programmable block properties

(1) All programmable blocks (FCs, FBs and OBs) have block property information fields.

(2) The block properties are accessed by right clicking the block (either in the project tree

or on the overview screen) and selecting PROPERTIES from the dropdown list, this opens

the properties dialogue box (Figure 5.13).

(3) The properties for the programmable blocks within the PAL are listed below along

with the format and conventions that are applied (only those properties that can be

changed by the user are listed):

BLOCK PROPERTIES FOR FC, FB AND OB

AREA PROPERTY FORMAT EXAMPLE

General

Name Block name FC11000_StdDevValveIsol

Language The language the block is written in LAD

Number Block number (manually specified) 11000

Information

Title
Block title in the form:

Class Module [FUNCTION] — Description
Standard Module [DEVICE DRIVER] — Isolating Valve

Comment Copyright message from block header See block header § 3.3.1

Version
For a revision in the form nnn.amm,

it shows nn.a
00.8

Family Block function group (without spaces) DeviceDriver

Author
The block author, initial and surname

use underscore in place of spaces
M_Gledhill

User-defined ID The block ID StdDevValveIsol

Attributes

IEC Check Should be active for Standard Modules Box is ticked

Optimized block

access
Should be active for all FC, FB and OB blocks Box is ticked

Table 5.1 Block properties for FBs, FCs and OBs

Note: For all Standard Modules, the entry L IBRARY CONFORMANCE (in the

COMPILATION area) must read: The object is library-conformant

118-201 Doc: PS2001-5-2311-001 Rev: R02.00

(4) Worked examples of each of these are shown below:

Figure 5.13 FC, FB and OB block properties

Doc: PS2001-5-2311-001 Rev: R02.00 119-201

5.8 Data block and UDT properties

5.8.1 Data block properties (static and dynamic)

(1) Data block properties are very similar to programmable block properties; the difference

is a minor technicality in how some of the entries are made.

(2) Data block properties are accessed in exactly the same way as those for programmable

blocks: right click the block in either the project tree or on the overview screen.

(3) The properties for the various types of data blocks within the PAL are listed below

along with the format and conventions that are applied (only those properties that can

be changed by the user are listed):

(4) BLOCK PROPERTIES FOR STATIC DBS

AREA PROPERTY FORMAT EXAMPLE

General

Name Block name DB11001_St_DevValveIsol

Language The language the block is written in DB

Number Block number (manually specified) 11000

Information

Title
Block title in the form:

Static DB [FUNCTION] — Description
Static DB [DEVICE DRIVER] — Isolating Valve

Comment Copyright message from block header See block header

Version
For a revision in the form nnn.amm,

it shows nn.a
00.8

Family Block function group (without spaces) DeviceDriver

Author
The block author, initial and surname

use underscore in place of spaces
M_Gledhill

User-defined ID The block ID St_DevValveIsol

Attributes
Optimized block

access
Should be active for Static DBs Box is ticked

Table 5.2 Block properties for Static DBs

120-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLOCK PROPERTIES FOR DYNAMIC DBS

AREA PROPERTY FORMAT EXAMPLE

General

Name Block name DB31001_Dy_DevValveIsol

Language The language the block is written in DB

Number Block number (manually specified) 31000

Information

Title
Block title in the form:

Dynamic DB [FUNCTION] — Description
Dynamic DB [DEVICE DRIVER] — Isolating Valve

Comment Copyright message from block header See block header

Version
For a revision in the form nnn.amm,

it shows nn.a
00.8

Family Block function group (without spaces) DeviceDriver

Author
The block author, initial and surname

use underscore in place of spaces
M_Gledhill

User-defined ID The block ID Dy_DevValveIsol

Attributes
Optimized

block access
Should be active for Static DBs Box is ticked

Table 5.3 Block properties for Dynamic DBs

(5) Worked examples of each of these are shown below:

Figure 5.14 Static DB block properties Figure 5.15 Dynamic DB block properties

Doc: PS2001-5-2311-001 Rev: R02.00 121-201

5.8.2 UDT properties (static and dynamic)

(1) UDT block properties have fewer entries than programmable and data blocks and have

limited scope.

(2) UDT properties are accessed in exactly the same way as those for programmable

blocks and data block: right click the UDT in either the project tree or on the overview

screen.

(3) The properties for the various types of UDT within the PAL are listed below along

with the format and conventions that are applied (only those properties that can be

changed by the user are listed):

(4) BLOCK PROPERTIES FOR STATIC UDTS

AREA PROPERTY FORMAT EXAMPLE

General Name Block name UT11001_St_DevValveIsol

Information Title
Block title in the form:

Static UDT [FUNCTION] — Description
Static UDT [DEVICE DRIVER] — Isolating Valve

 Comment Copyright message from block header See block header

Table 5.4 Block properties for Static UDTs

BLOCK PROPERTIES FOR DYNAMIC UDTS

AREA PROPERTY FORMAT EXAMPLE

General Name Block name UT31001_Dy_DevValveIsol

Information Title
Block title in the form:

Static UDT [FUNCTION] — Description
Dynamic UDT [DEVICE DRIVER] — Isolating Valve

 Comment Copyright message from block header See block header

Table 5.5 Block properties for Dynamic UDTs

122-201 Doc: PS2001-5-2311-001 Rev: R02.00

(5) Worked examples of each of these are shown below:

(6)

Figure 5.16 Static UDT block properties Figure 5.17 Dynamic UDT block properties

5.9 Hardware component comments

(1) Comment fields within the hardware configuration are not used within the PAL.

(2) The names of hardware objects that are connected to networks (CPUs, Profinet de-

vices) are changed within the hardware configuration to reflect the naming conven-

tions detailed in § 4.11, where such changes require further explanation, the hardware

comment fields may be used

(3) Hardware that has no such connection should not generally have its names changed

from the default values supplied by TIA Portal. Some flexibility may be required where

redundant cards are used.

Doc: PS2001-5-2311-001 Rev: R02.00 123-201

6. Standard modules

6 Standard modules

(1) The PAL standard modules are listed below; each standard module has its own Soft-

ware Module Design Specification (SMDS). Each SMDS contains a very detailed de-

scription of what the block does and how it works.

6.1 SMDS contents

(1) Broadly, each SMDS contains the following for the module in question:

Abstract

1 Block technical summary

2 Functional description

3 Detailed block description

4 Supervisory system interface

5 Parameters

6 Data structures and usage [and instance DBs]

7 Constants and Temporary (local) data

8 Block calls and associations

9 Example usage

10 Test and verification path

(2) This is the standard format for all SMDS document and each of the above sections

must satisfy the following:

124-201 Doc: PS2001-5-2311-001 Rev: R02.00

Abstract (overview)

(1) The abstract provides a concise summary or overview of the block and its functions. It

serves as an introduction to the block and provides a synopsis of the block: what it does

and why it does it.

(2) The abstract should be:

• presented as an article that can stand on its own

• written in plain English with limited use of abbreviations and en-

gineering jargon

• Be short, three or four paragraphs at most

• written in a formal tone, avoiding the use of first-person pronouns

The abstract should conform to these guidelines:

• Clearly state the purpose of the block

• Quickly summarise the functions of the block

• avoid introducing information that is not addressed in the follow-

ing sections

When writing the abstract, ensure that:

1 The message is clear

2 It includes the key points and functions

3 The message is unambiguous (i.e. a reader reading the abstract

could not miss the main point of the block)

Doc: PS2001-5-2311-001 Rev: R02.00 125-201

Section 1 — Block technical summary

(3) The technical summary contains the following specific information about the block:

1 Nomenclature and addressing

 • Block title

• Functional group

• Address

• Symbolic name

2 Block type and usage

 • Type of block (FC, FB, OB)

• Block number

• Programming language (LAD, STL &c.)

• Optimise access status

• PAL type (standard, application, template &c.)

3 Software version

 • Version number

• Status (Development, proofing, qualification &c.)

• Date of last revision

• Author

4 Metrics

 • Execution time of the block (in microseconds)

• Load memory size (in kilobytes)

• Work memory size (in kilobytes)

(4) The work memory is the size of the executable software (without comments &c.), the

load memory is the size of the block (with all comments) stored on the CPU memory

card.

126-201 Doc: PS2001-5-2311-001 Rev: R02.00

Section 2 — Functional description

(5) The functional description is a comprehensive examination of what the block does and

how it works. It may include diagrams and supporting tables if required (the use of

diagrams and tables is encouraged).

(6) The functional description should be written in plain English with limited use of ab-

breviations and engineering jargon, it should clearly define the purpose of the block

and the mechanisms use to achieve those purposes.

(7) The functional description can (and usually does) contain subsection and inline sec-

tions identifying and explaining each aspect of the block.

(8) The functional description should:

• Describes precisely the operations performed by the block

• Identify and explain each operating mode

• Describe any operator interfaces (controls from an HMI or

SCADA)

• Explain any interfaces to other blocks or systems

• Clarify any design assumptions and limitations

• Identify all error and failure modes

• List all calculations made by the block

(9) The functional description should be sufficiently technically detailed, such that an en-

gineer programming the block understands the precise requirements of the block and

would have sufficient information to begin coding the block.

Doc: PS2001-5-2311-001 Rev: R02.00 127-201

Section 3 — Detailed block description

(10) The detailed block description provides the technical detail needed to build the block,

this is done at an engineering level, using technical terminology common to both the

programming of PLCs in general and Simatic Controllers in particular; where such

terminology is used within the accepted engineering conventions and customs of this

field, it is done so without further explanation.

(11) The detailed block description expands the information given in the functional descrip-

tion section, it explains how the parametric information passed to the block is used to

control and achieve the requirements of the module. It explains in detail any calcula-

tions that are performed by the block. It explains the function of each constant and

variable passed to the modules as static and dynamic data, it purpose and how it should

be interpreted by the module software.

(12) The detailed block description describes any supervisory system interfaces and the sig-

nals passed to and from such systems. Such interfaces control the symbolic represen-

tation of the device on a mimic screen, drive any block icon and allow operator inter-

faces via supervisory system faceplates.

(13) The detailed block description should as a minimum provide:

• An explanation of all formal parameters and their use

• Details of all temporary (local) data employed by the block and

how this data is used

• An explanation of all data passed to and from the block, this

should include details of all variables and constants used within

the block

• Permitted ranges of all signals

• Interpretation of encoded data (i.e. where the value of a variable

can indicate some specific mode or operation, what those values

are and what meaning is applied)

• Explanations of all operating modes and how they are selected

128-201 Doc: PS2001-5-2311-001 Rev: R02.00

• Full details of any supervisory system interface (at the variable

level)

• Details of all timed events (including ranges and resolutions)

• Details of all alarms, warnings and events generated by the block

and the circumstances under which they are generated

• Precises details of all calculations performed by the block. This

should also include any temporary or partial calculations used by

the block and stored in the temporary (local) data area of the block

• Detailed explanations of any algorithms or iterative processes em-

ployed by the block

Section 4 — Supervisory system interface

(14) Gives a full and detailed explanation of the supervisory system interface. This includes

the following:

• Examples of any symbols used

• Examples of any block icons used

• Examples of any faceplates used

• Precise details of the signals used to animate the graphical objects

• Precise details of the signals that can be operated (changed) via

the interface

Doc: PS2001-5-2311-001 Rev: R02.00 129-201

Section 5 — Parameters

(15) This section contains a list in tabular form of all the formal parameters associated with

the block. The table includes the following:

• Parameter — the name of the parameter

• Function — A summary explanation of what the parameter does:

its purpose, and any specific states and requirements

• Type — the data type of the parameter (real, int, Bool &c.). or, if

used, the number of a UDT

• In-Out — Identifies the nature of the parameter interface:

In: (read only) Out: (write only)InOut: (read/write)

(16) The section must be included even if the block has no parameters, under these circum-

stances the following text is used:

This block has no formal parameters.

Section 6 — Data structures and usage (and instance data blocks)

(17) This section contains a list in tabular form of any UDTs that are used by the block.

(18) Where such structures are used, each element of the structure that is used within the

block must be identified and an explanation given of how the block uses or modifies

the data. To avoid duplication, this section may reference the data structure content

table in some other block; however, if the block uses the data in a way that is not

covered elsewhere a full description must be given. Again, this data is given in tabu-

lated form.

(19) The section must be included even if the block has no associated UDTs; under these

circumstances the following text is used:

There are no data structures associated with this block.

130-201 Doc: PS2001-5-2311-001 Rev: R02.00

(20) If the block is a function block (FB), it will have an associated instance data block.

Under these circumstances a full description of the structures and elements within the

instance data block must be given (generally, this will be the static elements of the DB;

all other aspects will be duplicates of section 4 (parameters) and section 6 (constants

and local data), these will be created automatically when the DB is initialised).

(21) For functions (FCs) the “(and instance data blocks)” can be removed from the section

heading.

Section 7 — Constants and temporary (local) data

(22) This section contains a list in tabular form of any constants or temporary (local) data

used by the block.

(23) Where such data is used, each constant and variable must be identified and an expla-

nation of how the block uses that data given.

(24) The section must be included even if the block has no associated constants or tempo-

rary (local) data, under this circumstance the following text is used:

(25) The section is broken down into the following subsections:

Section 7.1 — Constants

(26) Lists in tabular form all constants used by the block. If there are no constants, the

following text is used:

No constants are used in this block.

Section 7.2 — Temporary (local) data

(27) Lists in tabular form all temporary (local) data used by the block. If there are no tem-

porary variables, the following text is used:

No temporary (local) data is used in this block.

Doc: PS2001-5-2311-001 Rev: R02.00 131-201

Section 8 — Block calls and associations

(28) This section details any blocks which may be called from within this software module

(subroutine functions for example), any partner blocks with which it may be associated

(for example a receive module that is partner with a transmit module &c.). It lists any

system functions which may be called (e.g. reading the real time clock) and any system

data types that may be used.

(29) Finally, it lists any special calling requirements for the block (for example, must be

called from within a cyclic interrupt organisation block) and if the block is using “op-

timised access” (this is the default arrangement).

(30) It is broken down into the following subsections:

Section 8.1 — Block calls from within this module

(31) This section contains a list of all the non-system block that are called from within the

block (these are other PAL blocks or third-party blocks for specific equipment). The

list is presented in tabular form.

(32) The list identifies the block number, gives its title and explains how it is to be used.

(33) The section must be included even if the block has no calls to other blocks; if this is the

case, the following text is used:

There are no PAL block calls from within this block.

Section 8.2 — Blocks associated with this module

(34) If the block is associated with other blocks, i.e. it is part of a set of blocks that together

form a particular function (an example of this would be a transmit communication

block that had a counterpart receive block, both being required for data to be passed

between controllers); then the associated blocks must be listed here.

(35) The list is presented in tabular form.

(36) The list identifies the block number, gives its title and explains how it is to be used in

conjunction with the block being described.

132-201 Doc: PS2001-5-2311-001 Rev: R02.00

(37) The section must be included even if the block is not associated with any other blocks;

if this is the case, the following text is used:

This is a stand-alone block and is not associated with any other blocks.

Section 8.3 — System block calls and system data types

(38) This section contains a list of all the system blocks and extended instructions that are

called from within the block (these are either built into the Controller or made available

via TIA Portal). The list is presented in tabular form.

(39) The list identifies the block name (and if specified its number), gives its title and ex-

plains how it is to be used.

(40) Some system blocks and extended instructions used preconfigured data structures re-

ferred to a system data types (SDTs), where such structures are used a list of the struc-

tures must be given along with an explanation of how the data elements are used.

(41) The section must be included even if the block has no calls to system blocks or extended

instructions; under these circumstances, the following text is used:

There are no system block calls.

Doc: PS2001-5-2311-001 Rev: R02.00 133-201

Section 8.4 — Special properties and requirements

(42) This section specifies any specific requirements for calling and using the block, this is

usually split into two subsections:

8.4.1 Block optimisation , IEC compatibility and library

conformance7

Does the block use Optimised Block Access (all blocks

should generally be optimised, if not explain why)

Has the block been checked for IEC compatibility and is

it compliant?

If the block is a standard module, it must be compatible

with all IEC  library-conformance module constraints

8.4.2 Calling requirements

Is the block time dependant (i.e. is it called from a timed

interrupt) or can the block be called as part of the main

(OB 1) cycle

(43) If block optimisation is used, section 8.4.1 should have the following standard text:

This block is configured with Block Optimised Access (default arrangement).

(44) Where there are no special calling requirements, Section 8.4.2 should have the follow-

ing standard text:

This are no special calling requirements for this block.

7 Optimised access dynamically optimises the data storage within a block, it means however,

that absolute addressing cannot be used to access the data (all access is symbolic).

 By default block optimisation should always be used. The exceptions are where an older

system (HMIs for example) can only access data using absolute addressing, under these

circumstances, it is permissible to disable the optimised accessing of associated data blocks.

134-201 Doc: PS2001-5-2311-001 Rev: R02.00

Section 9 — Example usage

(45) This section contains a typical example of how the block is used and called. It should

show the block call and typical data contents for the data structures used by the block

(46) Where a block has multiple types of usage, additional examples can be included.

Section 10 —Test and verification path

(47) This section shows all the software module tests and verification activities that have

taken place to achieve the current release of the module, it has the following appear-

ance:

Figure 6.1 Example test and verification path

Doc: PS2001-5-2311-001 Rev: R02.00 135-201

6.2 Standard block list and associated

documentation

(1) The following is a full list of all the standard modules included within the PAL soft-

ware. Each module has its own Software Module Design Specification (SMDS) that

gives the precise details of the block functions and how they are implemented.

(2) The Functional Specification (FS) [Ref. 005] contains a summary of all these blocks

and their functions.

6.2.1 System function modules

FC 01001 FC01001_StdSysGlobalData SMDS: P2001-5-2312-fc01001

Standard system global data

FC 01101 FC01101_StdSysMonoTimeSync SMDS: P2001-5-2312-fc01101

Standard system time synchronisation (single master server)

FC 01102 FC01102_StdSysDualTimeSync SMDS: P2001-5-2312-fc01102

Standard system time synchronisation (dual master/slave servers)

6.2.2 Instrument read modules

FC 02001 FC02001_StdInstAnalogRead SMDS: P2001-5-2312-fc02001

Standard analogue instrument read, scale and monitor

FC 02011 FC02011_StdInstRealValRead SMDS: P2001-5-2312-fc02011

Standard real value instrument read and monitor

FC 02101 FC02101_StdInstRealLimit SMDS: P2001-5-2312-fc02101

Standard instrument threshold detection

FC 02501 FC02501_StdInstDigitalRead SMDS: P2001-5-2312-fc02501

Standard digital instrument read and monitor

FC 02601 FC02601_StdInstDigitalFilt SMDS: P2001-5-2312-fc02601

Standard digital filter

136-201 Doc: PS2001-5-2311-001 Rev: R02.00

6.2.3 Interlock and protection modules

FC 03002 FC03002_StdILock02 SMDS: P2001-5-2312-fc03002

Standard interlock 2 signal interlock with status reporting

FC 03004 FC03004_StdILock04 SMDS: P2001-5-2312-fc03004

Standard interlock 4 signal interlock with status reporting

FC 03008 FC03008_StdILock08 SMDS: P2001-5-2312-fc03008

Standard interlock 8 signal interlock with status reporting

FC 03102 FC03102_StdILockPerm02 SMDS: P2001-5-2312-fc03102

Standard interlock 2 signal permissive interlock with status reporting

FC 03104 FC03104_StdILockPerm04 SMDS: P2001-5-2312-fc03104

Standard interlock 4 signal permissive interlock with status reporting

FC 03108 FC03108_StdILockPerm08 SMDS: P2001-5-2312-fc03108

Standard interlock 8 signal permissive interlock with status reporting

FC 03202 FC03202_StdILockTrip02 SMDS: P2001-5-2312-fc03202

Standard interlock 2 signal trip interlock with status reporting

FC 03204 FC03204_StdILockTrip04 SMDS: P2001-5-2312-fc03204

Standard interlock 4 signal trip interlock with status reporting

FC 03208 FC03208_StdILockTrip08 SMDS: P2001-5-2312-fc03208

Standard interlock 8 signal trip interlock with status reporting

FC 03501 FC03501_StdILockMsgGen SMDS: P2001-5-2312-fc03501

Standard interlock message signal generation

Doc: PS2001-5-2311-001 Rev: R02.00 137-201

6.2.4 Safety and safety system modules

FC 04002 FC04002_StdSafeZoneNorm02 SMDS: P2001-5-2312-fc04002

Standard safety 2 signal E-stop zone group with status reporting

FC 04004 FC04004_StdSafeZoneNorm04 SMDS: P2001-5-2312-fc04004

Standard safety 4 signal E-stop zone group with status reporting

FC 04008 FC04008_StdSafeZoneNorm08 SMDS: P2001-5-2312-fc04008

Standard safety 8 signal E-stop zone group with status reporting

FC 04202 FC04202_StdSafeZoneTrip02 SMDS: P2001-5-2312-fc04202

Standard safety 2 signal E-stop latching zone group with status reporting

FC 04204 FC04204_StdSafeZoneTrip04 SMDS: P2001-5-2312-fc04204

Standard safety 4 signal E-stop latching zone group with status reporting

FC 04208 FC04208_StdSafeZoneTrip08 SMDS: P2001-5-2312-fc04208

Standard safety 8 signal E-stop latching zone group with status reporting

FC 04501 FC04501_StdSafeMsgGen SMDS: P2001-5-2312-fc04501

Standard safety message signal generation

6.2.5 Calculations and mathematics modules

FC 05001 FC05001_StdCalcAvg SMDS: P2001-5-2312-fc05001

Standard calculation — simple average

FC 05002 FC05002_StdCalcAvgRolling SMDS: P2001-5-2312-fc05002

Standard calculation — rolling average

FC 05003 FC05003_StdCalcAvgCumulate SMDS: P2001-5-2312-fc05003

Standard calculation — cumulative average

FC 05004 FC05004_StdCalcAvgWeighted SMDS: P2001-5-2312-fc05004

Standard calculation — weighted rolling average

FC 05005 FC05005_StdCalcAvgExp SMDS: P2001-5-2312-fc05005

Standard calculation — exponential rolling average

138-201 Doc: PS2001-5-2311-001 Rev: R02.00

FC 05101 FC05101_StdCalcDiffRoC SMDS: P2001-5-2312-fc05101

Standard calculation —rate-of-change

FC 05102 FC05102_StdCalcDiffRoCAvg SMDS: P2001-5-2312-fc05102

Standard calculation — average rate-of-change

FC 05201 FC05201_StdCalcIntArea SMDS: P2001-5-2312-fc05201

Standard calculation — signal integration (area)

FC 05301 FC05301_StdCalcValToPercent SMDS: P2001-5-2312-fc05301

Standard calculation — convert a ranged value to a percentage

FC 05302 FC05302_StdCalcPercentToVal SMDS: P2001-5-2312-fc05302

Standard calculation — convert a percentage to a ranged value

FC 05351 FC05351_StdCalcPercentToPulse SMDS: P2001-5-2312-fc05351

Standard calculation — convert a percentage to a variable mark/space square wave

FC 05352 FC05352_StdCalcPulseToPercent SMDS: P2001-5-2312-fc05352

Standard calculation — convert a variable mark/space square wave to a percentage

FC 05361 FC05361_StdCalcPulseToState SMDS: P2001-5-2312-fc05361

Standard calculation — convert a pulse train to an ON/OFF state

FC 05362 FC05362_StdCalcStateToPulse SMDS: P2001-5-2312-fc05362

Standard calculation — convert an ON/OFF state to a pulse train

FC 05363 FC05363_StdCalcPulseToFreq SMDS: P2001-5-2312-fc05363

Standard calculation — convert a square wave pulse train to a frequency

Doc: PS2001-5-2311-001 Rev: R02.00 139-201

FC 05502 FC05502_StdCalcPulseDual SMDS: P2001-5-2312-fc05502

Standard calculation — pulse generator 2 (dual) state

FC 05503 FC05503_StdCalcPulseTri SMDS: P2001-5-2312-fc05503

Standard calculation — pulse generator 3 (tri) state

FC 05504 FC05504_StdCalcPulseQuad SMDS: P2001-5-2312-fc05504

Standard calculation — pulse generator 4 (quad) state

FC 05508 FC05508_StdCalcPulseOcta SMDS: P2001-5-2312-fc05508

Standard calculation — pulse generator 8 (octa) state

FC 05516 FC05516_StdCalcPulseHexa SMDS: P2001-5-2312-fc05516

Standard calculation — pulse generator 16 (hexa) state

FC 05601 FC05601_StdCalcWaveRamp SMDS: P2001-5-2312-fc05601

Standard calculation — waveform generator ramp function

FC 05602 FC05602_StdCalcWaveSaw SMDS: P2001-5-2312-fc05602

Standard calculation — waveform generator continuous sawtooth wave function

FC 05603 FC05603_StdCalcWaveTri SMDS: P2001-5-2312-fc05603

Standard calculation — waveform generator continuous triangular wave function

FC 05604 FC05604_StdCalcWaveSin SMDS: P2001-5-2312-fc05604

Standard calculation — waveform generator continuous sine wave function

FC 05605 FC05605_StdCalcWaveCos SMDS: P2001-5-2312-fc05605

Standard calculation — waveform generator continuous cosine wave function

140-201 Doc: PS2001-5-2311-001 Rev: R02.00

6.2.6 Sequential control

FC 07001 FC07001_StdSeqIEC_Control SMDS: P2001-5-2312-fc07001

Standard sequence — IEC compliant sequence manager (controller)

FC 07011 FC07011_StdSeqIEC_OSL SMDS: P2001-5-2312-fc07011

Standard sequence — IEC compliant sequence operating state logic (OSL)

FC 07021 FC07021_StdSeqIEC_Step SMDS: P2001-5-2312-fc07021

Standard sequence — IEC compliant sequence step/transition manager

FC 07501 FC07501_StdSeqNonIEC_Control SMDS: P2001-5-2312-fc07501

Standard sequence — non-IEC compliant sequence manager (controller)

FC 07511 FC07511_StdSeqNonIEC_OSL SMDS: P2001-5-2312-fc07511

Standard sequence — non-IEC compliant sequence operating state logic (OSL)

FC 07521 FC07521_StdSeqNonIEC_Step SMDS: P2001-5-2312-fc07511

Standard sequence — non-IEC compliant sequence step/transition manager

6.2.7 Device drivers — Control loops

FC 10001 FC10001_StdDevPID_Standard SMDS: P2001-5-2312-fc10001

Standard device driver — control loops — standard PID loop

FC 10011 FC10011_StdDevPID_Sched SMDS: P2001-5-2312-fc10011

Standard device driver — control loops — standard PID loop with gain scheduling

FC 10021 FC10021_StdDevPID_Split SMDS: P2001-5-2312-fc10021

Standard device driver — control loops — split range modifier

FC 10022 FC10022_StdDevPID_Poly SMDS: P2001-5-2312-fc10022

Standard device driver — control loops — polyline modifier

FC 10022 FC10101_StdDevPID_External SMDS: P2001-5-2312-fc10101

Standard device driver — control loops — polyline modifier

FC 10501 FC10501_StdDevPID_LookUp SMDS: P2001-5-2312-fc10501

Standard device driver — control loops — polyline modifier

Doc: PS2001-5-2311-001 Rev: R02.00 141-201

6.2.8 Device drivers — Valves

FC 11001 FC11001_StdDevValveIsol SMDS: P2001-5-2312-fc11001

Standard device driver — valves — isolating valve

FC 11011 FC11011_StdDevValve3Way SMDS: P2001-5-2312-fc11011

Standard device driver — valves — 3-way valve

FC 11101 FC11101_StdDevValveBi SMDS: P2001-5-2312-fc11101

Standard device driver — valves — bistable isolating valve

FC 11501 FC11501_StdDevValveMod SMDS: P2001-5-2312-fc11501

Standard device driver — valves — modulating valve

6.2.9 Device drivers — Drives

FC 12001 FC12001_StdDevDriveDOL SMDS: P2001-5-2312-fc12001

Standard device driver — drives — direct online

FC 12011 FC12011_StdDevDriveDOLRev SMDS: P2001-5-2312-fc12011

Standard device driver — drives — direct online reversing

FC 12101 FC12101_StdDevDriveBi SMDS: P2001-5-2312-fc12101

Standard device driver — drives — bistable

FC 12111 FC12111_StdDevDriveBiRev SMDS: P2001-5-2312-fc12111

Standard device driver — drives — bistable reversing

FC 12501 FC12501_StdDevDriveVSD SMDS: P2001-5-2312-fc12501

Standard device driver — drives — variable speed

FC 12511 FC12511_StdDevDriveVSDRev SMDS: P2001-5-2312-fc12511

Standard device driver — drives — variable speed reversing

FC 12601 FC12601_StdDevDriveMSD SMDS: P2001-5-2312-fc12601

Standard device driver — drives — multiple speed

142-201 Doc: PS2001-5-2311-001 Rev: R02.00

6.2.10 Message handling

FC 16001 FC16001_StdMsgAnalogAlm SMDS: P2001-5-2312-fc16001

Standard message handler — analogue alarm

FC 16002 FC16002_StdMsgAnalogWrn SMDS: P2001-5-2312-fc16002

Standard message handler — analogue warning

FC 16003 FC16003_StdMsgAnalogEvent SMDS: P2001-5-2312-fc16003

Standard message handler — analogue event

FC 16101 FC16101_StdMsgDigitalAlm SMDS: P2001-5-2312-fc16101

Standard message handler — digital alarm

FC 16102 FC16102_StdMsgDigitalWrn SMDS: P2001-5-2312-fc16102

Standard message handler — digital warning

FC 16103 FC16103_StdMsgDigitalEvent SMDS: P2001-5-2312-fc16103

Standard message handler — digital event

FC 16201 FC16201_StdMsgAlmTime SMDS: P2001-5-2312-fc16201

Standard message handler — digital time-stamped alarm

FC 16202 FC16202_StdMsgWrnTime SMDS: P2001-5-2312-fc16202

Standard message handler — digital time-stamped warning

FC 16203 FC16203_StdMsgEventTime SMDS: P2001-5-2312-fc16203

Standard message handler — digital time-stamped event

FC 16501 FC16501_StdMsgPrompMgr SMDS: P2001-5-2312-fc16501

Standard message handler — prompt manager

FC 16502 FC16502_StdMsgPrompQueue SMDS: P2001-5-2312-fc16502

Standard message handler — prompt queue

Doc: PS2001-5-2311-001 Rev: R02.00 143-201

6.2.11 Communication handling

FC 17001 FC17001_StdCommsGetSmall SMDS: P2001-5-2312-fc17001

Standard communication handler — get data from a controller (small)

FC 17002 FC17002_StdCommsPutSmall SMDS: P2001-5-2312-fc17002

Standard communication handler — put data into a controller (small)

FC 17101 FC17101_StdCommsRead65K SMDS: P2001-5-2312-fc17101

Standard communication handler — read data from a controller (65K of data)

FC 17102 FC17102_ StdCommsWrite65K SMDS: P2001-5-2312-fc17102

Standard communication handler — write data to a controller (65K of data)

FC 17401 FC17401_StdCommsSetIP SMDS: P2001-5-2312-fc17401

Standard communication handler — dynamically configure Ethernet interface

FC 17501 FC17501_StdCommsPtP_Rx SMDS: P2001-5-2312-fc17501

Standard communication handler — read data via a point-to-point interface

FC 17502 FC17502_StdCommsPtP_Tx SMDS: P2001-5-2312-fc17502

Standard communication handler — write data via a point-to-point interface

144-201 Doc: PS2001-5-2311-001 Rev: R02.00

6.2.12 Subroutines

FC 18001 FC18001_StdSubScaleAI SMDS: P2001-5-2312-fc18001

Standard subroutines — scale an analogue input signal

FC 18002 FC18002_StdSubScaleAQ SMDS: P2001-5-2312-fc18002

Standard subroutines — scale an analogue output signal

FC 18101 FC18101_StdSubTime100ms SMDS: P2001-5-2312-fc18101

Standard subroutines — timer module (100 ms resolution)

FC 18104 FC18104_StdSubTime1s SMDS: P2001-5-2312-fc18104

Standard subroutines — timer module (1 s resolution)

FC 18111 FC18111_StdSubTimeLong SMDS: P2001-5-2312-fc18111

Standard subroutines — timer module, long duration timer

FC 18151 FC18151_StdSubTimeEventRTC SMDS: P2001-5-2312-fc18151

Standard subroutines — event duration timer (using the RTC)

FC 18201 FC18201_StdSubCounter SMDS: P2001-5-2312-fc18201

Standard subroutines — count up/down function

FC 18901 FC18901_StdSubStrIntToASC SMDS: P2001-5-2312-fc18901

Standard subroutines — string function — convert an integer to ASCII

FC 18902 FC18902_StdSubStrRealToASC SMDS: P2001-5-2312-fc18902

Standard subroutines — string function — convert a real to ASCII

FC 18911 FC18911_StdSubStrASCtoInt SMDS: P2001-5-2312-fc18911

Standard subroutines — string function — convert an ASCII string to an integer value

FC 18912 FC18912_StdSubStrASCtoReal SMDS: P2001-5-2312-fc18912

Standard subroutines — string function — convert an ASCII string to a real value

Doc: PS2001-5-2311-001 Rev: R02.00 145-201

FC 18921 FC18921_StdSubStrCaseConv SMDS: P2001-5-2312-fc18921

Standard subroutines — string function — case conversion

FC 18931 FC18931_StdSubStrConcat SMDS: P2001-5-2312-fc18931

Standard subroutines — string function — concatenate strings

FC 18932 FC18932_StdSubStrSplit SMDS: P2001-5-2312-fc18932

Standard subroutines — string function — split a string

FC 18933 FC18933_StdSubStrFind SMDS: P2001-5-2312-fc18933

Standard subroutines — string function — find a string within a string

6.2.13 Debug subroutines

FC 19001 FC19001_StdDebugValveIsol SMDS: P2001-5-2312-fc19001

Standard debug subroutines — simulation — isolating valve

FC 19002 FC19002_StdDebugValveBi SMDS: P2001-5-2312-fc19002

Standard debug subroutines — simulation — bistable isolating valve

FC 19003 FC19003_StdDebugValveMod SMDS: P2001-5-2312-fc19003

Standard debug subroutines — simulation — modulating valve

FC 19011 FC19011_StdDebugDriveDOL SMDS: P2001-5-2312-fc19011

Standard debug subroutines — simulation — drive DOL

FC 19012 FC19012_StdDebugDriveBi SMDS: P2001-5-2312-fc19012

Standard debug subroutines — simulation — drive bistable

FC 19013 FC19013_StdDebugDriveVSD SMDS: P2001-5-2312-fc19013

Standard debug subroutines — simulation — drive variable speed

FC 19014 FC19014_StdDebugDriveMSD SMDS: P2001-5-2312-fc19014

Standard debug subroutines — simulation — drive multiple speed

146-201 Doc: PS2001-5-2311-001 Rev: R02.00

FC 19101 FC19101_StdDebugInstFlow SMDS: P2001-5-2312-fc19101

Standard debug subroutines — simulation — instrument flow

FC 19102 FC19102_StdDebugInstLevel SMDS: P2001-5-2312-fc19102

Standard debug subroutines — simulation — instrument level

FC 19103 FC19103_StdDebugInstTemp SMDS: P2001-5-2312-fc19103

Standard debug subroutines — simulation — instrument temperature

FC 19104 FC19104_StdDebugInstPress SMDS: P2001-5-2312-fc19104

Standard debug subroutines — simulation — instrument pressure

FC 19151 FC19511_StdDebugInst1Order SMDS: P2001-5-2312-fc19511

Standard debug subroutines — simulation — instrument 1st order response

FC 19152 FC19512_StdDebugInst2Order SMDS: P2001-5-2312-fc19512

Standard debug subroutines — simulation — instrument 2nd order response

FC 19153 FC19513_StdDebugInstPoly SMDS: P2001-5-2312-fc19513

Standard debug subroutines — simulation — polyline response

FC 19701 FC19701_StdDebugSeqBreak SMDS: P2001-5-2312-fc19701

Standard debug subroutines —sequence breakpoint

FC 19999 FC19999_StdDebugForceStop SMDS: P2001-5-2312-fc19999

Standard debug subroutines — Force CPU stop

Doc: PS2001-5-2311-001 Rev: R02.00 147-201

7. Application modules

7 Application modules

(1) The PAL software consists mainly of standard modules; these are the library modules

of the PAL. The application modules are project specific modules that call the standard

modules as needed by the project in question.

(2) It is the application modules that provide the structure for Controller software.

(3) While it is true that the application modules are different for each Controller project;

the actual arrangement and numbering of the application modules does form part of

the PAL. It is the application modules that are called from the main program cycle

organisation block (OB 1) and this determines the structure of the software.

(4) The complete OB 1 PAL structure is shown in Figure 7.1. This shows application

block calls to the thirteen functional groups.

Figure 7.1 Complete OB 1 PAL structure

148-201 Doc: PS2001-5-2311-001 Rev: R02.00

(5) All of these functional groups with the exception of the system functions

(FC21000_AppSys) are optional (the requirements for these applications depends en-

tirely on the purpose of the Controller); most Controllers will have a subset of these

functional groups.

(6) Application modules are specific to the software project in question and are pro-

grammed specifically for that project, they are not fixed modules like the standard

modules.

(7) There are three categories of application modules:

1 Coordinating Coordinating application blocks exist for each func-

tion group and are used to organise all the block

calls within that particular function group.

2 Marshalling Marshalling modules subdivide the coordinating

application modules into logical groupings within

the functional group.

3 Programming Programming modules contain extensive program-

ming statements, rather than the configuration ex-

ercises used with coordinating and marshalling

modules.

Programmed module contains software specific to

the purpose of the Controller in question and con-

tain substantial logical statements and software

(8) All the application modules within OB 1 are coordinating application modules, these

are the highest level of application module and all such modules have numbers ending

in 000.

Doc: PS2001-5-2311-001 Rev: R02.00 149-201

P
R

O
G

R
A

M
M

IN
G

 M
O

D
U

L
E

 O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

O
p
ti
o
n
al

N
o
n
e

N
o
n
e

N
o
n
e

F
C

2
3
0
1
1
_
A

p
p
IL

o
ck

Y
Y

Y

F
C

2
3
0
1
2
_
A

p
p
IL

o
ck

Y
Y

Y

F
C

2
3
1
1
1
_
A

p
p
IL

o
ck

Y
Y

Y

F
C

2
3
1
1
2
_
A

p
p
IL

o
ck

Y
Y

Y

F
C

2
4
0
1
1
_
A

p
p
S
af

e
Y

Y
Y

F
C

2
4
0
1
2
_
A

p
p
S
af

e
Y

Y
Y

F
C

2
4
1
1
1
_
A

p
p
S
af

e
Y

Y
Y

F
C

2
4
1
1
2
_
A

p
p
S
af

e
Y

Y
Y

F
C

2
5
0
1
1
_
A

p
p
C

ac
lA

vg
Y

Y
Y

F
C

2
5
0
1
2
_
A

p
p
C

ac
lA

vg
Y

Y
Y

F
C

2
5
1
1
1
_
A

p
p
C

ac
lW

av
e
Y

Y
Y

F
C

2
6
0
1
1
_
A

p
p
C

o
n
tY

Y
Y

F
C

2
6
0
1
2
_
A

p
p
C

o
n
tY

Y
Y

F
C

2
6
1
1
1
_
A

p
p
C

o
n
tY

Y
Y

F
C

2
6
1
1
2
_
A

p
p
C

o
n
tY

Y
Y

F
C

2
6
1
1
3
_
A

p
p
C

o
n
tY

Y
Y

M
A

R
S

H
A

L
L

IN
G

 M
O

D
U

L
E

 O
p
ti
o
n
al

 O
p
ti
o
n
al

 O
p
ti
o
n
al

 O
p
ti
o
n
al

 O
p
ti
o
n
al

 O
p
ti
o
n
al

O
p
ti
o
n
al

 O
p
ti
o
n
al

N
o
n
e

F
C

2
2
0
0
1
_
A

p
p
In

st
A

n
al

o
gR

e
ad

F
C

2
2
5
0
1
_
A

p
p
In

st
D

ig
it
al

R
e
ad

F
C

2
3
0
0
1
_
A

p
p
IL

o
ck

X
X

X

 F
C

2
3
1
0
1
_
A

p
p
IL

o
ck

X
X

X

 F
C

2
4
0
0
1
_
A

p
p
S
af

e
X

X
X

 F
C

2
4
1
0
1
_
A

p
p
S
af

e
X

X
X

 F
C

2
5
0
0
1
_
A

p
p
C

ac
lA

vg

 F
C

2
5
6
0
1
_
A

p
p
C

ac
lW

av
e
R

am
p

F
C

2
6
0
0
1
_
A

p
p
C

o
n
tX

X
X

 F
C

2
6
1
0
1
_
A

p
p
C

o
n
tX

X
X

C
O

O
R

D
IN

A
T

IN
G

 M
O

D
U

L
E

F
C

2
1
0
0
0
_
A

p
p
S
ys

F
C

2
2
0
0
0
_
A

p
p
In

st

 F
C

2
3
0
0
0
_
A

p
p
IL

o
ck

 F
C

2
4
0
0
0
_
A

p
p
S
af

e

 F
C

2
5
0
0
0
_
A

p
p
C

al
c

 F
C

2
6
0
0
0
_
A

p
p
C

o
n
t

F
U

N
C

T
IO

N
 G

R
O

U
P

S
ys

te
m

 f
u
n
ct

io
n
s

In
st

ru
m

e
n
ta

ti
o
n

 In
te

rl
o
ck

s
&

 p
ro

te
ct

io
n

 S
af

e
ty

 s
ys

te
m

s

 C
al

cu
la

ti
o
n
s

&
 m

at
h
e
m

at
ic

s

 C
o
n
ti
n
u
o

u
s

co
n
tr

o
l
lo

gi
c

150-201 Doc: PS2001-5-2311-001 Rev: R02.00

 C
o
m

m
u
n
icatio

n
 h

an
d
lin

g

 M
e
ssage

s

 D
e
vice

 D
rive

r —
 D

rive
s

 D
e
vice

 D
rive

r —
 V

alve
s

 D
e
vice

 d
rive

r —
 co

n
tro

l lo
o
p
s

 C
o
m

m
an

d
 h

an
d
lin

g

 S
e
q
u
e
n
tial co

n
tro

l lo
gic

F
U

N
C

T
IO

N
 G

R
O

U
P

 F
C

3
7
0
0
0
_
A

p
p
C

o
m

m
s

 F
C

3
6
0
0
0
_
A

p
p
M

sg

 F
C

3
2
0
0
0
_
A

p
p
D

e
vD

rive
s

 F
C

3
1
0
0
0
_
A

p
p
D

e
vV

alve
s

 F
C

3
0
0
0
0
_
A

p
p
D

e
vP

ID

 F
C

2
8
0
0
0
_
A

p
p
C

m
d

 F
C

2
7
0
0
0
_
A

p
p
S
e
q

C
O

O
R

D
IN

A
T

IN
G

 M
O

D
U

L
E

 F
C

3
7
1
0
1
_
A

p
p
C

o
m

m
sA

re
a

F
C

3
7
0
0
1
_
A

p
p
C

o
m

m
sA

re
a

F
C

3
6
5
0
1
_
A

p
p
M

sgP
ro

m
p
ts

F
C

3
6
1
0
1
_
A

p
p
M

sgD
igital

F
C

3
6
0
0
1
_
A

p
p
M

sgA
n
alo

g

F
C

3
2
5
0
1
_
A

p
p
D

e
vD

rive
V

S
D

F
C

3
2
0
0
1
_
A

p
p
D

e
vD

rive
D

O
L

F
C

3
1
5
0
1
_
A

p
p
D

e
vV

alve
M

o
d

F
C

3
1
0
0
1
_
A

p
p
D

e
vV

alve
Iso

l

F
C

3
0
0
1
1
_
A

p
p
D

e
vP

ID
_
S
ch

e
d

F
C

3
0
0
0
1
_
A

p
p
D

e
vP

ID
_
S
tan

d
ard

F
C

2
8
1
0
1
_
A

p
p
C

m
d
N

am
e

 F
C

2
8
0
0
1
_
A

p
p
C

m
d
N

am
e

A
llo

cate
d
 if se

q
u
e
n
ce

s can
 b

e

gro
u
p
e
d
 in

to
 m

e
an

in
gfu

l are
as

M
A

R
S

H
A

L
L

IN
G

 M
O

D
U

L
E

 O
p
tio

n
al

O
p
tio

n
al

O
p
tio

n
al

O
p
tio

n
al

O
p
tio

n
al

 O
p
tio

n
al

O
p
tio

n
al

O
p
tio

n
al

 O
p
tio

n
al

O
p
tio

n
al

 F
C

3
7
1
1
1
_
A

p
p
C

o
m

m
sA

re
a

F
C

3
7
0
1
1
_
A

p
p
C

o
m

m
sA

re
a

F
C

3
6
5
1
1
_
A

p
p
M

sgP
ro

m
p
tsA

re
a

F
C

3
6
1
1
1
_
A

p
p
M

sgD
igitalA

re
a

F
C

3
6
0
1
1
_
A

p
p
M

sgA
n
alo

gA
re

a

N
o
n
e

N
o
n
e

N
o
n
e

N
o
n
e

N
o
n
e

N
o
n
e

F
C

2
8
1
1
1
_
A

p
p
C

m
d
N

am
e

F
C

2
8
0
1
2
_
A

p
p
C

m
d
N

am
e

F
C

2
8
0
1
1
_
A

p
p
C

m
d
N

am
e

F
C

2
7
0
1
2
_
A

p
p
S
e
q
N

am
e

F
C

2
7
0
1
1
_
A

p
p
S
e
q
N

am
e

P
R

O
G

R
A

M
M

IN
G

 M
O

D
U

L
E

 Table 7.1 Typical application module allocation

Doc: PS2001-5-2311-001 Rev: R02.00 151-201

7.1 Application module numbering

(1) Application modules are always functions (FCs) without parameters, they are num-

bered according to functional group, this is summarised as follows:

FUNCTION GROUP

FUNCTION GROUP
NUMBER (FG)

APPLICATION MODULE
NUMBER RANGE

 Debug (start of cycle) 20 FC 20nnn

 System functions 21 FC 21nnn

 Read instruments 22 FC 22nnn

 Interlock & protection 23 FC 23nnn

 Safety systems 24 FC 24nnn

 Calculations & mathematics 27 FC 25nnn

 Continuous control 26 FC 26nnn

 Sequential control 27 FC 27nnn

 Command handling 28 FC 28nnn

 Reserved 29 N/A

 Device drivers (control loops) 30 FC 30nnn

 Device drivers (valves) 31 FC 31nnn

 Device drivers (drives) 32 FC 32nnn

 Device drivers (Reserved) 33 FC 33nnn

 Device drivers (Reserved) 34 FC 34nnn

 Device drivers (Reserved) 35 FC 35nnn

 Message handling 36 FC 36nnn

 Communication handling 37 FC 37nnn

 (subroutines) 38 N/A

 Debug (end of cycle) 39 FC 39nnn

 Table 7.2 Application module numbering by function group

(2) Each function group has a single coordinating module and this always has the block

number FG000 where FG is the function group number.

(3) Where marshalling modules are used to subdivide the functional groups, but program-

ming modules are not used (this is specifically: instruments and device drivers) the

marshalling modules adopt the last three digits of the standard modules that they con-

tain; for example, the following would be the complete set of marshalling modules for

the drives, device driver:

152-201 Doc: PS2001-5-2311-001 Rev: R02.00

COORDINATING MODULE MARSHALL ING MODULES STANDARD MODULES CALLED

FC32000_AppDevDrives FC32001_AppDevDriveDOL FC12001_StdDevDriveDOL

 FC32011_AppDevDriveDOLRev FC12011_StdDevDriveDOLRev

 FC32101_AppDevDriveBi FC12101_StdDevDriveBi

 FC32111_AppDevDriveBiRev FC12111_StdDevDriveBiRev

 FC32501_AppDevDriveVSD FC12501_StdDevDriveVSD

 FC32511_AppDevDriveVSDRev FC12511_StdDevDriveVSDRev

 FC32601_AppDevDriveMSD FC12601_StdDevDriveMSD

Table 7.3 Marshalling application module numbering example for instruments and device drivers

(4) In Table 7.3 the last three digits of the marshalling application module number matches

the last three digits of the standard module block number that is called from within the

marshalling block.

(5) Where programming application modules are (or may be) used, the numbering system

is more flexible. Here, marshalling modules may be used (optionally) to organise the

programming modules into specific areas or subgroups that have some meaning for

the Controller program in question (these may be plant areas or logical areas that have

some relevance in terms of the program itself).

(6) The allocation of marshalling modules under these circumstances is at the discretion

of the programmer. Good practice dictates that large gaps are left in the numbering

allocation of the marshalling modules (if there are fewer than ten marshalling modules

within the functional group, it is recommended that each marshalling module has an

increment of 100 from the previous module e.g. FC28001, FC28101, FC28201 &c.).

(7) Programming application modules called from within these marshalling modules

should adopt the three most significant digits of the marshalling module, thus extend-

ing the previous example, the marshalling module FC28101 could support within it

the programming modules numbered FC28102 to FC28199 (98 modules in total).

(8) Again, it is good practice to leave a gap between programming modules, for example,

incrementing by 10 such that the programming modules would be numbered FC28111,

FC28121, FC28131 &c.

(9) Where programming application modules are called directly from the coordinating

module, then there are no marshalling modules and the programming modules can

have any number in the functional group (excepting FG000, this being the number of

the coordinating module, FC28000 in the previous example)

Doc: PS2001-5-2311-001 Rev: R02.00 153-201

7.2 Sequence annotation

(1) One particular form of programming application module is that which contains a se-

quence.

(2) The Functional Specification (FS) [Ref. 005], annotated the steps and transitions of a

sequence using a step-transition diagram of a sequential flow chart (sometimes referred

to as a GRAFCET8 diagram), and example of which is shown below in Figure 7.2:

Figure 7.2 Step transition diagram

8 GRAFCET, GRAPHe de Commande Etape-Transition, French. Literally, “stage-transition

command graph” a diagrammatic mechanism for showing steps and transitions within a se-

quence.

154-201 Doc: PS2001-5-2311-001 Rev: R02.00

(3) Such step-transition diagrams can be time consuming and difficult to produce, requir-

ing a graphical drawing or CAD package to render the diagrams. An alternative ar-

rangement is to use sequential IO matrices, these can be produced on a spread sheet

and list all the devices controlled by the sequence; identifying each step and the re-

quired state of each device within that step.

(4) Consider the backwash sequence discussed in the example of § 2.1.2, a single filter

from this example is shown below:

Figure 7.3 Step transition diagram

(5) This is the full list of devices associated with filter RG101:

MV101 Filter 1 inlet valve

CV102 Filter 1 outlet valve

VV103 Filter 1 backwash water inlet valve

VV104 Filter 1 backwash water outlet valve

VV105 Filter 1 Air inlet valve

BL501 Backwash blower 1

PM501 Backwash pump 1

 Table 7.4 Equipment associated with fitler RG101

Doc: PS2001-5-2311-001 Rev: R02.00 155-201

(6) The backwash sequence for the filter had the following plain English description:

• Isolate the filter (take it out of service and close all valves)

• Aerate the filter (open air inlet valve and start blower)

• Backwash the filter with aeration (open backwash inlet and outlet

valves and start backwash pump)

• Washout the filter (stop blower and close air inlet valve)

• Allow filter bed to settle (stop pump and close backwash valves)

• Return filter to service (open inlet and outlet valves)

(7) This sequence would more formally be documented using a Sequential Input/Output

(IO) Matrix as follows:

Filter RG101 Backwash Sequence

NORMAL OPERATION

In
le

t valve

O
u
tle

t valve

B
ack

w
ash

 in
le

t valve

B
ack

w
ash

 o
u
tle

t valve

A
ir in

le
t valve

B
ack

w
ash

 b
lo

w
e
r

B
ack

w
ash

 p
u
m

p

Step
Step description (green) and transition conditions (blue)

M
V

1
0
1

C
V

1
0
2

V
V

1
0
3

V
V

1
0
4

V
V

1
0
5

B
L
5
0
1

P
M

5
0
1

00000

Sequence Idle

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

Wait for timed backwash start signal

(RG101_BW_start = true)

IDLE

Starting

Generate backwash started message

01000

Generate message. Activate Cmd_Run

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

 No transition condition

STARTING Msg_RG1010_001: Filter 1 backwash started

156-201 Doc: PS2001-5-2311-001 Rev: R02.00

Filter RG101 Backwash Sequence

NORMAL OPERATION

In
le

t valve

O
u
tle

t valve

B
ack

w
ash

 in
le

t valve

B
ack

w
ash

 o
u
tle

t valve

A
ir in

le
t valve

B
ack

w
ash

 b
lo

w
e
r

B
ack

w
ash

 p
u
m

p

Step
Step description (green) and transition conditions (blue)

M
V

1
0
1

C
V

1
0
2

V
V

1
0
3

V
V

1
0
4

V
V

1
0
5

B
L
5
0
1

P
M

5
0
1

Running

Close inlet and outlet valves

10000

Close all filter valves

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 All valves are confirmed closed

RUNNING NB. VV103, VV104, VV105 will already be closed

Open air inlet valve

10010

Open VV105

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

O
P
E
N

S
T

O
P

S
T

O
P

 VV105 is confirmed open

RUNNING

Start air blower

10020

Start BL501

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

O
P
E
N

R
U

N

S
T

O
P

 Wait for aeration time RG101_BW_AirTime

RUNNING

Open backwash inlet and outlet valves

10030

Open VV103 and VV104

C
L
O

S
E

C
L
O

S
E

O
P
E
N

O
P
E
N

O
P
E
N

R
U

N

S
T

O
P

 VV103 and VV104 are confirmed open

RUNNING

Start backwash pump (filter is now cleaning, both backwash pump and blower are running

10040

Start PM501

C
L
O

S
E

C
L
O

S
E

O
P
E
N

O
P
E
N

O
P
E
N

R
U

N

R
U

N

 Wait for clean time RG101_BW_CleanTime

RUNNING

Stop aeration, stop blower

10050

Stop BL501

C
L
O

S
E

C
L
O

S
E

O
P
E
N

O
P
E
N

O
P
E
N

S
T

O
P

R
U

N

 BL501 is confirmed stopped

RUNNING

Doc: PS2001-5-2311-001 Rev: R02.00 157-201

Filter RG101 Backwash Sequence

NORMAL OPERATION

In
le

t valve

O
u
tle

t valve

B
ack

w
ash

 in
le

t valve

B
ack

w
ash

 o
u
tle

t valve

A
ir in

le
t valve

B
ack

w
ash

 b
lo

w
e
r

B
ack

w
ash

 p
u
m

p

Step
Step description (green) and transition conditions (blue)

M
V

1
0
1

C
V

1
0
2

V
V

1
0
3

V
V

1
0
4

V
V

1
0
5

B
L
5
0
1

P
M

5
0
1

Start close air inlet valve

10060

Close VV105

C
L
O

S
E

C
L
O

S
E

O
P
E
N

O
P
E
N

C
L
O

S
E

S
T

O
P

R
U

N

 VV105 is confirmed closed

RUNNING

Filter is washing out

10070

No additional actions

C
L
O

S
E

C
L
O

S
E

O
P
E
N

O
P
E
N

C
L
O

S
E

S
T

O
P

R
U

N

 Wait for washout time RG101_BW_WashOutTime

RUNNING

Stop backwash pump

10080

Stop PM501

C
L
O

S
E

C
L
O

S
E

O
P
E
N

O
P
E
N

C
L
O

S
E

S
T

O
P

S
T

O
P

 PM501 is confirmed stopped

RUNNING

Close backwash valves

10090

Close VV103 and VV104

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 VV103 and VV104 are confirmed closed

RUNNING

Filter is settling

10100

No additional actions

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 Wait for settling time RG101_BW_SettleTime

RUNNING

Open filter inlet valve

10110

Open MV101

O
P
E
N

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 MV101 is confirmed open

RUNNING

158-201 Doc: PS2001-5-2311-001 Rev: R02.00

Filter RG101 Backwash Sequence

NORMAL OPERATION

In
le

t valve

O
u
tle

t valve

B
ack

w
ash

 in
le

t valve

B
ack

w
ash

 o
u
tle

t valve

A
ir in

le
t valve

B
ack

w
ash

 b
lo

w
e
r

B
ack

w
ash

 p
u
m

p

Step
Step description (green) and transition conditions (blue)

M
V

1
0
1

C
V

1
0
2

V
V

1
0
3

V
V

1
0
4

V
V

1
0
5

B
L
5
0
1

P
M

5
0
1

Open filter outlet valve (under PID control)

10120

Activate CV102 PID Control

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

FIC101 is reading above minimum flow

FIC101 >= FiltMinFlow

RUNNING

Trigger completing

10130

Activate Cmd_Complete

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 No transition condition

RUNNING

Completing

Generated backwash complete message

20000

Generate message. Activate Cmd_Completed

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

FIC101 is reading above minimum flow

FIC101 >= FiltMinFlow

RUNNING Msg_RG1010_002: Filter 1 backwash complete

Completed

Completed, return to IDLE state

29000

Activate Cmd_RetIdlee

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 No transition condition

RUNNING

Doc: PS2001-5-2311-001 Rev: R02.00 159-201

(8) If a fault occurs during the sequence, all backwash operations will stop and the filter

will be placed in an isolated condition until the operator either issues a RESUME com-

mand, in which case the backwash sequence will restart from step 01000 (from the

beginning).

(9) The operator could also ABORT the backwash, under which condition the filter will

be returned to service.

(10) A fault condition is any condition affecting the devices associated with the filter or

backwash equipment:

• MV1010 fault

• CV102 fault

• VV103 fault

• VV104 fault

• VV105 fault

• BL501 fault

• PM501 fault

Note: If, during a backwash, a low alarm is generated by LIT501 indicating a low level

in the backwash tank, this is not considered a fault; there is sufficient capacity in

the backwash tank at this point to complete the backwash. LIT501 low alarm

would however, prevent a backwash sequence from starting

(11) The hold, resume and abort logic for the sequence is as follows:

160-201 Doc: PS2001-5-2311-001 Rev: R02.00

Filter RG101 Backwash Sequence

FAULT OPERATION

In
le

t valve

O
u
tle

t valve

B
ack

w
ash

 in
le

t valve

B
ack

w
ash

 o
u
tle

t valve

A
ir in

le
t valve

B
ack

w
ash

 b
lo

w
e
r

B
ack

w
ash

 p
u
m

p

Step
Step description (green) and transition conditions (blue)

M
V

1
0
1

C
V

1
0
2

V
V

1
0
3

V
V

1
0
4

V
V

1
0
5

B
L
5
0
1

P
M

5
0
1

Error Holding

Stop backwash pump and blower

40000

Stop PM501 and BL501

U
N

C
H

A
G

N
E
D

U
N

C
H

A
G

N
E
D

U
N

C
H

A
G

N
E
D

U
N

C
H

A
G

N
E
D

U
N

C
H

A
G

N
E
D

S
T

O
P

S
T

O
P

 Wait for 10 seconds

ERROR

HOLDING

Close all valves

40010

Close VV103, VV104, VV105, MV101 and CV102

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 Wait for 10 seconds

ERROR

HOLDING

Close all valves

40020

Activate Cmd_ErrHeld

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 No transition condition

ERROR

HOLDING

Error Held

Close all valves

45000

Generate message

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

ERROR

HOLDING
Msg_RG1010_003: Filter 1 backwash failed; sequence HELD

Error Resuming

Restart the backwash sequence (trigger RUN command and return to step 10000)

50000

Generate message. Activate Cmd_Run

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

ERROR

HOLDING
Msg_RG1010_003: Filter 1 backwash restarted

Doc: PS2001-5-2311-001 Rev: R02.00 161-201

Filter RG101 Backwash Sequence

ABORT OPERATION

In
le

t valve

O
u
tle

t valve

B
ack

w
ash

 in
le

t valve

B
ack

w
ash

 o
u
tle

t valve

A
ir in

le
t valve

B
ack

w
ash

 b
lo

w
e
r

B
ack

w
ash

 p
u
m

p

Step
Step description (green) and Transition conditions (blue)

M
V

1
0
1

C
V

1
0
2

V
V

1
0
3

V
V

1
0
4

V
V

1
0
5

B
L
5
0
1

P
M

5
0
1

Aborting

Return filter to service, open filter inlet valve

60000

Open MV101
O

P
E
N

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

S
T

O
P

 MV101 is confirmed open

ABORTING

Open filter outlet valve (under PID control)

60010

Activate CV102 PID Control

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

R
U

N

FIC101 is reading above minimum flow

FIC101 >= FiltMinFlow

ABORTING

Trigger aborted

60020

Activate Cmd_Aborted

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

R
U

N

 No transition condition

ABORTING

Aborted

Generated backwash complete message

65000

Generate message. Activate Cmd_RetIdle

O
P
E
N

P
ID

C
L
O

S
E

C
L
O

S
E

C
L
O

S
E

S
T

O
P

R
U

N

 No transition

ABORTED Msg_RG1010_004: Filter 1 returned to service backwash not complete

162-201 Doc: PS2001-5-2311-001 Rev: R02.00

7.2.1 Sequence IO matrix summary

TITLE

Additional notes
Device descriptions

Step
Step description (green) and transition conditions (blue) Device tags

STEP

DESCRIPTION OF ACTIONS

REQUIRED STATES FOR THIS STEP

PROMPT TRANSITION CONDITIONS

STATE MESSAGES NOTES

STATE

STEP SUMMARY OR DESCRIPTION

STEP

DESCRIPTION OF ACTIONS

REQUIRED STATES FOR THIS STEP

PROMPT TRANSITION CONDITIONS

STATE MESSAGES NOTES

(1) Sequence IO matrices are the preferred mechanism for documenting sequence, the use

of spread sheets for this operation makes such documentation easier to generate and

maintain.

(2) Sequence IO Matrices are easy to adapt and use as test documents, the requirements

for each step being easily determined.

Doc: PS2001-5-2311-001 Rev: R02.00 163-201

8. Interrupt module s

8 Interrupt modules

(1) Programme execution within the PAL (and in all Simatic Controllers) is entirely event

driven, some event must take place in order to execute any software. Such events are

detected by the Controller operating system and in response to the specific event, the

Controller triggers a specific organisation block.

(2) The main example of this is the cyclic triggering of OB 1, OB1 is triggered automati-

cally by the Controller operating system at the start of each scan after the process image

has been updated.

(3) Two forms of interrupt organisation block exist: the first being operational interrupts

that occur in response to some normal, expected event (a time of day, a hardwired

signal &c.). The second form is in response to an unexpected event, an error or a fault

condition (a card failure, a programming error &c.).

(4) The following tables list the two types of interrupt organisation blocks

NORMAL INTERRUPTS

OB NUMBER PAL MODULE NAME DESCRIPTION

OB 1 OB00001_IntINrmMainProgram
Controller main program cycle

Called at the start of each Controller cycle

OB 10 OB00010_IntINrmNTimeOfDay
Time of day Interrupt

Called by time and day of week

OB 20 OB00020_IntINrmNTimeDelay
Time delay Interrupt

Called after a specified delay has expired

OB 30 OB00030_IntINrmNCyclic
Timed cyclic Interrupt

Called at specified intervals

OB 40 OB00040_IntINrmNHardware
Hardware Interrupt

Called when a specified signal is detected

OB 100 OB00100_IntINrmNStartUp
Start-up Interrupt

Called when the CPU transitions to RUN

Table 8.1 Standard (normal) interrupt modules and organisation blocks

164-201 Doc: PS2001-5-2311-001 Rev: R02.00

ERROR INTERRUPTS

OB NUMBER PAL MODULE NAME DESCRIPTION

OB 80 OB00080_IntIErrECycleTimeErr
Error Interrupt

Maximum cycle time exceeded

OB 82 OB00082_IntIErrEModuleDiag
Error Interrupt

Module diagnostics signal received (module fault)

OB 83 OB00083_IntIErrEModuleChange
Error Interrupt

Module changed, removed or installed

OB 86 OB00086_IntIErrERackErr
Error Interrupt

Rack failure or fault

OB 121 OB00121_IntIErrEProgramErr
Error Interrupt

Programming fault or error

OB 122 OB00122_IntIErrEIOErr
Error Interrupt

IO card access fault

Table 8.2 Fault interrupt modules and organisation blocks

(5) Irrespective of the type of interrupt and with the exception of the main cycle organisa-

tion block (OB 1), all interrupt OBs carryout a certain set of (minimum) activities.

(6) All such OBs record the time of their last call in the DB21001_Dy_SysGlobalData

data block. The time is stored in the DTL format (DateTimeLong data type). The DTL

format provides the following data (stored as unsigned integers):

NAME TYPE DESCRIPTION

YEAR UInt Year (1970-2262)

MONTH USInt Month (01-12)

DAY USInt Day (01-31)

WEEKDAY USInt Day of week (1-7 where 1 = Sunday, 7 = Saturday)

HOUR USInt Hour (00-23)

MINUTE USInt Minute (00-59)

SECOND USInt Second (00-59)

NANOSECOND USDInt Nanoseconds (000,000,000- 999,999,999)

Table 8.3 Execution time record of an OB

(7) All organisation blocks with the exception of OB 1 must do this, and the software as-

sociated with the time stamp is stored in the first network following the current revision

and modification history (this will usually be network 3), the time stamp is recorded

as follows:

Doc: PS2001-5-2311-001 Rev: R02.00 165-201

Figure 8.1 Step transition diagram

8.1 Error detection OBs

(1) Error interrupt OBs (see Table 8.2) detect specific faults that can occur within a Con-

troller. Such faults are exceptions, and are not expected to occur during the normal

operation of the Controller.

(2) By default, if an error occurs (say a remote IO module panel is turned off), then the

Controller CPU will automatically enter the STOP mode, all Controller outputs will

be turned off and user programme will no longer be executed.

(3) By most definitions, this is an extreme reaction, and while the failure of a remote IO

rack may drastically affect the operation of the plant, it is generally better to keep the

Controller running and reporting the existence of the fault rather than just entering

STOP mode.

(4) To prevent this reaction, the appropriate error organisation block must be present

within the Controller (in the case of the previous example, the OB in question would

be OB86, rack failure or fault). If the block is present (even if it does not contain any

code) the CPU will not enter STOP mode.

(5) By default, the PAL contains a full set of error interrupt OBs, and, unless there is a

specific reason not to do so, all should be installed in the target software project. This

prevents the CPU stopping under all error conditions.

166-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 167-201

9. Template modules

9 Template modules

(1) A full set of template modules are supplied with the PAL software. These template

modules give worked examples of how the standard and application modules should be

used in a control system project.

(2) The template modules provide an example of each type of application module, demon-

strating how each application module is to be used and how it calls its associated stand-

ard modules. There are also template modules for each type of interrupt OB.

(3) The template modules are based around an example Fermenter project, this Fermenter

project is the basis of the User Guide (UG) [Ref. 009] documentation that is issued as

part of the training documentation associated with this project.

(4) The Fermenter project is a relatively simple project, but covers all aspects of the PAL

software, and provides a comprehensive guide to using all aspects of the PAL software.

9.1 Templates for application modules

(1) There is a template module associated with each of the application modules. Each

template module gives an example of how its associated application module should be

used and coded. Where application modules are numbered 20,000 to 39,999, the tem-

plate modules are numbered 40,000 to 59,999; thus, template module 42,000 is an ex-

ample of how application module 22,000 is to be used.

(2) All template modules will be fully documented and will reflect the PAL documenta-

tion standards given in the Style Guide (SG) [Ref. 010].

(3) The following table gives the associated numbering between template modules and

application modules:

168-201 Doc: PS2001-5-2311-001 Rev: R02.00

FUNCTION GROUP
TEMPLATE

MODULE NUBER
ASSOCIATED APPLICATION

MODULE NUMBER

Debug (start of cycle) FC 40nnn FC 20nnn

System functions FC 41nnn FC 21nnn

Read instruments FC 42nnn FC 22nnn

Interlock & protection FC 43nnn FC 23nnn

Safety systems FC 44nnn FC 24nnn

Calculations & mathematics FC 45nnn FC 25nnn

Continuous control FC 46nnn FC 26nnn

Sequential control FC 47nnn FC 27nnn

Command handling FC 48nnn FC 28nnn

Device drivers (control loops) FC 50nnn FC 30nnn

Device drivers (valves) FC 51nnn FC 31nnn

Device drivers (drives) FC 52nnn FC 32nnn

Message handling FC 56nnn FC 36nnn

Communication handling FC 57nnn FC 37nnn

Debug (end of cycle) FC 59nnn FC 39nnn

Table 9.1 Template module and application module associations

(4) The Fermenter project represented in the template modules and detailed in the User

Guide [Ref. 009] contains the following set of blocks:

TEMPLATE MODULES ASSOCIATED

COORDINATING MARSHALL ING PROGRAMMING APPL ICATION MODULE

FC40000_TmtDebugSOS FC20000_AppDebugSOS

 FC40101_TmtDebugInst FC20101_AppDebugInst

FC41000_TmtSysFunctions FC21000_AppSysFunctions

FC42000_TmtInstRead FC22000_AppInstRead

 FC42001_TmtInstAnalogRead FC22001_AppInstAnalogRead

 FC42001_TmtInstDigitalRead FC22001_AppInstAnalogRead

FC43000_TmtILock FC23000_AppILock

 FC43101_TmtILockArea1 FC23101_AppILockArea1

 FC43201_TmtILockArea2 FC23201_AppILockArea2

 FC43301_TmtILockArea3 FC23301_AppILockArea3

 FC43401_TmtILockArea4 FC23401_AppILockArea4

FC44000_TmtSafe FC24000_AppSafe

 FC44101_TmtSafeZone1 FC24101_AppSafeZone1

FC45000_TmtCalc FC25000_AppCalc

 FC45001_TmtCalcAvg FC25001_AppCalcAvg

 FC45700_TmtCalcNabla FC25700_AppCalcNabla

Doc: PS2001-5-2311-001 Rev: R02.00 169-201

TEMPLATE MODULES ASSOCIATED

COORDINATING MARSHALL ING PROGRAMMING APPL ICATION MODULE

FC46000_TmtContLogic FC26000_AppContLogic

 FC46101_TmtContStt FC46101_AppContStt

 FC46201_TmtContInoc FC46201_AppContInoc

 FC46301_TmtContVent FC46301_AppContVent

FC47000_TmtSeqLogic FC27000_AppSeqLogic

 FC47101_TmtSeqExec FC27101_AppSeqExec

 FC47201_TmtSeqSter FC27201_AppSeqSter

 FC47301_TmtSeqFerm FC27301_AppSeqFerm

 FC47401_TmtSeqCIP FC27401_AppSeqCIP

 FC47601_TmtSeqAgit FC27601_AppSeqAgit

FC48000_TmtCmdHandler FC28000_AppCmdHandler

 FC48001_TmtCmdPID FC28001_AppCmdPID

 FC48101_TmtCmdVlvIsol FC28101_AppCmdVlvIsol

 FC48151_TmtCmdVlvMod FC28151_AppCmdVlvMod

 FC48201_TmtCmdDriveDOL FC28201_AppCmdDriveDOL

 FC48251_TmtCmdDriveVSD FC28251_AppCmdDriveVSD

FC50000_TmtDevDriver FC30000_AppDevDriver

 FC50001_TmtDevPID FC30001_AppDevPID

 FC51001_TmtDevVlvIsol FC31001_AppDevVlvIsol

 FC51501_TmtDevVlvMod FC31501_AppDevVlvMod

 FC52001_TmtDevDrvDOL FC32001_AppDevDrvDOL

 FC52501_TmtDevDrvVSD FC32501_AppDevDrvVSD

FC56000_TmtMsgHandling FC36000_AppMsgHandling

 FC56101_TmtMsgClassify FC36101_AppMsgClassify

FC57000_TmtCommsHandling FC37000_AppCommsHandling

 FC55101_TmtCommsCon2 FC35101_AppCommsCon2

FC59000_TmtDebugEOS FC39000_AppDebugEOS

 FC59101_TmtDebugSim FC39101_AppDebugSim

 FC59201_TmtDebugSeq FC39201_AppDebugSeq

Table 9.2 Full list of template modules and associated application modules

(5)

170-201 Doc: PS2001-5-2311-001 Rev: R02.00

9.2 Template modules for organisation blocks

(1) The PAL utilises organisation blocks for fault and interrupt handling. Each such or-

ganisation block has a template module that can be copied into the relevant OB to

provide the necessary functions required by the PAL, these templates form the basis of

each interrupt block providing the basic functions and minimum requirements needed

by each.

(2) The template modules for organisation blocks are numbered in the FC 60000 to

FC 60999 range, specifically they have the default OB number plus 60000, thus the

OB 35 template module is given the number FC 60035.

(3) The following lists all the template modules for organisation block and their associated

OB number:

TEMPLATE MODULE ASSOCIATED OB INTERRUPT TYPE

FC60001_TmtINrmNMainProgram OB00001_IntINrmNMainProgram
Controller main program cycle

Called at the start of each Controller cycle

FC60010_TmtINrmNTimeOfDay OB00010_IntINrmNTimeOfDay
Time of day Interrupt

Called by time and day of week

FC60020_TmtINrmNTimeDelay OB00020_IntINrmNTimeDelay
Time delay Interrupt

Called after a specified delay has expired

FC60030_TmtINrmNCyclic OB00030_IntINrmNCyclic
Timed cyclic Interrupt

Called at specified intervals

FC60040_TmtINrmNHardware OB00040_IntINrmNHardware
Hardware Interrupt

Called when a specified signal is detected

FC60080_TmtIErrECycleTimeErr OB00080_IntIErrECycleTimeErr
Error Interrupt

Maximum cycle time exceeded

FC60082_TmtIErrEModuleDiag OB00082_IntIErrEModuleDiag
Error Interrupt

Module diagnostics signal received (module fault)

FC60083_TmtIErrEModuleChange OB00083_IntIErrEModuleChange
Error Interrupt

Module changed, removed or installed

FC60086_TmtIErrERackErr OB00086_IntIErrERackErr
Error Interrupt

Rack failure or fault

FC60100_TmtIErrEStartUp OB00100_IntIErrEStartUp
Start-up Interrupt

Called when the CPU transitions to RUN

FC60121_TmtIErrEProgramErr OB00121_IntIErrEProgramErr
Error Interrupt

Programming fault or error

FC60122_TmtIErrEIOErr OB00122_IntIErrEIOErr
Error Interrupt

IO card access fault

Table 9.3 Template modules for organisation blocks

Doc: PS2001-5-2311-001 Rev: R02.00 171-201

10. Document ation modules

10 Documentation modules

(1) The PAL software is extensively documented and makes use of various naming con-

ventions for variables, constants &c.

(2) The standards and conventions for documenting the PAL software are detailed in Sec-

tion 4 and are further discussed in the Style Guide [Ref. 010].

(3) The practices specified in the style guide are summarised within the documentation

modules, these are intended to be proforma examples of comments, variable and con-

stant naming and block parameterisation.

(4) The document modules have the following allocations:

NUMBER CLASS FUNCTION

FC61000 Doc

Example block comments, containing the following:

• Block title

• Block description (typical)

• Revision and modification history

• Headings, list and indented text

• Body text

• Table, equations & figures

• Special characters

• Network comments

FC62001 Doc Block allocations and block naming conventions

FC62002 Doc Tag, variable and constant naming conventions

FC62003 Doc UDT and data block variable naming conventions

FC62101 Doc Structuring block comments (general)

FC62102 Doc Building tables, equations and figures in block comments

FC62103 Doc Special requirements for OB 1 block comments

FC62201 Doc UDT and data block comments

FC62202 Doc Block properties and how to use them

FC63001 Doc Version control and revision management

FC65000 Doc Template project documentation

Table 10.1 Document modules for the PAL

172-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 173-201

11. Common approach to dat a handlin g

11 Common approach to data

handling

(1) All standard modules receive all their data via parameters, these can be simple IO and

discrete signals passed as individual items to the block, or can be more complex data

structures that form the STATIC_DATA and DYNAMIC_DATA passed to the block in the

form of UDTs.

(2) This section concentrates on the STATIC_DATA and DYNAMIC_DATA.

(3) The purpose of this separation of static and dynamic data is that the static data is con-

stant and can be verified against a known “offline” version of the software to establish

that the data is correct, the dynamic data is “live data” and is constantly changing and

such verification would be meaningless.

(4) By separating static data from the dynamic data, it provides and additional means of

verifying the software installed in a Controller is the correct version of the software.

11.1 Conventions for using UDTs

(1) As a general rule, all standard modules have both static and dynamic data passed to

them via the STATIC_DATA and DYNAMIC_DATA parameters, this data is different for

every standard module. The static data for an isolating valve is entirely different to the

static data required when reading an instrument, even closely associated devices (an

isolating valve and a bistable valve for example) have differences in the data structures.

(2) In all cases, a standard module will have a unique static data structure with the same

number as the standard module, and will have a unique dynamic data structure with

the same number as the standard module Plus 20000. For example, the isolating valve

module has the block number FC11001, and this uses a static UDT with number

UT11001 and a dynamic UDT with the number UT310001.

174-201 Doc: PS2001-5-2311-001 Rev: R02.00

(3) While all static UDTs are different from each other and all dynamic UDTs also differ

from each other, there are commonalities in terms of function. For example, compare

some of the signals generated for an isolating valve and for a DOL drive:

ISOLATING VALVE DOL DRIVE

SYMBOL S IGNAL MEANING SYMBOL S IGNAL MEANING

Status_Closed Closed

Status_Stopped Stopped

Status_Opening Opening

Status_Starting Starting

Status_Opened Opened

Status_Running Running

Status_Closing Closing

Status_Stopping Stopping

Status_Fault Fault

Status_Fault Fault

Table 11.1 Commonality of signals

(4) Although the signals are different, the valve using closed/open terminology and the

drive stopped/running terminology, there is clearly a commonality of function, all sig-

nals are status signals for example, they show the status of the device. And to this end,

each signal starts with the word status_ to indicate this.

(5) This approach is adopted thorough out the static and dynamic data structures:

11.1.1 Static UDT conventions

(1) Static UDT entries (variables and constants) are in uppercase, using the following con-

ventions (see § 4.6):

1 The name must be written in uppercase

2 The name must be no more than 21 characters

3 Only use the characters [A-Z], the numbers [0-9] and the under-

score character [_]

4 The underscore character should be used in place of a space to

separate words

Doc: PS2001-5-2311-001 Rev: R02.00 175-201

(2) Further, each entry name is in the format:

FUNC_NAME

Where:

 ITEM MEANING DETAILS

 FUNC Function Up to 8 characters

 NAME Variable name

(3) The name component can be any meaningful name given to the variable; the name

should be chosen such that the total name of the variable (FUNC_NAME) is no more than

21 characters.

(4) Examples are:

CONFIG_ALM_H_EN

RANGE_RAW_MIN

TIME_OPEN_MAX

176-201 Doc: PS2001-5-2311-001 Rev: R02.00

(5) The FUNC component of the name has various preset values:

FUNC VALUE DESCRIPTION

CONFIG_ Configuration of an option, usually a Boolean switch value that turns a particular

mode or function on or off

INFO_ Provides some form of information about the object (such as a tag name or

instrument units &c.) usually in the form of a string

RANGE_ Specifies a range for a value, for example, it could specify the minimum and

maximum range of a scaled analogue signal

REVINFO_ Contains revision information

SP_ Setpoint, identifies a particular analogue value (such as the alarm setpoint for an

instrument). Setpoints are usually real numbers

TIME_ Identifies a timed operation value (for example, the maximum time it takes a valve

to open)

K_ A constant used for some specific purpose

Table 11.2 Static UDT function names

11.1.2 Dynamic UDT conventions

(1) Static UDT entries (variables and constants) are in uppercase, using the following con-

ventions (see § 4.6):

1 The name must be written in camel case

2 The name must be no more than 25 characters

3 Only use the characters [a-z], [A-Z], the numbers [0-9] and the

underscore character [_]

(2) Further, each entry name is in the format:

func_Name

Where:

 ITEM MEANING DETAILS

 func Function Up to 8 characters

 Name Variable name

Doc: PS2001-5-2311-001 Rev: R02.00 177-201

(3) The name component can be any meaningful name given to the variable; the name

should be chosen such that the total name of the variable (func_Name) is no more than

25 characters.

(4) Examples are:

status_Alm_H

mode_SimOn

time_Opening

actual_Value

(5) The func component of the name has various preset values:

FUNC VALUE DESCRIPTION

actual_ Indicates an actual value (such as the true reading of an instrument)

batch_ Indicates the variable belongs to a batch process (usually storing an ID number

that indicates which batch process has control of the device)

cal_ A calculated value

ctrl_ A control signal (used to directly control the device, an output for example or a

signal which may be applied to an output under specific conditions)

status_ Status, indicates the status of the device for use elsewhere within the software

(e.g. status_Open indicates a valve is in the open state)

mode_ Indicates an operating mode (e.g. mode_Manual indicts the device is under

manual control)

msg_ Identifies the variable as a message (alarm, warning or event)

prompt_ Identifies the variable as a prompt (a special form of a message that requires a

user response)

result_ Indicates the result of a calculation or other evaluation process

revInfo Revision information

time_ Identifies a variable that store a timer value (this is the actual value of a running

timer)

$xxxx_ The $ indicates that the variable is an internal working value for the module in

question (for example $pret would indicate a positive edge retention variable).

Variable beginning with $ should not be used externally to the standard module.

Table 11.3 Dynamic UDT function names

178-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 179-201

12. Common modes of operation

12 Common modes of operation

(1) Devices and instruments that have some form of interface that can be linked to a su-

pervisory system have several common modes of operation, the PAL accommodates

the following modes of operation (usually, but not exclusively selected by the operator

via a supervisory system).

• Automatic/manual mode

• Bypass mode for interlocks

• Simulation mode

• Remote/local operation

• Disabling supervisory system faceplates

12.1 Manual mode

(1) Manual mode is applicable to devices (rather than instruments): control loops, valves

and drives.

(2) Manual mode allows the operator to take control of a device and override the auto-

matic operations of the Controller software.

(3) If a device is in automatic mode, the Controller software determines the state of the

device and the device will respond accordingly, if the software requires that a valve be

open, the valve will be opened automatically by the software (usually within the com-

mand handling function group).

(4) If the operator switches a device to manual mode, then the requirements of the Con-

troller software are ignored and the valve will only respond to commands from the

operator.

(5) The exception to this rule is that if a device is in manual and an interlock condition

arises that requires the valve to be in a particular state (interlock, permissive or trip),

180-201 Doc: PS2001-5-2311-001 Rev: R02.00

then this will take priority over the manual operation and the device will be driven to

the state required by the interlock condition (for example if a valve is in manual mode

and has been opened by the operator when an interlock condition arises that requires

the valve to close, then the valve will close, overriding the manual command. Once

the interlock condition is removed, the valve will go back to the manual state required

by the operator).

(6) Interlock conditions can also be overridden, see the bypass mode, § 12.2.

(7) Switching a device from automatic mode to manual mode is a bumpless action; that is

to say, when the device enters manual mode, the state applied to the device will be the

last state that it had in automatic mode (for example, if a drive were running under

automatic control, when that drive was switched to manual mode, it would continue

to run — the manual state adopts the same state as the last automatic state).

(8) The following data points are associated with the simulation mode:

S IGNAL FUNCTION TYPE DETAILS

CONFIG_MAN_DIS
Prevents manual mode being activated under all

circumstances
Bool

1 = manual mode disabled

0 = manual mode permitted

mode_AutMan
Activates manual mode, if active, the device will adopt

the state given in ctrl_ManState
Bool

1 = automatic mode on (manual off)

0 = manual mode on (auto off)

ctrl_Man_State

Sets the device to a particular state if mode_AutMan is

set to manual (if mode_AutMan = off). For example for

a valve this would be ctrl_Man_OpenClose)

Bool
1 = set manual device to state 1

0 = set manual device to state 2

ctrl_Aut_State

Sets the device to a particular state if mode_AutMan is

set to automatic (if mode_AutMan = on). For example

for a valve this would be ctrl_Aut_OpenClose)

Bool
1 = set manual device to state 2

0 = set manual device to state 1

status_Man Status indication, shows if manual mode is active Bool
1 = manual mode active

0 = manual mode inactive

status_Aut Status indication, shows if automatic mode is active Bool
1 = automatic mode active

0 = automatic mode inactive

Table 12.1 Manual mode signals

(9) Manual mode can only be selected by the operator, usually via a supervisory system.

(10) If manual mode is disabled (configuration signal CONFIG_MAN_DIS is set to 1), then the

manual mode cannot be turned on under any circumstances and the standard module

will set the device permanently to automatic mode.

Doc: PS2001-5-2311-001 Rev: R02.00 181-201

12.2 Bypass mode

(1) Bypass mode is applicable to devices (rather than instruments): control loops, valves

and drives.

(2) Bypass mode overrides any interlock, permissive or trip that may be active.

Note: Emergency stop signals cannot be bypassed

(3) If bypass mode is active, the interlock, permissive or trip signal will be ignored and the

device will operate as if the interlock, permissive or trip signal were not active. Bypass

mode can be activated in both automatic mode and in manual mode.

(4) The following data points are associated with bypass mode:

S IGNAL FUNCTION TYPE DETAILS

CONFIG_BYPASS_DIS
Prevents bypass mode being activated under all

circumstances
Bool

1 = bypass mode disabled

0 = bypass mode permitted

mode_BypassOn
Activates bypass mode, if active an interlock, permissive

or trip signal will be ignored (bypassed)
Bool

1 = bypass mode on

0 = bypass mode off

status_BypassOn Status indication, shows if manual mode is active Bool
1 = bypass mode active

0 = bypass mode inactive

Table 12.2 Bypass mode signals

(5) Bypass mode is selected by the operator, usually via a supervisory system or via a key

switch type operation.

(6) If bypass mode is disabled (configuration signal CONFIG_BYPASS_DIS is set to 1), then the

bypass mode cannot be turned on under any circumstances and the standard module

will ignore any attempt to do so.

182-201 Doc: PS2001-5-2311-001 Rev: R02.00

12.3 Simulation mode

(1) Both instrument and devices can be switched to a simulation mode. If an instrument is

switched to simulation mode, the actual reading from the instrument is replaced by a

simulated value provided by the operator.

(2) If a device is switched to simulation mode, any feedback signals (such as limit switch

signals from a valve) are automatically simulated and follow the demanded state of the

device.

(3) It is possible when in simulation mode for a device to be given a specific set of signals

(i.e. to simulate a valve being closed, open or to have no limit switch signals) instead

of the simulating the actual state of the device

(4) Simulation mode is generally used during testing, but can also be applied in a process

environment if a fault condition is detected within an instrument or device; this sce-

nario allows the plant to continue operating (albeit under some degree of manual con-

trol) until the equipment is repaired or replaced.

(5) The following data points are associated with the simulation mode:

S IGNAL FUNCTION TYPE DETAILS

CONFIG_SIM_DIS Prevents simulation mode being activated under all circumstances Bool
1 = no simulation,

0 = simulation permitted

mode_SimOn

Activates simulation mode, if active for an instrument the scaled

reading of the instrument (Value) will be set to SimValue

If active for a device, the device will adopt either the demanded

state or any of the state signals below

Bool
1 = simulation mode on,

0 = simulation mode off

mode_SimValue
Scaled instrument reading (Value) will be set to this if simulation

mode is on (CONFIG_SIM_OFF = 0 and mode_SimOn = 1)
Real

Simulated instrument value in

engineering units

status_SimOn Status indication, shows if simulation mode is active Bool
1 = sim mode active

0 = sim mode inactive

Table 12.3 Simulation mode signals

(6) Simulation mode can only be activated by the operator usually via a supervisory sys-

tem.

(7) If simulation mode is disabled (configuration signal CONFIG_SIM_DIS is set to 1), then the

simulation mode cannot be turned on under any circumstances, the option is greyed

out on the supervisory system faceplate and the block will constantly reset the

mode_SimOn signal.

Doc: PS2001-5-2311-001 Rev: R02.00 183-201

12.4 Remote/local mode

(1) Remote and local operating modes refer to the supervisory system that has control of

the instrument (i.e. which system can write to the device and change the operating

mode of the device).

(2) This type of mode is usual present where a plant has a remote central control location

(a control room) that normally controls the device (remote control), but also has a field

panel with a local HMI that an operator in the field can select to take over control of

the device (local control) for maintenance purposes.

(3) The modes are as follows (and are mutually exclusive, only one will be active):

 Remote Only the remote system in the control room can control

the device

 Local A local system has taken control of the device and the

remote system can no longer issue commands to it

 Remote/local disabled

(ALL mode)

The system does not use remote/local modes and any

supervisory system can issue commands to the device

(4) Remote/local control is generally handled by the supervisory systems themselves;

however, the supervisory systems need a storage area per device to record which mode

that device is in, local control is often activated by a panel key-switch, that changes the

state of several devices from remote to local (usually all the devices controlled by the

local panel).

(5) The block simply identifies the remote/local mode from the mode signals and config-

uration signals provided to the block.

(6) For systems that do not use remote/local modes (any supervisory system can control

the device, or control is determined by operator privileges), the remote/local modes

can be disabled (CONFIG_RL_EN is set to false) and the device is effectively in ALL

mode (any system can control the device).

(7) If remote/local operation is in use, the supervisory system that does not have control

will still display all the information from the device, but will not be able to control the

184-201 Doc: PS2001-5-2311-001 Rev: R02.00

device (it could not for example, activate simulation mode) and all control function

(faceplate functions) will be greyed out.

(8) The following signals are associated with remote/local/all modes:

SIGNAL FUNCTION TYPE DETAILS

CONFIG_RL_EN

Allows Remote and Local modes to be selected. If set to

zero, the device does not have remote and local operation

and both mode_RemoteOn and mode_LocalOn are set to

zero (is in ALL mode).

Bool
1 = Remote/local can be selected

0 = All mode is active

mode_RemoteOn
Activates remote mode and resets local mode

(CONFIG_RL_ENABLE must be set to 1)
Bool

1 = remote mode on, 0 = remote

mode off

mode_LocalOn
Activates local mode and resets remote mode

(CONFIG_RL_ENABLE must be set to 1)
Bool

1 = local mode on,

0 = local mode off

status_RemoteOn
Status indication, active if device is in remote mode

(mode_RemoteOn = 1)
Bool

1 = remote mode on, 0 = remote

mode off

status_LocalOn
Status indication, active if device is in local mode

(mode_LocalOn = 1)
Bool

1 = local mode on,

0 = local mode off

status_RLOff
Status indication, ALL mode is active (mode_RemoteOn =

0 and mode_LocalOn = 0)
Bool

1 = ALL mode on,

0 = ALL mode off

Table 12.4 Remote/local mode signals

(9) By default, remote/local is disabled — ALL mode is selected.

Doc: PS2001-5-2311-001 Rev: R02.00 185-201

12.5 Faceplate disable mode

(1) It is possible to disable the supervisory system faceplate for any device or instrument,

as follows:

SIGNAL FUNCTION TYPE DETAILS

CONFIG_FP_DIS

Disable the supervisory system faceplate; if this signal is active, clicking the block

icon or device symbol will not activate the device faceplate pop-up. I.e. the

operator will never be able to issue instructions to the device

Bool
1 = Faceplate disabled

0 = normal

Table 12.5 Faceplate disable signal

(2) If the faceplate is disabled (CONFIG_FP_DIS = 1), the supervisory system will not allow the

device faceplate to be opened (normally achieved by clicking the block icon or device

symbol), this in turn prevents the operator from affecting the device in anyway, it

would not, for example, be possible to put the device into simulation mode.

(3) Similarly, if the faceplate is disabled, the standard module will set the device to auto-

matic mode (if applicable), will set remote/local mode to ALL and will disable all

other modes (simulation, bypass, manual &c.).

186-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 187-201

13. User documentation

13 User documentation

(1) TIA portal supports various mechanisms for storing the user documentation of soft-

ware modules; the PAL makes extensive use of this facility.

(2) All software modules within the PAL are extensively documented within the modules

themselves, see the Style Guide [Ref. 010] for details, this includes block headers and

individual network comments.

(3) In addition, the TIA facility for user documentation (referred to as TIA User Documen-

tation) is also used. This facility allows documents to be stored in a variety of formats:

PDF documents, text documents, Microsoft Word documents and also as web pages.

(4) Of all these formats, the PDF format offers the most flexibility, it is readily produced

from the Software Module Design Specifications [Ref. 008] (written in Word DOCX

format), can be configured to use the document headings as navigable bookmarks and

can be rendered in most standard web browser.

(5) The PAL user documentation will also provide links to the various documents gener-

ated within this project. This includes the following:

• The User Guide [Ref. 009]

• The software Design Specification [Ref. 007]

• Individual Software Module Design Specifications [Ref. 008]

• The Style Guide [Ref. 010]

(6) The PAL user documentation will also be developed as a full website, working under

the confines and structures imposed by the TIA User Documentation requirements.

This website provides a standard format for displaying the PAL user documentation.

188-201 Doc: PS2001-5-2311-001 Rev: R02.00

13.1 Organising the user documentation

(1) When a project is created in TIA Portal (for example the PAL project), TIA Portal

stores the project in new directory with the given name of the project. The project is a

series of files and directories all stored within a root directory with the given name of

the project itself.

(2) For example, this is the project directory structure for a TIA Portal project, in this case

from one of the proof-of-concept projects from the early stages of the PAL project:

Figure 13.1 Step transition diagram

(3) All of these folders within the TIA project are created by TIA Portal when the project

itself is created.

(4) The folders themselves are required by TIA Portal and the contents of those folders

should not be directly modified or changed externally to TIA Portal (any attempt to

do so will render the project corrupt).

(5) The one folder that is directly accessible to the user is the UserFiles folder; it is this

folder that holds the user documentation files that can be opened within TIA Portal.

(6) Such user documentation is accessed from within TIA Portal by selecting a block

within the project tree and pressing <shift> F1, if a user document can be found for

the selected block, it will be automatically opened.

(7) To access the user documentation, the documents must be stored in a particular loca-

tion. For English language documentation (that used by the PAL), the structure is:

Doc: PS2001-5-2311-001 Rev: R02.00 189-201

The directory UserDocumentation

must be created under the automati-

cally created UserFiles.

The UserDocumentation contains

subdirectories that correspond to the

language selected as the main user

language for TIA Portal, the lan-

guage should be set to English.

This means that for the PAL, all the

document data is stored under the

en-US directory.

The other directories that can be

used are:

LANGUAGE FOLDER NAME

English en-US

Chinese zh-CH

French fr-FR

German de-DE

Italian it-IT

Spanish es-ES

Table 13.1 User documentation language folders

To use any of the other folders, the

TIA Portal User interface language

must be changed, this also requires

that support for those languages was

installed during the installation of

TIA Portal.

Again, the PAL expects the lan-

guage to be English and requires

only the en-US directory.

Figure 13.2 User documentation folder structure

190-201 Doc: PS2001-5-2311-001 Rev: R02.00

(8) The folders under the en-US directory contain the documentation for each type block

within the project, the documentation for each FC is stored in the Functions direc-

tory, documentation for data blocks is stored the Data Blocks folder &c. The full list

of block related folders is:

FOLDER NAME CONTAINS

Data blocks Documentation for data blocks (DBs)

Function blocks Documentation for function blocks (FBs)

Functions Documentation for functions (FCs)

Organization blocks Documentation for organisation blocks (OBs)

Table 13.2 Folders for each type of block documentation

Note: The organisation block folder (Organization blocks) must be spelt with a

Z (not an S as is more common in Great Britain).

 Although the blocks all start with a capital letter, TIA Portal is not case sensitive

in regard to the folder names.

(9) The PAL user documentation is in the form of web pages; all web pages are PDF9

documents and end with the extension .pdf.

(10) The document for a particular module or block must be stored in the relevant folder

and the document given the same name as the block itself. For example, the System

Global Data module uses the function FC01001 and has the name

FC01001_StdGlobalData, this can be seen in the project tree below:

9 PDF: Portable document format, now standardised as ISO 32000, is a file format developed

by Adobe in 1992 to present documents, including text formatting and images, in a manner

independent of application software and hardware.

Doc: PS2001-5-2311-001 Rev: R02.00 191-201

Figure 13.3 Function name

(11) The corresponding document file for FC01001 must be stored in the Functions folder

and must have the same name as the block to which it is related. In this case the full

path and file name are:

UserFiles/UserDocumentation/en-US/Functions/FC01001_StdGlobalData.pdf

(12) The file name for the block documentation is FC01001_StdGlobalData.pdf; i.e. the

same name as the block with the .pdf extension.

(13) By highlighting the block in the TIA Portal and pressing <SHIFT> F1, TIA Portal will

open the file FC01001_StdGlobalData.pdf in the default web browser (or in the

application associated with the file type, e.g. Adobe reader).

(14) The PAL has user documentation for all the software modules contained within it,

selecting any block within the project tree will open a pdf document for that module,

this will be the Software Module Design Specification (SMDS) for that module.

(15) The PAL user documentation also contains other documentation relevant to the li-

brary, and these documents can be accessed from any of the block document files. The

additional documents that can be accessed are:

• The User Guide [Ref. 009]

• The software Design Specification [Ref. 007]

• The Style Guide [Ref. 010]

192-201 Doc: PS2001-5-2311-001 Rev: R02.00

13.1.1 The use of a home page

(1) If a document (in the case of the PAL a pdf web page) for a module does not exist,

when <SHIFT> F1 is selected for that module, TIA Portal will generate an error mes-

sage highlighting its absence.

(2) To avoid this, a default document can be placed in the language folder (en-US in this

case). The document must be called home (with which ever extension is being used),

in the case of the PAL this is home.pdf.

(3) If no specific document can be found for the particular module, TIA Portal will open

the default home document instead.

Doc: PS2001-5-2311-001 Rev: R02.00 193-201

13.2 Project specific User Documentation

(1) All the software modules issued as part of the PAL have their own User Documenta-

tion files that can be accessed via TIA Portal.

(2) A project developed using the PAL software may require its own documentation (par-

ticularly for the application modules that are specific to that particular project). The

user can freely add documentation to any of the folders of Table 13.2 to provide doc-

umentation for any modules developed for a particular project.

(3) These documents do not have to be in pdf format, TIA Portal will open any of the

following types of document:

1 Microsoft Word (.docx)

2 Web page (.html or .htm)

3 Portable document format (.pdf)

4 Microsoft PowerPoint (.ppsx or .pptx)

5 Rich text format (.rtf)

6 Text documents (.txt)

7 Microsoft Excel (.xlsx)

8 Microsoft XML paper selection (.xps)

Note: The TIA Portal suggests the .chm files (complied HTML help files) are also

supported, this has been found to be incorrect, TIA Portal does not support .chm

files and they should not be used as User Documentation

(4) If multiple file formats exist, TIA Portal will open them in the order listed above, 1

first (this is broadly the alphabetical order of the file extensions).

194-201 Doc: PS2001-5-2311-001 Rev: R02.00

13.2.1 User Documentation for additional items

(1) The PAL limits its User Documentation to the documentation of each block within it

(and some other documents that are accessed via the block User Documentation).

(2) TIA Portal allows other aspects of a project to be accessible via the User Documenta-

tion facilities; the folders of Table 13.2 can be expanded to include other parts of the

project tree. The full list is

FOLDER NAME CONTAINS

Data blocks Documentation for data blocks (DBs)

Function blocks Documentation for function blocks (FBs)

Functions Documentation for functions (FCs)

Organization blocks Documentation for organisation blocks (OBs)

Projects Documentation for the project node (top line) within the project tree

Folders Any folder within the project tree (e.g. Software units or Program blocks)

ShortCut Any link within the project tree (e.g. Add new block or Add new device)

Library Types A “type” in the library

Master Copies Master copies within the master library

Libraries Individual libraries in the library task card

Table 13.3 Folders for each type of block documentation, full list

(3) Again, any document file in the additional folders must have the same name as the

object it represents e.g.:

/Projects/projectname.pdf

/Folders/Program blocks.pdf

Doc: PS2001-5-2311-001 Rev: R02.00 195-201

14. Software security

14 Software security

(1) The software within a Controller has the facility to be password protected; this is a

function of the Controller and the TIA Portal programming environment. By default,

the PAL software will not be password protected.

(2) The released, validated modules within the software library will not be password pro-

tected in anyway, the purpose of the software is that it is a reusable library and will be

deployed on new projects as they arise, the software thus, needs to be accessible.

(3) The storage of the released (validated) version of the software library in its entirety will

be protected on the company servers, the software will be downloadable at the current

released version (along with its documentation), this will be a read-only process. The

software library will be under change control management (CCM) and only authorised

personnel will be able to modify the software.

14.1 The protecting of software modules

(1) The Validation Plan (VP), [Ref. 002] risk assessments require that certain modules and

types of modules will have protection activated at certain points during the Project

(usually after formal testing). This protection will use the TIA Portal operation referred

to as “write protect”, it does not affect the content of the module, it simply prevents it

from being changed either intentionally or inadvertently.

(2) Write protect will be applied to specific modules at specific point in the Project. The

final released (and verified) version of the software will have all the write protect re-

strictions removed.

196-201 Doc: PS2001-5-2311-001 Rev: R02.00

BLANK PAGE

Doc: PS2001-5-2311-001 Rev: R02.00 197-201

15. References and glossary

15 References and glossary

15.1 Document references

The following documents are referenced in this manual:

REF DOCUMENT NO. AUTHOR TITLE/DESCRIPTION

001 PS2001-5-0101-001 PSP Quality Plan (QP)

002 PS2001-5-0121-002 PSP Validation Plan (VP)

003 PS2001-5-1101-001 PSP User requirements specification (URS)

004 PS2001-5-1111-001 PSP Requirement Traceability Matrix (RTM)

005 PS2001-5-2101-001 PSP Functional Specification (FS)

006 PS2001-5-2211-001 PSP Hardware Design Specification (HDS)

007 PS2001-5-2311-001 PSP Software Design Specification (SDS) (THIS DOCUMENT)

008 PS2001-5-2312-fcNo. PSP Software Module Design Specifications (SMDSs)

009 PS2001-5-7111-001 PSP User Guide (UG)

010 PS2001-5-2313-011 PSP Style Guide (SG)

011 GAMP 5 ISPE Good Automated Manufacturing Practice

012 IEC6113-3 IEC
Programmable controllers - Part 3:

Programming languages

013 CFR 21, Part 11 US CFR
US Code of Federal Regulations, Title 21, Food and Drugs,

Part 11 – Electronic Records, Electronic Signatures

014
EudraLex Vol 4

Annex 11

EU

Regulations

Vol 4: Pharmaceutical legislation – Medicinal Products for

Human and Veterinary use – Good Manufacturing

015 ISO 8601 ISO Date and time format

016 PS2001-5-2319-901 PSP Dot matrix generator

017 PS2001-5-2301-001 PSP Register of software modules and revisions

018 PS2001-5-2302-011 PSP Software Control Mechanism (SCM)

019 PS2001-5-234101-001 PSP ES/WDP Configuration Manual

Table 15.1Table of references

198-201 Doc: PS2001-5-2311-001 Rev: R02.00

15.2 Glossary of terms

 ABBREVIATION DESCRIPTIONS

AC Alternating Current

AI Analogue Input

AQ Analogue Output

ASCII American Standard Code for Information Interchange

BS British Standard

BS EN British standards (BS) adoption of a European Standard (EN)

CAD Computer Aided Design

CFR Code of Federal Regulations

CPU Central Processing Unit

CSS Cascading Style Sheet

DC Direct Current

DB Data Block

DI Digital Input

DNS Domain Name System

DOL Direct Online

DQ Digital Output

DS Design Specification (general reference to any design document)

DTL Date Time Long

EEMUA Engineering Equipment and Materials Users' Association

EoC End of Cycle

EN European Standards

ERP Enterprise Resource Planning

ES Engineering Station

EudraLex European Union Drug Regulation Authority Legislation

EU European Union

FAT Factory Acceptance Test

FB Function Block

FC Function

FMS Fieldbus Message Specification

FS Functional Specification

GAMP Good Automated Manufacturing Practice

GMP Good Manufacturing Practice

Doc: PS2001-5-2311-001 Rev: R02.00 199-201

 ABBREVIATION DESCRIPTIONS

GRAFCET GRAPHe de Commande Etape-Transition (sequence documentation)

GxP Collective abbreviation for GMP and GXP

HDS Hardware Design Specification

HMI Human Machine Interface

HTML Hypertext Mark-up Language

ID Instance data block or Identifier

iDB Instance Data Block

IEC International Electro-technical Commission

IEC 61131-3 IEC standard for the syntax and semantics for PLC programming

languages

IET Institution of Engineering and Technology

IM Interface Module

IO Input/Output

IP Internet Protocol

IQ Installation Qualification

ISPE International Society for Pharmaceutical Engineering

ISO International Standards Organisation

IT Information Technology

JavaScript A web-based scripting language

jQuery A library of JavaScript objects, commonly used in web development

LAD Ladder Logic (PLC programming language)

Ladder Ladder Logic (PLC programming language)

LTSB Long-Term Service Branch

MDF Medium-density Fibreboard

MIT Massachusetts Institute of Technology (Licence)

MRPII Management Resource Planning 2

NC Normally Closed (type of valve)

NO Normally Open (type of valve)

OB Organisation Block

OQ Operational qualification

OSL Operating State Logic

PAL Practical Series Automation Library

P&ID Piping and Instrumentation Diagram

PC Personal Computer

PDF Portable Document Format

PDT PLC Data Type

200-201 Doc: PS2001-5-2311-001 Rev: R02.00

 ABBREVIATION DESCRIPTIONS

PG Programmer (or programming device, see ES)

PI Process Image

PID Proportional, Integral, Derivative — a common type of control loop

PII Process Image of Inputs

PIP Process Image Partition

PIPI Process Image Partition of Inputs

PIPQ Process Image Partition of Outputs

PIQ Process Image of Outputs

PLC Programmable Logic Controller (another name for a Siemens

Controller)

PN/IE Profinet/Industrial Ethernet

ProfiBus Process Field Buss

Profinet Process Field Net

PSP Practical Series of Publications

QHD Quad High Definition

QMS Quality Management System

QP Quality Plan

RAL Colour standards (Reichs-Ausschuß für Lieferbedingungen und Gütesicherung)

RAM Random Access Memory

RoC Rate of Change

RTD Resistance Temperature Device

RT Run Time

RTM Requirements Traceability Matrix

SCADA Supervisory Control and Data Acquisition

SCM Software Control Mechanism

SDS Software Design Specification

SDT System Data Type

SG Style Guide

SIT Software Integration Test document

SMDS Software Module Design Specification

SMT Software Module Test document

SoC Start of Cycle

SQL Structural Query Language

SSD Solid State Drive

STL Statement List (PLC programming language)

Doc: PS2001-5-2311-001 Rev: R02.00 201-201

 ABBREVIATION DESCRIPTIONS

TIA Totally Integrated Solutions (TIA Portal, a Siemens programming tool)

TC Thermocouple (when referring to IO cards)

TCP/IP Transmission Control Protocol/Internet Protocol

UDT User Data Type

UG User Guide

UI or U/I Voltage and current (when referring to IO cards)

UK United Kingdom

URS User requirements specification

US United States of America

USB Universal Serial Bus

UT User Data Type (alternative abbreviation)

VAC Voltage (alternating current)

VDC Voltage (direct current)

VP Validation Plan

VSD Variable Speed Drive

WinCC A Siemens Simatic SCADA system

 Table 15.2 Glossary

	Title page
	Licence
	Authorisations
	Revision history
	Contents
	1. Introduction
	1.1 Scope of this document
	1.2 Ownership, status & relationship to other documents
	1.2.1 Ownership of the document
	1.2.2 The status of this document
	1.2.3 Relationship to other documents

	1.3 Understanding and using this document

	2. Overview
	2.1 A description of the Project software
	2.1.1 Standard modules, an overview
	2.1.2 Application modules, an overview
	2.1.3 Template modules
	2.1.4 Documentation modules

	2.2 Regulatory requirements
	2.2.1 Software classification
	2.2.2 Regulation and legislative requirements
	2.2.3 Software standards
	2.2.4 Maintenance and publication of verification certificates

	2.3 A description of the User Documentation
	2.4 Assumptions and limitations
	2.5 Nonconformity
	2.6 Addressing the URS requirements

	3. Programming environments and common settings
	3.1 Engineering stations and Windows settings
	3.1.1 Engineering station operating system and hardware specifications
	3.1.2 ES fixed IP address
	3.1.3 Naming the Engineering Station
	The Siemens PC naming convention

	3.1.4 Windows regional settings

	3.2 TIA Portal settings
	3.2.1 Applying PAL settings to TIA Portal
	3.2.2 TIA Portal block overview column settings

	3.3 Common CPU Properties

	4. Naming, numbering and other conventions
	4.1 Block type and numbering conventions
	Organisation Blocks (OBs)
	Functions (FCs)
	Function Blocks (FBs)
	Data blocks (DBs)
	Instance data blocks (iDBs)
	User Data Types (UDTs)
	Built-in system blocks
	4.1.1 Block numbering
	4.1.2 Standard, application and template block numbering
	4.1.3 Data block numbering
	4.1.4 Instance data block numbering
	4.1.5 OB (Interrupt block) numbering
	4.1.6 Document block numbering
	4.1.7 Block numbering summary

	4.2 Module naming Conventions
	4.2.1 Block type
	4.2.2 Block number
	4.2.3 Block class
	4.2.4 Block function
	4.2.5 Block description
	4.2.6 Block naming restrictions

	4.3 Block optimisation & IEC check
	4.4 Tags, parameters, symbolic and absolute representations
	4.4.1 EN and ENO parameters

	4.5 Block parameter naming
	4.5.1 Formal parameters
	4.5.2 Temporary (local) data
	4.5.3 Constants
	4.5.4 Static data (function blocks only)

	4.6 Naming variables in static UDTs
	4.7 Naming variables in dynamic UDTs
	4.7.1 UDTs holding recipe data

	4.8 Naming variables in static DBs
	4.9 Naming variables in dynamic DBs
	4.9.1 DBs holding recipe data

	4.10 Tags and tag naming
	4.10.1 The PAL system tags (PAL_SystemTags)
	4.10.2 The PAL Input/Output tags (PAL_IOTags)
	4.10.3 Project specific tag tables

	4.11 Control system network device naming

	5. Common appearance and version control
	5.1 TIA Portal comment fields
	5.1.1 Maximum size of a comment field

	5.2 Common headers and networks
	5.2.1 Block title and comment field
	5.2.2 Network 1 — Block description
	5.2.3 Network 2 — Current revision and modification history

	5.3 OB 1 header and revision network
	5.3.1 OB 1 Network 1 — Project description
	5.3.2 OB 1 Network 2 — Current revision and modification history

	5.4 General network comments
	5.5 Specific network comments for sequences
	5.5.1 Step declaration network — title and comments

	5.6 Data block header and revision
	5.6.1 Data block revision information
	5.6.2 UDT block revision information

	5.7 Programmable block properties
	5.8 Data block and UDT properties
	5.8.1 Data block properties (static and dynamic)
	5.8.2 UDT properties (static and dynamic)

	5.9 Hardware component comments

	6. Standard modules
	6.1 SMDS contents
	Abstract (overview)
	Section 1 — Block technical summary
	Section 2 — Functional description
	Section 3 — Detailed block description
	Section 4 — Supervisory system interface
	Section 5 — Parameters
	Section 6 — Data structures and usage (and instance data blocks)
	Section 7 — Constants and temporary (local) data
	Section 7.1 — Constants
	Section 7.2 — Temporary (local) data
	Section 8 — Block calls and associations
	Section 8.1 — Block calls from within this module
	Section 8.2 — Blocks associated with this module
	Section 8.3 — System block calls and system data types
	Section 8.4 — Special properties and requirements
	Section 9 — Example usage
	Section 10 —Test and verification path

	6.2 Standard block list and associated documentation
	6.2.1 System function modules
	6.2.2 Instrument read modules
	6.2.3 Interlock and protection modules
	6.2.4 Safety and safety system modules
	6.2.5 Calculations and mathematics modules
	6.2.6 Sequential control
	6.2.7 Device drivers — Control loops
	6.2.8 Device drivers — Valves
	6.2.9 Device drivers — Drives
	6.2.10 Message handling
	6.2.11 Communication handling
	6.2.12 Subroutines
	6.2.13 Debug subroutines

	7. Application modules
	7.1 Application module numbering
	7.2 Sequence annotation
	7.2.1 Sequence IO matrix summary

	8. Interrupt modules
	8.1 Error detection OBs

	9. Template modules
	9.1 Templates for application modules
	9.2 Template modules for organisation blocks

	10. Documentation modules
	11. Common approach to data handling
	11.1 Conventions for using UDTs
	11.1.1 Static UDT conventions
	11.1.2 Dynamic UDT conventions

	12. Common modes of operation
	12.1 Manual mode
	12.2 Bypass mode
	12.3 Simulation mode
	12.4 Remote/local mode
	12.5 Faceplate disable mode

	13. User documentation
	13.1 Organising the user documentation
	13.1.1 The use of a home page

	13.2 Project specific User Documentation
	13.2.1 User Documentation for additional items

	14. Software security
	14.1 The protecting of software modules

	15. References and glossary
	15.1 Document references
	15.2 Glossary of terms

